Chapter 6

The Cascading and Doubling
Algorithm: Application to

Periodic Waveguide Gratings

6.1 Gratings

Although periodically stratified media have been a subject of study and discussion
since 1887 [76], the interest in corrugated dielectric waveguides initially started with
the possibility of guiding light by dielectric layers. Corrugated waveguides, also
called gratings, have since been playing important roles in the design and opera-
tion of many devices in integrated optics. Figure 6.1 shows a typical example of

a waveguide with rectangular corrugations. There are a variety of applications of
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gratings in integrated optics. The most common of these applications is in wave-
length filtering. In addition, gratings are used in coupling the electromagnetic field
into and out of integrated optical waveguides and devices [77, 78]. This application
relies on electromagnetic coupling through phase matching of the different fields by

the corrugated region.

6.2 Classification of Gratings

Gratings are widely used as components for realizing wavelength dispersion, conver-
sion, modulation and control of guided wavefronts in optical integrated circuits [79].
Gratings have dimensions, structures and fabrication processes that are suitable for
integration. Gratings are also applied as both active and passive device compo-
nents. Distributed Feedback (DFB) [80] and Distributed Bragg Reflector (DBR)
lasers [81, 82] are examples of corrugation-based active devices. In reference [83],
some examples of passive grating components are presented which includes grating
couplers, deflectors, reflectors, mode converters, wavelength filters and wavelength

lenses.

6.3 Analysis of Gratings

A number of theoretical methods have been reported for the analysis of waveguides

with periodic corrugations. Marcuse [43] used coupled-mode theory to analyze a



N;  Cladding
L1 Lin .

I‘?" l "
X

2d n]_ Core

c—————————>»

N, Substrate

Figure 6.1: Corrugated Waveguide

slab waveguide with sinusoidal deformation on one of its interfaces. The spectral
response of a grating filter using coupled-mode theory was calculated and compared
with experimental work in [84]. In reference [85], the Effective-Index method was
used to model a waveguide grating and the results were compared with coupled-mode
theory. A major limitation of the coupled-mode theory is that it can only model
small waveguide perturbations which is due to its approximate formulation. The
Method of Lines is suited to model such problems, where waveguide perturbations
can be large, as it does not have any approximation except for the approximation of
the second-derivative operator using central-difference formula. In order to model a
long grating with deep corrugations, a fast and stable algorithm within the Method of
Lines framework has been developed. This method, named Cascading and Doubling
Algorithm [38] can model gratings with thousands of periods much more efficiently
than the layer-by-layer algorithm given in chapter 4. In the current chapter, the

derivation of this algorithm is explained and comparisons are made with published
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results.

6.4 The Cascading and Doubling Algorithm

With reference to figure 6.2, two distributed discontinuities ‘A’ and ‘B’ are brought
together and are separated by a uniform region of width d. The quantities R4, T 1o
(Ra2,T41) are respectively the reflection and transmission matrices of discontinuity
‘A’ when the field is incident from left(right) of the discontinuity. The individual
reflection and transmission matrices of both discontinuities are assumed to be known.
We will next develop a scheme to find the reflection and transmission matrices of
the combined structure. R4 and T4 are reflection and transmission matrices of the
isolated structure ‘A’. For an asymmterical discontinuity R4 # Rao and T4y # Tho.
The same comments apply to discontinuity ‘B’. If the two discontinuities are not
identical then R4 # Rp and T4 # T. The reflection and transmission matrices of
the combined structure are denoted by R, and T respectively. These matrices are
obtained by adding the successive reflections and transmissions of the incident field
as the two structures interact with each other. The field propagation in the uniform

+752  The field vector ag is assumed

waveguide section of length ‘d’ is described by e
to be incident from the left on the first discontinuity (see figure 6.3). We can express

the net reflected field in terms of the summation of forward and backwards traveling

waves after multiple reflections from the two discontinuities, which gives:

iSd iSd iSd iSd iSd iSd
Royiay = Rarag + Tae?” " Rpi1e?”Tasag + Tay (67 Rp €’ RAQ) e’ Rp1€’” T 900 +
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Figure 6.2: Two Waveguide Structures Cascaded Together
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Sd Sd Sd Sd
TAI (6] RBleJ RAQ) 6] RBIGJ TAQGU +

T (75 Rp1e7%R 45)3 e’ R 75T ya0 + ... (6.1)
Royrag = Raiag+Tar [i (6deRB1€deRA2)n] e/ R 1759 000 (6.2)
n=0
Ryy = Ry+Ty [i (edeRBledeRAg)n] IS0 R 50T (6.3)
n=0
Ryt = Rai+ Tt (T Rpye/™Ray) 9 Rp15'Ty (6.4)

where the infinite geometric series in 6.3 is assumed to be convergent and is re-
placed by an equivalent quotient term. The transmission matrix 7Tj of the combined

structure is obtained in a similar fashion.
iSd iSd iSd
Toeag = Tpoe’”"Tasag + Tho (63 R a0€’ RBI) ap +

. . 2 .
TB2 (GJSdRA2€]SdRBl) GJSdTAgao + ... (65)

oo

T02a0 = T32 [Z (6deRA2€deRBl)n] 6deTA2a0 (66)

n=0
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0,2¥ 18 o 18 v
B 1pgi® "Mps® Mps@  Upsi® L

\

0,CV

19 v
B 1pg@ Hps® L

0,1V

/\
o

251Q



92

T02 = T32 [Z (6deRA1€deRBl)n] 6deTA2 (67)
n=0
. . -1 .
Toe = Tpo (1= Rane?Rpy1) 5Ty (6.8)

The quotients appearing in equations 6.4 and 6.8 are different. In order to make
the computation of Ry and Ty, more efficient, equation 6.1 is modified such that

these quotient terms become identical. That is:

Ryiag = Raiag + Taie’* Rp1€5Tasag + Tare’* Ry (edeRA2€deRB1) e’ T 1900 +
TAledeRBl (edeRAgedeRBledeRAgedeRBl)edeTA2a0 + ... (69)
Rgl = RAI + TA1€]SdRBl [Z (6]SdRA2€]SdRBl) ] GJSdTAQClO (610)
n=0
. . . —1 .
Rgl = RAI —+ TA1€]SdRBl ([ — GJSdR/ue]SdRBl) GJSdTAQ (611)

Thus equations 6.8 and 6.11 are very similar to each other with a common quo-

. y y _1 y . . . . .
tient factor (I — eJSdRAQeJSdRBI) €754 4. This is the Cascading Algorithm which
gives net reflection and transmission matrices of a cascaded structure composed of

two sub-structures in terms of their individual reflection and transmission matrices.

6.4.1 Symmetrical and Periodic Structures

For symmetric discontinuities, A and B, Ry = R, = R and T} = T, = T. Thus

equations 6.8 and 6.11 reduce to :
. . . -1 .
Ry = Ra+Tac™Ry (I - €% Rae™'Ry) /5T, (6.12)

Ty = Tp(I— S Rac™Ry)" 5T, (6.13)
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If structures ‘A’ and ‘B’ are identical and symmetric, then R4 = Rp and Ty =

Tg. So the relations are further simplified to:
Ryt = R+TR (I - %ReI%R)™ 5T (6.14)
Ty = T(I-&%RISR) /5T (6.15)

In addition, if the two identical and symmetric structures are connected to each

other directly, such that d = 0, then:
—1
Ry = R+TR(I-R*) T (6.16)
Tw = T(I-R)'T (6.17)

It is important to note that Ry; and Ty are reflection and transmission matrices
as seen from the left-hand side of the waveguide. The relations for Ry and Tp; as
seen from the right-hand side are easily obtained from 6.8 and 6.11 by interchanging

A<= B and 1= 2. That is:
. . . B
ROQ == R32 + TBQ€]SdRA2 (I — €]SdR31€]SdRA2) €]SdTBl (618)

. . B
T01 == TAI (I — €]SdR31€]SdRA2) €]SdTBl (619)

6.4.2 Rectangular Gratings

The rectangular grating is a classic example of a symmetrical periodic structure.

With reference to figure 6.4, this problem can be solved by first considering the
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discontinuity shown in figure 6.5. The reflection matrix for the TM polarized field

in this case is given by:

Figure 6.4: A Rectangular Waveguide Grating

Ra = [I-S;7'NeNT'S) [1+ 55 NN si] ™ (6.20)

_ [(s INoNT'S)) 1—1]5 LN, NS, -

-1

: K(SolNoNllSl)l + I) SolNoNllsl} (6.21)

_ [(solz\foz\fllsl)1 _ I] STIN,NLS, -

-1

(5o NN [(Solz\foz\qlsl)1 + I} (6.22)
_ [(SOINONllsl)_I _ I] {(SOINONHSI)_I + I} o (6.23)
_ [[ _ (So‘lNnglSl)_l] {H (SO‘INUNI‘ISI)_I}I (6.24)

= 1 STNING S [T+ STINING o) (6.25)

= —Ru (6.26)
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Thus for the above case Ry1 = —Rao , Tas = I + Ry and Ty = I + Ryo.

Although these results were derived for the TM case, they also apply for the TE

case as well. The next step is to treat the double discontinuity shown in figure 6.6.

All Rs and T's appearing in figure 6.6 can be expressed in terms of R ;.

R

T'a

T'a2

RBI

RB2

Tp

T'po

—Ra

I+Rao=1—-Ry

I+ Rx

Ris = —Rm
R

Tio =14 Ry
Ty =1—Ra

(6.27)
(6.28)
(6.29)
(6.30)
(6.31)
(6.32)

(6.33)

Since the structure of figure 6.6 is symmetric, we need only to define R and T
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for the structure. Using equations 6.8 and 6.11 we obtain:
R = Ry +(I— Ra)eS™ (—Ry) [I — (75 RAI)Z] o
e’ (I + Ray) (6.34)

T = (I-Ra)|I— (eﬂsldl RAl)Z] 751 ([ 4+ Ryy) (6.35)

The final step is to model the whole periodic structure iteratively. We start
by combining the two symmetric identical structures as shown in figure 6.7. Using
equations 6.14 and 6.15, the new reflection and transmission matrices for the com-
bined structure is expressed in terms of the old reflection and transmission matrices

of the individual structure, using the iterative relation:

R Rod + Tod' €™ Ry {I— (GJSOdORozd')] e?SohT, " (6.36)

Tnewl — Told, |:[ - (6jSOdORoldl)2:| 6jSOdOT’oldl (637)

From figure 6.8, the above equations can be further modified and leads to the

following relations:

Roew < Rog+ ToaRow [I Rold] Toid (6.38)

-1
Tnew — Told [I - Rgld] Told (639)

Equation 6.38 and 6.39 can be obtained by multiplying equations 6.36 and 6.37
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Figure 6.6: A Double Waveguide Discontinuity
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from the left by /0% and defining the new quantities:
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(6.40)
(6.41)
(6.42)

(6.43)

Equations 6.38 and 6.39 are the basis of the so called Doubling Algorithm. The

factor [I — RZ]f1 T is common in both equations which makes the algorithm very

fast. At each iteration, the number of grating periods accounted for is doubled. That

is after each iteration of equations 6.38 and 6.39 the number of periods accounted

for is 2, 4, 8, 16, 32 and so on. This works in power of 2 only but we can model

any number of periods by attaching the appropriate number of sections each having

periods in power of 2. For example we can model 10 periods by attaching 8 and 2

periods. Note that the reflection and transmission matrices for 2 periods is already

computed in the process of computing the reflection and transmission matrices of 8
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periods. So these matrices are stored in a temporary location and later used in the
attaching algorithm. For N discretization lines, this algorithm works on an N x N
matrix for storage and eigen-value calculation. Some other algorithms [47, 64], based
on raising a matrix to a certain power to model a certain number of periods, operate
upon 2N x 2N matrices. It becomes computationally expensive to find eigen-values
and eigen-vectors of a 2N x 2N matrix if the number of discretization lines N in a
given problem space is large. So our algorithm has this extra advantage of modeling

waveguides with wide (and hence large number N) cross-sections efficiently.

6.5 Results

In this section, the algorithm developed above is applied to calculate the spectral
response of various waveguide gratings. As it will be seen later, the results obtained
are in close agreement with published results, thus establishing the validity of this

algorithm.

6.5.1 Air/GaAs/Air Waveguide Grating

A shallow waveguide grating having 256 periods as shown in the inset of figure 6.9 is
modeled using a uniform mesh scheme. The TEy mode is launched in the waveguide
and the reflected and transmitted fields are calculated. The fundamental-mode

coefficient oy from the reflected field is calculated using an overlap integral (refer
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Figure 6.9: Modal Reflectivity of a Grating

to equation 5.19) and the modal reflectivity is plotted against the wavelength. As
seen in figure 6.9, the modal reflectivity has a central main lobe and several side
lobes. The calculation are done using a 5-point formulation. The number of sample
points in the waveguide core layer is 15 and the width of cladding layers is chosen
large enough (0.3 um) to give a substantial evanescent field decay at the inner
PML walls. A single layer PML is used with 7 sample points on each side of the
computational window. The resulting absolute error in n.rr (Mol vs. Analytical)
is 3.085e-5. The time required to simulate 256 periods at one wavelength is around
1.85 seconds (using an IBM Pentium IIT machine at 500 MHz with 128 MB RAM

running MATLAB 5.2 under Windows 98).
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6.5.2 Comparison with Published Results

An asymmetric waveguide with periodic deep grating (see figure 6.10) obtained from
reference [86] is modeled using the Cascading and Doubling Algorithm introduced
earlier. The modal spectral reflectivity is calculated for different number of periods.
A non-uniform mesh with a single layer PML is used to model the device. The 5-
point second-derivative approximation is used with appropriate interface conditions
in the MOL . A total of 77 sample points are used in the problem space. As shown
in figure 6.11, our results are in close agreement with those from [86], establishing
the accuracy of our algorithm. As the number of periods is increased, the spec-
tral reflectivity curve becomes asymmetric and the side lobes become more densely
packed. Results for a grating with 262114 grooves (effectively semi-infinite) is given
in figure 6.15 showing that the algorithm is stable for long gratings having several
thousands of periods. It took approximately 5.5 seconds per wavelength to calculate
the reflectivity and transmissivity of this semi-infinite case. The relative ease of the
Doubling Algorithm to model long gratings is also evident due to the fact that, the
number of periods modeled is doubled. The results for the TM polarization are also
shown in figures 6.16 and 6.17 for 8192 and 16384 grating periods respectively. These
results are quite different from the TE results in terms of the main lobe width and
peak reflectivity. The peak reflectivity in the TM case has increased as compared
to the TE case and the width of the main lobe has almost doubled.

In another simulation of the same device, the groove depth is reduced consider-
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Figure 6.10: A Deep Waveguide Grating Structure

ably and the spectral response recalculated. In figure 6.18, the groove depth used
is 0.42% with 65536 periods. The result shows that the main lobe width and side
lobe level depend on the groove depth. For shallow gratings, the main lobe width is
small and the side lobes are low, while for deep grating, the main lobe is wide and
asymmetric with higher side lobe levels. The peak reflectivity becomes lower for the
shallow grating. In this case, we need to use a larger number of grating periods to

obtain a higher reflectivity at the resonance wavelength.

6.5.3 Effect of Changing the Groove Depth

A waveguide grating with 256 periods as shown in the inset of figure 6.21 is modeled.
The spectral reflectivity of the TEy mode is calculated for different groove depths.
The spectral responses for 10%, 20% and 30% grating depths are calculated and

plotted in figures 6.21, 6.19 and 6.20 respectively. As the grating depth is increased,
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the main lobe becomes wider and more asymmetric. The wavelength of peak reflec-
tivity, often called the Bragg Wavelength Ag shifts towards the shorter wavelength

and the side lobe level increases.

6.6 Discussion

In this chapter, the cascading and doubling algorithm is used to model long gratings
with a large number of grating periods. This algorithm is found to be fast and stable
and its accuracy is verified against published results. This algorithm along with the
MOL will be used to analyze the reflection mode polarizer in the next chapter.

It is concluded that the spectral reflectivity becomes asymmetric and the side
lobes become more densely packed with the increase in the number of grating peri-
ods. The main lobe width and side lobe level depend on the groove depth and main

lobe width and side lobe level increase with the groove depth.
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Figure 6.19: Short Grating Modal Reflectivity, 10% Grating Depth
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Figure 6.20: Short Grating Modal Reflectivity, 20% Grating Depth
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