Chapter 4

Absorbing Boundary Conditions

and Waveguide Discontinuities

4.1 Absorbing Boundary Conditions

To analyze planar waveguide structures numerically, they must be enclosed by walls
to limit the area of discretization. The use of electrical or magnetic walls produces
errors, since the corresponding tangential field components, E, and H,, are set to
zero. This electric/magnetic wall reflects back the radiated waves into the problem
space producing errors in the computed results. To overcome this difficulty, free
space can be simulated at an arbitrarily fixed position by using a numerical absorbing

boundary conditions (ABC) [60].
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Figure 4.1: Mesh Discretization in the MOL with Absorbing Boundary

4.2 Perfectly Matched Layer

The perfectly matched layer (PML) as a material absorbing boundary condition
is introduced for electromagnetic waves by Berenger [61]. This material absorbing
boundary condition is based on a non-Maxwellian approach and has been applied
to a variety of time-domain problems. A PML absorbing scheme based on complex
distance approach was first incorporated into the MOL by Al-Bader and Al-Jamid
[37]. This approach was shown to be equivalent to Berenger’s method. This type
of PML which provides reflectionless absorption at a wide range of incident angles
and frequencies [37] independent of polarization, makes it particularly suited for
truncating the computational window in the MOL calculations. The absorption of

the radiative wave is done by changing the distance x from real to complex. This
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introduces an numerical attenuation factor in the radiative field and hence causes
decay of the radiative field in the PML region. The last mesh point is terminated
by an electric/magnetic wall boundary condition. In this approach the real distance

is transformed to a complex one according to:
z — xz(l+jo) (4.1)

where o is the decay factor constant. The wave radiative e*/** propagating in +ax

direction in the real space will be converted to

6+gkz(1+]a) — 6+]kzefk[m (4.2)

in the complex space. The factor e %°® causes the decay of the field in the +z
direction. The value of ¢ is set arbitrarily and the number of samples in the PML
absorber is chosen to cause a significant decay in the field so that it becomes negli-
gible at the electric/magnetic wall. The choice of the decay factor o is discussed in
reference [62]. If the PML region is made sufficiently wide, only negligible reflections
at the extreme edges of the computational window may occur. However, significant
numerical reflection may occur at the inner wall of the PML [63]. The choice of o
and the number of sample points in the PML are chosen appropriately in order to
minimize reflection from the inner wall of the PML. This PML absorbing scheme is

incorporated into the MOL and used throughout this thesis.
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Gaussian Field Propagation in Air:

The performance of PML is analyzed by modeling free-space surrounded by PML
layers on both sides. A Gaussian field is launched in air and its propagation along

the z direction is observed (see figures 4.3-4.10). An analytical expression based
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Figure 4.2: A Perfectly Matched Layer (PML) Scheme

on scalar diffraction theory is used to calculate the spread of Gaussian field [59]
as it propagates in a medium. The MOL propagated field is compared against the
analytically propagated field over a large distance. Each PML layer has 5 sample
points with 0 = 1. A non-uniform double layer scheme is used to model a relatively

thicker PML. Thus, the field magnitude at the last mesh point drops considerably
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Figure 4.7: Field at z = 1um
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Figure 4.4: Field at z = 5um
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due to the e %7 factor appearing in equation 4.2. The problem space is finally
terminated by an electric/magnetic wall. The visual comparison of the analytical
field and the MOL computed field shows that the two fields are almost identical
over a long propagation distance. This shows the PML absorbs radiative fields and

correctly models open-space.

4.3 Waveguide Discontinuities

Discontinuity problems are important in the investigation of optical devices, such
as laser facets, gratings, waveguide ends, and connections of different waveguide
sections. The classic problem to model scattering from a single and multiple discon-
tinuities has been solved by many workers using different analytical and numerical
methods such as the Mode Matching Method [28], the Method of Lines [44, 46, 47, 64]
and the Equivalent Transmission-Line Network Method [65]. A good reference to
these methods is given in references [28] and [66]. The MOL has been applied to
solve a variety of scattering problems, including non-linear scattering problem from

a single discontinuity [67] and surface-plasmon mode scattering [68, 69].

4.4 Single Discontinuity

Consider a waveguide having a single discontinuity as shown in figure 4.11. The

problem space is divided into two regions, region 0 and region 1. The field is incident
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from region 0 resulting in a reflected field in region 0 and a transmitted field in region
1. The total field in each region is the sum of the forward traveling field, et7% and
the backward traveling field, e =79

The total field (¥y) in region 0 is the sum of the incident and reflected fields:
Ty, = 5074 477507 (4.3)
The total field (W) in region 1 is only the transmitted field:
T, = 574, (4.4)

where W is a column vector containing the sampled fields. Ay, By and A; are
constant vectors, S = /@ and Q is defined in chapter 3. For TM polarization, ¥
is continuous at the interface at z = 0, that is WUy|,—9 = ¥;|,—¢. From equations 4.3

and 4.4, we have:
Ag + Bg = Al (45)

From the interface condition equation 3.27, the field on either side of the discon-
tinuity at z = 0 is related by:

! N !
U, = —U, (4.6)

(No) 'y = (V)0 (4.7)

where the matrix N is a diagonal matrix of refractive index squared n? at each
sample point. Differentiating equation 4.3 with respect to z and evaluating the

result at the interface z = 0, we have:

\If;) = jSOGjSOZAO—jSOG_jSOZBO (48)
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Figure 4.11: A Single Waveguide Discontinuity
\Ijlo|z:0 - ]SO(AO - Bg) (49)

Similarly from equation 4.4, we have:

U, = jSe’974, (4.10)
Uilmo = jSi4 (4.11)

Substituting equations 4.9 and 4.11 into equation 4.7 and simplifying we have:

(No)™"So(Ag — Bo) = (N1)7'S1 4, (4.12)

(AU - Bo) == SJI(NU)(Nl)ilslAl (413)
Eliminating By from equations 4.5 and 4.13, we get the transmitted field, A;:

Al == 2([ + SO_IN()Nl_lsl)_IAO (414)

where T is the transmission matrix. Similarly eliminating Ay, we get the reflected

field, By:

By = (I —Sy'NyN;7'S)(I+ Sy 'NoN;S)™ A (4.16)
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B, = RA, (4.17)
where R is the reflection matrix.

For the TE polarization, both field and its z derivatives are continuous across
the interface. We follow the same procedure to derive the transmission (7') and
reflection (R) matrices for the TE case.

Ay = 2(I+S,'8)) T4y =TA, (4.18)

By = (I—S;"S))(I+Sy'S1)™ 4y = RA (4.19)

The transmission matrix 7" and the reflection matrix R are related by:

Al = B() + A() (420)
= RAy+ A4 (4.21)

4.4.1 Results

A single waveguide discontinuity is modeled as shown in figure 4.12 at A = 0.86 um.
The T'My mode of the narrow waveguide is incident from the left on the waveguide.
The reflected and transmitted fields are calculated and propagated backward and
forward in the respective waveguides. The problem space is terminated with a
single layer PML on both sides. The results are shown in figures 4.13 and 4.14. The
reflected field consists of the 7'My mode of the narrow waveguide after propagating
backward a long distance as the radiative part of the field leaks out and absorbed by

the PML layers. This shows that the PML absorbs the radiative fields effectively.
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Figure 4.12: Incident T'M, Modal Field at the Discontinuity
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Figure 4.14: Backward Reflected Field

4.5 Double Discontinuity

Consider a waveguide having a double discontinuity as shown in figure 4.15. The
problem space is divided into three regions, region 0, region 1 and region 2. The
total field in each region is the sum of the forward traveling field, et/* and the
backward traveling field, e=75%,

The field is incident from region 0. After reflection from the first discontinuity
at z = 0, there is a reflected field in region 0 and a transmitted field in region 1.

The transmitted field in region 1 is the incident at the second discontinuity z = d,
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thus there is a reflected field in region 1 and a transmitted field in region 2.

Thus the total field in all three regions is given by:

\Ifg = €+jsozA0 + e_jSOZBO (423)
Uy, = eMNA e iSEIp, (4.24)
\Ifg = €+j52(z_d)A2 (425)

For the TE polarization, the field vector ¥ and its derivative U with respect to z
are continuous at a discontinuity. Applying the interface condition Wg|,—g = ¥y |,—o,

we get:
Ag+ By = A +eM514B, (4.26)
Similarly applying the interface condition Wp|,—o = ¥ |,—o, we get:

SoAg — SoBy = SiA; — S4B, (4.27)
Ti(Ag— By) = A —et5p (4.28)
where 77 = S;'S;. Similarly applying the interface conditions at z = d and simpli-

fying, we get:
et 4+ B = A (4.29)
Ty(e™59A; — B)) = A, (4.30)

where T, = 52’151. By eliminating A; and B; from equations 4.26, 4.28, 4.29 and
4.30, we get the total transmitted and reflected fields [36]:

Ay = (T4 T) 'The™5K A, (4.31)

BO == K3A0 (432)
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Figure 4.15: A Double Waveguide Discontinuity
where
Ky = (I+T)+{I—-T)K; (4.33)
and
K; = (S;+85)7 (S —5)) (4.34)

For the TM polarization, the results are similar but with 7; = S; *N; N, 1S, and

TQ - S;lNQNfISL

4.5.1 Results

A double waveguide discontinuity (see figure 4.16) is modeled at A = 0.86 um.
The T'My mode of the narrow waveguide is incident from the left on the junction.
The reflected and transmitted fields are calculated and propagated backward and

forward in the respective waveguides. The results are shown in figures 4.17 and
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Figure 4.16: Incident 7'M, Modal Field at the First Discontinuity

4.18. The reflected field develops to the T'M, mode of the narrow waveguide after
propagating backward a long distance as the radiative energy leaks out. Similarly,
the transmitted field gradually develops into the 7'My mode of the narrow output

waveguide.

4.6 Multiple Discontinuities

Consider the multi-layer structure shown in figure 4.19 [49]. The total field is com-
posed of forward traveling field and backward traveling field. Thus, the total field

in each layer is expressed as:

Uy = 974, +e 7B, (4.35)

\111 = €+jSIZA1+€_jSI(Z_d1)B1 (436)



Transmitted Field

1
0.8
N
Z
50.6
D
c
[
n
E0.4
@
(TR
0.2
s
0 N”:m\

D X
nik
i
Nt

x—axis [um]
z—-axis [um]

Figure 4
.17: Transmi
smit i
itted Field after the Second
nd Discontinui
uity

Ba
ckward Reflected Field

0.2

0.15

Field Strength (H )
S y
i

0.05
v v"i\"\‘\'i\‘\'(\‘\\\\\\\\\\‘\\‘“\‘\‘\‘\‘\‘\‘\‘\‘\\\\\\\\\ |||\|\|‘|\|“m\m|\m|
\\\\\\\‘&Wﬁ\\\\}'\‘\\%“%‘:‘:‘:“““‘g‘:ﬁ““m ‘“

\\\

NN
NN
N

R
RN

x—axis [um]
z-axis [um]

d d



60

Ol1]2]3 Kk N | N+1
——————————————————————————————————————— l—» Z

\PO ‘Pl \Pz ‘Pg \Pk \PN \PN+1 X

z=0 d1 d2 d3 dk dN—l dN

Figure 4.19: Multiple Waveguide Discontinuities

U, = etiSG—di-0) g 4 o=iSiE—d) g (4.37)

Uy = 6JrJ'5N+1(Z*dN)ANJrl (4.38)

The subscript k£ in ¥, and S, denotes that the column vector ¥, and the matrix
Sk in the k region. In figure 4.19, the wave is incident on the interface z = 0 from
the left. In region N + 1, the wave is assumed to propagate without reflection in the
+2z direction. At each discontinuity, the boundary condition requires the continuity
of the tangential fields, F, and H,. In other words, the continuity of ¥ and ‘fi—i’ must
be satisfied at the interfaces. Application of these conditions results in the following

relationships [49]:

) 1 1 )
e]Sk—(dk—dk——l)Ak — 5(1 + S]g_lsk—I—l)Ak-i—l + 5(1 - Slc—lsk+1)e]5k+1(dk+1—dk)Bk_H (439)
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1 1 :
By, = 5([ — S Skr1) A + 5(1 + Sy Sy )¢l =B By (4.40)

where £ = 0,1,2,.... N, For k =0, dy = d_; = 0 and for k = N, By,; = 0.
This is a recursive relationship which expresses the field in layer & in terms of the
field in layer k£ 4+ 1. We start from the last layer, in which there is only a forward
propagating wave, and work backward layer by layer, until we reach the first layer.
Thus the field in last layer is expressed in terms of the field in first layer. From
this, we can find the reflection and transmission matrices and hence the reflected
and transmitted fields. The field in the intermediate layers can also be calculated if

required.





