Chapter 3

The Method of Lines

3.1 Introduction

Various numerical algorithms have been utilized for the analysis of waveguide struc-
tures, the Method of Lines (MOL) is one of them. The MOL has been applied
to several types of planar longitudinally uniform waveguide problems. The MOL
has been used to analyze single discontinuity [44, 45] and multiple discontinuities
in optical waveguides [29, 36, 46, 47, 48, 49, 50]. It has also been applied to solve
non-linear waveguide problems [51] as well as diffraction problem from waveguide
ends [52]. This method has also been used to model 3-D problems [53, 54, 55] for

both optical and microwave waveguides.
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3.2 Principle of the Algorithm

When the MOL is applied to two dimensional structures, the wave equation is
discretized in the transverse direction (the direction normal to the direction of prop-
agation) and calculated analytically in the longitudinal direction [50].

Figure 3.1 shows a planar two-dimensional waveguide structure in which the
interfaces of layers are parallel to the z-axis. Consequently, discretization will be
applied along the the x-axis. This implies that the field will be calculated on lines
that are equidistant from each other and parallel to the z-axis. The investigated
structure is bounded by an electric wall where E, = 0 or a magnetic wall where
H, = 0 as appropriate. The resulting difference equations are then decoupled and
manipulated through algebraic transformation.

In some instances, it might be more advantageous to have non-equidistant dis-
cretization. An example of this is the case when the widths of the different layers
of the structure exhibit extreme differences which results in increasing the number
of lines and, consequently the associated computational time and memory require-
ments. In such cases, the distance between the lines (i-e. mesh size) is increased in

regions where the field exhibits smaller variations and vice versa [56, 57].
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Figure 3.1: Mesh Discretization used in the MOL

3.3 Mathematical Formulation

Consider the two dimensional wave equation:

82%;? z) n 82@2(;, z) 4 K22z, 2) = 0 (3.1)

where

¢p = Electric or Magnetic Field (E, or H,)

ko =2m/A,

Ao = Free space wavelength

n = Refractive index of the medium

In the MOL, both the field ¢)(x, z) and the refractive index n(x) are discretized
along the x-axis and calculated on lines in the z-direction (direction of propagation).
To calculate the field ¢ in a discretized form, we first need to obtain its second

derivative with respect to x in discrete form. This can be accomplished using the
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well-known three-point central difference approximation.

3.3.1 The Three-Point Central Difference Approximation

To obtain an expression for the discretized second derivative of a certain function, we
express the function in terms of a power series. We can have a good approximation
of the given function in terms of a polynomial by neglecting all except the first few
terms of the resulting series. One of the most convenient power series is the Taylor’s

Series which can be expressed as:

© fn)(g
fo) =S o —ap (5.2)

n

where f( is the nth derivative of f(z) with respect to x.
If Taylor’s series is expanded about x = 0, the resulting series is often called a

Maclaurin’s Series expansion. Expanding ¢ (z) about 2 = 0 using equation 3.2:

TR wQ(!O):EQ + L4 350)x3 + L4 4!(0)x4 + ... (3.3)

Evaluating the above equation at + = +Ax results in:

b = (0) + ‘”ﬁmm + ‘”"2(!0) (A2)? + ';EO) (Ax)® + ‘””;!(0) (A2)' + .. (3.4)
1= (0) - ‘”,1(!0)&5 + ‘Z’;(!O) (Az)? — ';EO) (Aa) + ‘””;!(0) (A2)t+ .. (35)

Adding equations 3.4 and 3.5, we have:
it = 20(0) 4 (A2 + O Ayt (3.6)

12
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this equation leads to:

v =20(0) +¢ . ¥"(0)
w (0) - (Al‘)2 12

which can be approximated as:

~ Y1 —29(0) + ¢

' (0) (Ar)?

(3.8)

It is apparent from equation 3.8 that the leading error resulting from the ap-

proximation is proportional to (Ax)?2.

3.3.2 Discretization of the Wave Equation

The second derivative operator (3‘9—;2) term in equation 3.1 is replaced by the three-
point central difference approximation from equation 3.8. So at the ith grid we

get:

Viy1(2) = 20i(2) + i1 (2) n d*1;(2)
(Azx)? dz?

+ E2n2i(2) =0 (3.9)

If the field in the x-direction is discretized into M points, then equation 3.9 yields

the following M equations:

2
=1 el 2tnld SRR =0 (0)
1 d? 9 9
1=2: (Aa)? (43 — 2tpy + 1] + 12 [1h2] + kyna [h2] = 0 (3.11)
2
i=3: EE (104 — 2903 + tho] + % [4)3] + k2n2 [1hs] = 0 (3.12)
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1 d?

1= M: Az) (Va1 — 200 + Yar—] + 2 [Yar] + E2ndy [ba] =0 (3.13)

The above equations can be written in matrix form as:

-2 1 Y1(2) Y1(2)
1 -2 1 O ¥y (2) P2 (2)
1 1 -2 1 3(2) L 3(2)
(Az)? dz?
O 1 -2 1
i I =2 I Yar(2) | i Y (2) |
n% V1(2) 0
i n3 3(2) B 0
@
_ n?w__wM(Z)_ 0

written in compact notation, we get:

1 e
OV 4 —

U+ E2NU =0 3.14
(Azx)? dz? M (38:14)

where C' is a tri-diagonal second-order central-difference matrix , NV is a diagonal

matrix whose elements are n? n2, ...n3, and ¥ = [1;(2),12(2), ..., Yn(2)]" is the
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discretized field vector of either F, or H, depending upon the polarization. The

above equation may then be written in the form:

d2
where
1 2
Q= (M)2c + k2N (3.16)

The solution of this 2nd-order ordinary matrix differential equation is formally

given by [29]:
U =e/V@74 4 ¢7VO%R (3.17)

where V@ represents field propagation in the +z direction and e~IVQ% represents
field propagation in —z direction. The matrices e/V?% and e~7V@* are calculated by
diagonalizing matrix () to find the eigenvalues and eigenvectors. Matrix () may be

written in the form:
Q=UvU! (3.18)

where U is the eigenvector matrix and V' is a diagonal matrix containing the eigen-
values of (). The matrix exponent is then calculated using the following well known

relation of linear algebra:

V@ = UeiVVey ! (3.19)
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3.4 Convergence of the MOL

The convergence behavior of the results of a numerical method serves as a good
indicator of the accuracy of the chosen parameters. One important parameter in
the MOL is the mesh size (h) that is the number of discretization lines (M). The
accuracy of the results should improve as the mesh size decreases. However, as
mesh size decreases, the number of discretization lines increases. This leads to

longer computational time and larger memory requirement.

3.5 Interface Conditions

In order to correctly model the electric and magnetic fields behavior at an interface,
the interface conditions (I.Cs.) should be appropriately accounted for in the Method
of Lines formulation. In this thesis, we are mainly concerned with multi-layer struc-
tures in which the material properties are constant within each layer and change
abruptly from one layer to the next (see figure 2.2). The tangential electric field E,
and its first derivative are continuous across an interface. The tangential magnetic
field H, is continuous but its first derivative is discontinuous at an interface. All the
higher order derivatives of both E, and H, are discontinuous at an interface. We
can derive these relations using Maxwell equations. For TE polarization, applying

equation 2.19

| OF
o= I %5 (3.20)
Whty Ox
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at an interface along with the fact that H, is continuous at an interface, that is

H®" = H" , equation 3.20 gives:

i OEY" | OE)
- L T T (3.21)
Wl 0T Wiy 0T
that is
OF%"  OEY
v~ (3.22)
ox ox
which is the statement of the continuity of % at a horizontal interface. Similarly
for TM polarization, using equation 2.30
| OH,
B =1 % (3.23)

= 2y
wnie, Ox

at an interface along with the fact that E, is continuous, that is E2+ = EY

07 we
obtain:
Jj 3]—[3* _ OH,) (3.24)
wn3e, Ox wn?e, Ox '
that is:
o+ 0~
1om, 1 0H, (3.25)
nZ Ox n? Ox

which means that % is discontinuous at a horizontal interface.

Depending upon the polarization of the field, ¢ may represent either £, for the
TE polarization or H, for the T'M polarization. At an index discontinuity in the
transverse direction x, 1 is continuous. However, all its higher order derivatives

with respect to x are in general discontinuous there. With reference to Figure 3.2,
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Figure 3.2: Discretized Field in the Transverse Direction
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where an index discontinuity is assumed to exist at x = 0, the discontinuities in the

higher-order derivatives of ¢ can easily be deduced from the wave equation, and are

summarized below [58]:
Yo+
Yo+

"
Yo+

n

Do+

"

Do+

nreer

Do+

nrerr

Yo+

o~ = o
P21¢(l)—

Yo- + Ciatho

nr

P21 (%f + C12¢(,)7)
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Yo + 2Ci2ty- + (Rt
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nrerr "
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+ C1221/}£)*)
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(3.26)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

where (15 = k2(n? — n3), pa1 = n3/n? for the TM case and py; = 1 for the TE case.
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The subscripts 07 and 0~ represent the field immediately to the right and to the

left of the interface, respectively.

3.6 Improved Three-Point Formulation with In-

terface Conditions

The field is sampled or discretized so that there is always a sample point at an
interface. Within a certain layer i, the refractive index n; and mesh size h; are
uniform. From one layer to the next, either the refractive index n; or the mesh
size h; or both may abruptly change. The refractive index chosen at the interface
sampling point is either the refractive index of left layer or the refractive index of
right layer. This choice should be consistent throughout the whole structure. In
this manner, we can correctly model the layer thickness and abrupt refractive index
discontinuity. With reference to figure 3.2, the field on either side of the interface is
expanded in terms of the field at the interface using Taylor’s series expansion, that

is:
! h% "
Yor = Yo — Mt + v+ (3.33)
! h% "
Vi1 = Yo+ + hothyr + §w0+ + ... (3.34)

Here 1)+ and v- represent the field at z = 0" and x = 0~ respectively. Using

the interface conditions 3.26, 3.27 and 3.28 and expressing all 15+ in terms of t)y-
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in equation 3.34, we obtain:

i1 = (14 0.5h3C2) o + hapmtby- + 05030 + .. (3.35)

Eliminating w(l), from equations 3.35 and 3.33, we get [36, 58]:

1/)37 _ 1/)+1 — (7‘21p21 +1+ 05]7%(12) wo + 7-21P217/)71 (336)
0.5h2(h1p21 + hZ)

where 751 = Z—f The above relation can be used to approximate the 8‘9—; operator
at any sampling point ¢ in terms of the field values at ¢ + 1, ¢ and ¢ — 1 sampling
points. So this represents an improved three-point finite-difference approximation
of BB—; operator because it accounts for the interface boundary conditions. In the
case of uniform refractive index and uniform mesh size i.e. ny = ny and h; = ho,
equation 3.36 reduces to the familiar three-point central-difference approximation,

that is:

1 ~ 'QZJ+1 - 277b0 + 'QZJ_l
wo_ ~ hQ

(3.37)

3.7 Higher-Order Finite Difference Approxima-
tion

The improved formula 3.36 for the second derivative approximation has an accuracy
of O(h?) at regions of uniform index and mesh size. Its accuracy decreases at a
mesh or index discontinuity. In integrated optical waveguide modeling, the required

accuracy in estimating the effective index is fairly high. So we need to use a relatively
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large number of discretization lines to reduce numerical errors. This leads to larger
matrices and longer computational time.

The higher-order approximation scheme of the second-derivative operator 8‘9—;
presented in references [36, 58] gives sufficiently high accuracy and accurate esti-
mation of the modal field profile and the effective indices. The necessary interface
conditions for the electric and magnetic fields are appropriately included in the
scheme. This scheme results in a much reduced matrix size, faster computational
speed and lower memory usage. This high-order approximation scheme is discussed

in appendix A and it is used in this thesis.

3.8 Results

The previously developed formulae for the three-point, five-point and seven-point
approximation of the second derivative operator (8‘9—;) are used to model a high-
contrast waveguide and a metal-dielectric single interface. The effective index n.ss
and modal field of the fundamental T'E' and T'M modes are calculated using the
MOL. These MOL results are compared with exact results and their convergence
behavior is studied by decreasing the mesh size (that is increasing the number of
discretization points) in the problem space. It is observed that the 7-point formula
gives a better estimate of n.;r and modal field with relatively few sample points as
compared to the 5-point and the 3-point formulas. The basic 3-point formula without

interface conditions can not distinguish between the T'E and T'M polarizations.
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3.8.1 High-Contrast Waveguide

A high-contrast waveguide structure (shown in the inset of figure 3.3) is modeled
using the MOL. In this simulation, a uniform mesh is used and the mesh size is
varied. During simulation the outermost layers thickness is kept sufficiently large
so that the modal field decays to a sufficiently small value (approximately 107°) as
compared to its value at the Air/GaAs interface. The phase parameter, defined as
B = (n2;; —1%)/(3.6° — 1), is used to assess the accuracy of the computed results.
The exact values of the T'Ey and T'M, modes are calculated by STF1 program
(see Appendix B). For the TE, mode, we have n.;; = 3.543961609340564 and
By = 0.9665270809765686, and for the T'My mode, n.rr = 3.529434420038923 and
By = 0.9579353950966126. The relative error in phase parameter which is defined
as BMOTLO’BO is plotted against the mesh size (h) (see figures 3.3 and 3.4). The results
show that for relatively large values of the mesh size, the error due to higher order
formulation exceeds the corresponding error for lower order formulation. However,
as the mesh size decreases, the error due to higher order formulation becomes much
lower than that due to the lower order formulation [58]. This shows the superiority
of the 5-point and the 7-point formulation to find n.f; and modal field for both the
TFE and T'M polarization as compared to the 3-point formulation.

The 7-point formulation takes approximately 0.10 seconds per mesh size to cal-

culate the relative error in the phase parameter for TFy mode and the 3-point and

5-point formulation take 0.02 and 0.08 seconds per mesh size respectively (using an



Relative Error in the Phase Parameter

Relative Error in the Phase Parameter
=
o

Relative Error in Phase Parameter for the TE0 Mode

10°

H —— 3-pt, No I.Cs.
H —= - 3-pt, with I.Cs. |-
Hilna 5-pt, with I.Cs. |,
10 g —*— 7-pt, with I.Cs.

=
Ou
&

=
O\
S

&

.
Ou
&

=
O\
4

10°

10" 10
Mesh Size [um]

Figure 3.3: Relative Error in Phase Parameter for the T'E; Mode

2 Relative Error in Phase Parameter for the TM Mode

f| —o— 5-pt, with I.Cs. [
| —%— 7-pt, with I.Cs. [

10"

10°

-10

107
10

Figure 3.4: Relative Error

10™ 10°
Mesh Size [um]

in Phase Parameter for the T'M, Mode

42



43

IBM Pentium-IIT machine with 128 MB RAM running MATLAB 5.2 under Windows
98). This indicates that the 5-point and 7-point formulation are slow as compared

to the 3-point formulation.

3.8.2 Metal-Dielectric Single Interface

The single interface between a metal and a dielectric supports a surface plasmon
mode. This mode is TM polarized and is characterized by a field (called evanescent
field) that decays exponentially on both sides of the interface. This field decays in
the metal much faster than it does in air. A Surface plasmon mode is known to
be lossy with a complex propagation constant [39, 59]. It can only exist as surface
wave at a metal/dielectric interface when the complex dielectric constant (i-e. n?)
of the metal has a negative real part. The following analytic expression is used to

calculate the effective index (n.ss) of the surface plasmon mode [58].

ning
Neff =
\/n? + n3

where n; and ny are the refractive indices of the metal and dielectric respectively.

(3.38)

A metal/air single interface structure (see figure 3.5) is modeled at the operating
wavelength, A = 0.6328um. The problem space is divided into many artificial layers
and a non-uniform discretization scheme is used to sample the waveguide efficiently.
A fine mesh is used in regions of fast field decay and a coarse mesh is employed
in regions of slow field decay. This decreases the total number of sampling points

considerably as compared to a uniform sampling scheme. The effective index is
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Figure 3.5: Magnetic Field Pattern of A Surface Plasmon Mode at a Metal-Air
Interface

calculated and compared against analytical values for the 3-point, the 5-point and
the 7-point formulations. The results are given in table 3.1. It is found that the 7-
point formulation gives more accurate results than the 5-point or the 3-point schemes
for a fixed total number of mesh points [58]. The basic 3-point formulation without
interface conditions can not be used to model this problem. The results obtained

are in close agreement with those given in reference [36].

| 3-Point | 5-Point | 7-Point |
| -5.046e-4+j7.733e-6 | 7.652e-6-j8.145e-7 | 1.147e-8+)3.261¢-8 |

Table 3.1: Error in n.¢s for the Surface Plasmon Mode. (Analytical value of n.s; =
1.032654962422412 + 70.002142428459687181, total number of sampling points =
50)





