PROBLEM SESSION II

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
Electrical Engineering Department
EE 340: Introduction to Electromagnetics

Problem 1.a) Find the surface integral of \(\mathbf{F} = 5 \mathbf{a}_r \) over \(S \), where \(S \) is a cubical surface 3 units of length of the side with a corner at the origin. One of the faces of the cube lies in the first quadrant of the \(x-y \) plane. (b) Repeat (a) for \(\mathbf{F} = x^2 y^2 \mathbf{a}_x \).

Problem 2.a) Evaluate the surface integral of \(\mathbf{F} = \frac{\mathbf{a}_r}{r^2} \) over the spherical surface of radius 4 centered at the origin. (b) Repeat part (a) for \(\mathbf{F} = \frac{\sin^2 \phi}{r^2} \mathbf{a}_r + \cos \phi \mathbf{a}_\theta \). (c) Repeat part (a) for \(\mathbf{F} = \mathbf{a}_x \).

Problem 3. Consider the conical surface \(S \) shown in figure 2. The cone has height \(h \) and base radius \(a \). Evaluate the closed surface integral of the following vector fields: (a) \(\mathbf{F} = r \mathbf{a}_r \). (b) \(\mathbf{F} = r \mathbf{a}_\theta \). (c) \(\mathbf{F} = \cos \phi \mathbf{a}_\phi + r \mathbf{a}_\theta \).

Problem 4. Consider the closed cylindrical surface of height \(h \) and base radius \(a \) as shown in figure 3. Evaluate the closed surface integral of \(\mathbf{F} \) over this surface if: (a) \(\mathbf{F} = \rho^2 \mathbf{a}_\rho + \rho \sin \phi \mathbf{a}_\phi + \rho^2 \sin \phi \mathbf{a}_z \). (b) \(\mathbf{F} = x \mathbf{a}_x + z \mathbf{a}_z \).

![Figure 1: The surface for Problem 3](image1.png)

![Figure 1: The surface for Problem 4](image2.png)