KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS
 Electric Engineering Department

EE 306 Electric Energy Engineering - Experiment\#2

MAGNETIC CIRCUITS

Objective:

1. To determine the $\mathrm{B}-\mathrm{H}$ characteristics of an iron core
2. To find the relative permeability $\left(\mu_{r}\right)$
3. To calculate the reluctance " R "

Apparatus:

1 Rectangular laminated core
1 coil
1 voltmeter
1 ammeter
1 variable AC supply

Theory:

Fig. 1 : A simple rectangular core

If a current of 1 A , flows from a supply of E volts through a coil of N turns, as shown in fig 1 , the magnetic field intensity can be written as

$$
\begin{equation*}
\mathrm{H}=\mathrm{NL} / \mathrm{L}_{\mathrm{C}} \tag{1}
\end{equation*}
$$

From faraday's law of electromagnetic induction, the rms values of the induced voltage across the coil (E) is

$$
\begin{align*}
\mathrm{E} & =\omega \mathrm{N} \Phi \tag{2}\\
& =\omega \mathrm{NAB} \\
\mathrm{~B} & =\mu \mathrm{H} \tag{3}
\end{align*}
$$

From (1), (2) and (3) it is clear that E-I characteristic of the core is equivalent to the B-H characteristic. Further, it can be shown that

$$
\begin{equation*}
E=\frac{\omega N^{2} \mathrm{~A} \mu \mathrm{I}}{\mathrm{~L}_{\mathrm{c}}} \tag{4}
\end{equation*}
$$

Where, the permeability can be written as:

$$
\mu=\mu_{\mathrm{r}} \mu_{0} ; \quad \mu_{0}=4 \pi \times 10^{-7}
$$

The reluctance of the core can be expressed as:

$$
\begin{align*}
\mathrm{R} & =\mathrm{NI} / \Phi \\
& =\mathrm{L}_{\mathrm{c}} /(\mu \mathrm{A}) \tag{5}
\end{align*}
$$

Procedure

1. Find the typical dimensions of the core. The instructor may help you to get the accurate numbers.
2. Connect the circuit as in fig 1
3. On a separate sheet of paper make a table as shown below:

Table 1

E	I	$\mathrm{K}=\mathrm{E} / \mathrm{I}$	μ_{r}	R

4. Set the input voltage of 10 V . Record the current and enter them in table 1 .
5. Repeat step 4 up to 150 volts in steps of 10 volts.

Report

1. Plot E Vs I on a graph paper.
2. Find K, and R for each reading and complete the table. Here,

$$
\begin{aligned}
& \mathrm{K}=\mathrm{E} / \mathrm{I} \\
& \mu_{\mathrm{r}}=\frac{\mathrm{KLc}}{2 \pi \mathrm{fN}^{2} \mathrm{~A} \mu_{\mathrm{o}}}
\end{aligned}
$$

3. Plot μ and R as functions of I
4. Derive equations (4) and (5)

Core Dimensions:

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{c}}=40 \mathrm{cms} \\
& \mathrm{~N}=400 \text { turns } \\
& \mathrm{A}=9 \text { Sq. } \mathrm{cms}
\end{aligned}
$$

