KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

Electrical Engineering Department

EE 208 ELECTRICAL SYSTEMS

Experiment # 9 THREE PHASE CIRCUITS

OBJECTIVE:

- 1- Learn how to make **wye (Y)** and **delta** (Δ) connections.
- 2- Study the **relationship** between voltage & current in **three phase** circuits.
- **3-** Make power calculations.

APPARATUS:	AC Power Supply
	Ohmmeter, 2 - AC Voltmeter and 2 - AC Ammeter
	1 - 3Φ load & 1 - 3Φ variable AC power supply

THEORY:

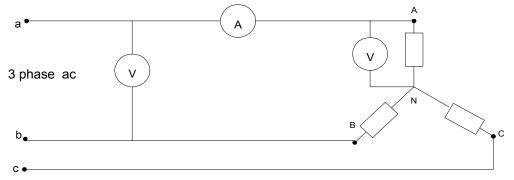
In a **Y** connection, the line and the phase quantities are related by:

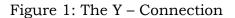
$V_{\rm P} = V_{\rm L} / \sqrt{3}$	(1)
I_{P} = I_{L}	(2)

Whereas the relationships for a **delta connection** are:

$I_{\rm P} = I_{\rm L} / \sqrt{3}$	(3)
$V_{\rm P} = V_{\rm L}$	(4)

The **real** and **reactive powers** for a 3Φ circuit (either **Y** or Δ) are given as:


$P = \sqrt{3} V_L I_L \cos(\theta)$	(5)
$Q = \sqrt{3} V_L I_L \sin(\theta)$	(6)


Where the angle θ is the phase difference between the voltage and the current of the balanced load. The voltages & the currents in the equations are in rms values.

PROCEDURE:

A: Y – Connection

- 1. Connect the three-phase load as the **Y** connected load shown in Figure 1. Have your connections checked by the instructor.
- 2. With the load switch **turned off**, switch the power supply **on** and adjust the line to neutral voltage to **120 volts** or $V_L = 208$ volts.
- 3. Switch the load to **unity power** factor mode.
- 4. Select the **balanced** load from each phase.
- 5. Measure the **line** and the **phase voltages** as well as **currents**. Record the values in Table 1.

- 6. Take **three readings**, one at the **rated value** of the load (i.e. current = 8A), one at $\frac{1}{2}$ **rated** load and one at $\frac{1}{4}$ **rated**.
- 7. **Repeat** step 5 and 6 for power factor loads of **0.8 lagging** and **0.8 leading**.
- 8. Turn the load switch off.
- 9. Then turn the power supply switch off and adjust its voltage to **0 volts.**

B: \triangle Connection

1. Connect the three-phase load as the Δ connected load shown in Figure 2.

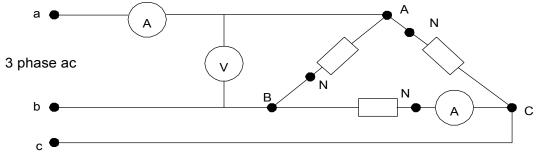


Figure 2: The Δ Connection

- 2. With the load switch **turned off**, switch the power supply **on** and adjust the line to neutral voltage to **120 V AC** ($V_L = V_P$ for Δ).
- 3. Switch the load to **unity power factor** mode.
- 4. Select the **balanced** load from each phase.
- 5. Measure the **line** and the **phase voltages** as well as **currents**. Record the values in Table 2.
- 6. Take **three readings**, one at the **rated value** of the load (i.e. current = 8A), one at $\frac{1}{2}$ **rated** load and one at $\frac{1}{4}$ **rated**.
- 7. **Repeat** step 5 and 6 for power factor loads of **0.8 lagging** and **0.8 leading**.
- 8. Turn the load switch off.
- 9. Then turn the power supply switch off and adjust its voltage to **0 volts.**

REPORT:

- 1. **Complete** Tables 1 and 2.
- 2. **Calculate** the total real and reactive powers in Tables 1 and 2.
- 3. **Verify** the **relationships** for the phase and the line voltages and currents and state reasons for any errors.

EXPERIMENT # 9 Laboratory Report

TABLE 1

Y Connected load

PF	VL	V_{P}	I_L	IP	$V_{\rm L}/V_{\rm P}$	I_L/I_P	Р	Q
1.0								
1.0								
1.0								
0.8 Lagging								
0.8 Lagging								
0.8 Lagging								
0.8 Leading								
0.8 Leading								
0.8 Leading								

Δ Connection load

PF	VL	VP	$I_{\rm L}$	I_P	V_L/V_P	I_L/I_P	Р	Q
1.0								
1.0								
1.0								
0.8 Lagging								
0.8 Lagging								
0.8 Lagging								
0.8 Leading								
0.8 Leading								
0.8 Leading								