KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

Electrical Engineering Department

EE 208 ELECTRICAL SYSTEMS

Experiment # 5 ELECTRICAL POWER AND ENERGY

OBJECTIVE:

- 1- To verify the **voltage current power relationship** of electrical devises.
- 2- To **measure** the **power** consumed by common household electrical appliances. Also, to determine the **cost of operation** per hour at the local power rate.
- 3- To study the **power** characteristics of a **resistor**.
- 4- To determine qualitatively the **effect of increased power** dissipation on carbon resistor.

APPARATUS: DC Power Supply & AC Power Supply Ohmmeter, DC Voltmeter and DC Ammeter Digital Power meter 600 W Toaster 60 W Soldering Iron 250 W Electric Hotplate 40 W, 60 W & 100 W Lamp Carbon Resistors: 470 Q

THEORY:

The basic relationship between voltage, current, and **power for any electrical** device is determined by

 $\mathbf{P} = \mathbf{V} \mathbf{I} \tag{1}$

Then the **Energy** consumed by the device in **KWH** can be found by

KWH = (Power in Kw) x Hours (2)

And the cost of the energy consumed by the device can be calculated by

Total Cost = KWH x rate

Where "**rate**" is the **cost of 1 KWH** in local currency as prescribed by the power generating company

(3)

(2)

Now, **if the device is a resistor**, Ohm's law gives the relation between voltage, current & its resistance:

$$V = I R$$

Thus, the power P (in Watts) can be written as follows.

$$\mathbf{P} = \mathbf{V} \mathbf{I} = \mathbf{I}^2 \mathbf{R} = \mathbf{V}^2 / \mathbf{R}$$
(3)

The power **absorbed** by the resistor appears in the form of **heat**. The physical **size** of the resistor determines the **amount** of power that it can safely dissipate. This amount is referred to as the **power rating**. The dissipation of power that exceeds the power rating can **damage** the resistor physically.

When the resistor gets **heated** due to excessive power dissipation, its **resistance changes**. It will either **increase** or **decrease** depending on the **temperature coefficient**. A carbon resistance is expected to **decrease** as the temperature increases.

Resistance that are operated over the power rating will deviate from the straight-line relationship between Voltage and Current. The resistor in this case is operating in the **non-linear region**. In such a case, the **resistance is no longer equal the slope** of the V versus I graphs. It may however, be calculated using the ratio $\mathbf{v}_{\mathbf{r}}$.

PROCEDURE:

Part I Voltage, Current, Power & Energy Relationship

- 1- **Connect** the circuit shown in **Figure 1** below.
- 2- Choose the load to be as one of those given in Table 1.
- 3- Have your **instructor check** the circuit before connecting the power supply.
- 4- Adjust the AC voltage supply Vs to 110 V AC.
- 5- **Measure** the **voltages**, the **currents** and the **power** of the load using the digital power meter.
- 6- **Record** their values in Table 1.
- 7- **Repeat** the measurements for the **rest of the loads** given in Table 1.

Figure 1

Part II Power Rating Characteristics of Resistors

- 1- Using an **ohmmeter**, **measure** and **record** the resistance of the resistor supplied.
- 2- **Connect** the circuit as shown in Figure 2 for $R = 470 \Omega$ (1W resistor).
- 3- Vary the input voltage source (V_s) from 6 to 24 volts and measure V and I.
- 4- **Record** your results in Table 3.

EE 208 - Electrical Systems Lab Experiments

5- As the measurement proceeds, **touch** the resistor from time to time to observe the **temperature rise**.

Figure 2

REPORT:

- 1. **Calculate** the **resistance** and the **power** required by each of the loads and record your results in Table 2.
- 2. **Calculate** the **kilowatt-hours** used by each of the loads for a **10-hour** period, and also the **cost of operation** at 7 Hallalahs per kilowatt-hour. Record your results in Table 2.
- 3. For Table 3, **calculate** the **resistance** R (by calculating the ratio V/I) and the **power** dissipated in the resistance (by calculating the product VI).
- 4. **Plot R versus P** from the calculated data in Table 3. **Comment** on the value of R as P increases.
- 5. Does the **resistor** in Part II operate in the **linear** region or **non-linear** region? Explain by considering the power rating of the resistor.

QUESTIONS:

- 1- Is it possible to **purchase** a watt or Kilowatt of power?
- 2- An electric heater takes **1.48 kW** from a voltage source of **220 V**. **Find** the **resistance** of the heater.
- 3- If the **current** in a resistor **doubles**, what happens to the dissipated **power**? (Assume the resistor operates in the linear region).
- 4- A 4 Ω resistor is needed to be used in circuit where the voltage across the resistor is 3V. If two 4 Ω resistors with **1W & 3 W** power rating are available, **which will you use and why**?

EXPERIMENT # 5 Laboratory Report

TABLE 1

Power Measurement:

Load Name	Voltage	Current	Power
600 W Toaster			
250 W Electric Hotplate			
60 W Soldering Iron			
40 W Lamp			
60 W Lamp			
100 W Lamp			

TABLE 2

Resistance, Power, Energy & Cost Calculation:

Load Name	Calculated Resistance	Calculated Power	Calculated KWH	Cost for 10 H operation
600 W Toaster				
250 W Electric Hotplate				
60 W Soldering Iron				
40 W Lamp				
60 W Lamp				
100 W Lamp				

TABLE 3

Power rating: $(\mathbf{R} = 470 \Omega, 1W)$

V (volt)	6	8	10	12	14	16	18	20	22	24
I (mA)										
R (Ohm) = V/I										
P (Watt)										