KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

Electrical Engineering Department

EE 208 ELECTRICAL SYSTEMS

Experiment # 4 EQUIVALENT RESISTANCE: OPEN & SHORT CIRCUITS

OBJECTIVE:

- 1- To experimentally study the effect of the **open** circuit and **short** circuit as electrical elements.
- 2- To study how to **measure** the **equivalent** resistance of a circuit experimentally and **compare** it to the **calculated** values.

APPARATUS:DC Power Supply
Ohmmeter, DC Voltmeter and DC Ammeter
Carbon Resistors: 100Ω , 150Ω , 220Ω , 330Ω , 330Ω .

THEORY:

The short and the open circuits are the simplest of the electrical systems, yet their **effects** can sometimes be **confusing** and this mishandled by student.

• The short circuit:

By definition, a short circuit represents a resistor of zero value, $\mathbf{R} = \mathbf{0}\Omega$ (i.e. no resistance). Thus:

$$V = I R = I x 0 = 0$$
 (1)

Equation (1) states that the **voltage** across a short circuit is **always zero**, regardless of the current through it. Thus:

- 1- Ohm's law **cannot** be **used** to find the current through a short circuit.
- 2- If a short circuit is **placed in parallel** to any electrical element, it **forces** the **voltage** across that element to **be zero**, as illustrated in figure 1.

Figure 1

EE 208 - Electrical Systems Lab Experiments

3- If a short circuit is placed in **parallel to a resistor**, the **equivalent** resistance is **zero** (i.e. a short-circuit). The resistor in this case has no effect and can be removed from the circuit. In this case, the **current** entering the parallel combination flows **entirely** in the **short** circuit. This is illustrated in figure 2. If the short circuit is in parallel to an element that is **not a resistor** (such as a current source), the **element should not** be **removed** form the

Figure 2

• The Open Circuit:

By definition, an **open** circuit represents a resistor of **infinite** value, $\mathbf{R} = \infty \Omega$ (i.e. infinite resistance). Thus:

$$I = \frac{V}{R} = \frac{V}{\infty} = 0 \tag{2}$$

Equation (2) states that the **current** through an **open** circuit is **always zero**, **regardless** of he **voltage** across it. Thus:

- 1- Ohm's law **cannot** be **used** to find the voltage across an open circuit.
- 2- If an open circuit is **placed in series** with any electric element it forces the **current** through that element to be **zero**, as illustrated in Figure 3.

Figure 3

3- If an **open** circuit is **placed** in **series** with a resistor, the equivalent resistance is **infinite or an open circuit**. The resistor in this case has no effect and can be **removed** form the circuit. The **voltage** across the series combination in this case, appears **entirely** across the **open circuit**. This is illustrated in figure 4. If the open circuit is in series to an element, which is **not a resistor** the element **should not** be **removed** from the circuit.

Figure 4

PROCEDURE:

1- **Check** the value of the resistor used in the circuit of **Figure 5**, using the Ohmmeter. Record the values in table 1.

- 2- **Connect** the circuit of Figure 5 and adjust the supply voltage V_s to the 10 V, using a DC voltmeter.
- 3- Measure I₁. Find \mathbf{R}_{eq} using the $\mathbf{v}_{s_{I_1}}$. Record its value in Table 2.
- 4- **Disconnect** the voltage source and **measure Req** using an Ohmmeter for the cases (A) through (M) listed below. Record the values in Table 2.
 - A. Measure **Req** between the **two terminals** that were connected to the **voltage** source.
 - B. Replace only \mathbf{R}_2 by a **short** circuit then **measure Req** between the same terminals.
 - C. Repeat step 2 if only **R**₄ is replaced by a **short** circuit.
 - D. Repeat step 2 if only \mathbf{R}_2 and \mathbf{R}_5 are replaced by a **short** circuit.
 - E. Repeat step 2 if only \mathbf{R}_2 and \mathbf{R}_4 are replaced by a **short** circuit
 - F. Repeat step 2 if only \mathbf{R}_2 and \mathbf{R}_3 are replaced by a **short** circuit
 - G. Repeat step 2 if only \mathbf{R}_2 is replaced by an **open** circuit.
 - H. Repeat step 2 if only \mathbf{R}_4 is replaced by an **open** circuit.
 - I. Repeat step 2 if only \mathbf{R}_2 and \mathbf{R}_5 are replaced by an **open** circuit.
 - J. Repeat step 2 if only \mathbf{R}_2 and \mathbf{R}_4 are replaced by an **open** circuit.
 - K. Repeat step 2 if only \mathbf{R}_2 and \mathbf{R}_3 are replaced by an **open** circuit.
 - L. Repeat step 2 if only \mathbf{R}_2 is a **short** circuit and \mathbf{R}_5 is an **open** circuit
 - M. Repeat step 2 if only \mathbf{R}_2 is an **open** circuit and \mathbf{R}_4 is a **short** circuit.

REPORT:

EE 208 - Electrical Systems Lab Experiments

- 1- Calculate the theoretical values of \mathbf{R}_{eq} for cases (A) through (M) listed in the procedure above. Record the results in Table 2.
- 2- **Compare** the **theoretical** and **experimental** values of R_{eq} for cases (A) through (M) listed in the procedure above by calculating the % difference and record your calculation in Table 2.
- 3- **Give reasons** for any discrepancies between the theoretical and experimental values.

EXPERIMENT # 4 Laboratory Report

TABLE 1

Resistor Values:

Resistor	R_2	R ₃	R ₄	R_5	R_6
Nominal Value (Ω)	100	220	150	330	330
Ohmmeter reading					

TABLE 2

R_{eq}:

Case	А	В	С	D	Е	F	G	Н	Ι	J	K	L	М
Theoretical (Ω)													
Experimental (Ω)													
% Error													