KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS Electrical Engineering Department

EE 208 ELECTRICAL SYSTEMS

Experiment # 3 SERIES & PARALLEL CONNECTIONS, CDR & VDR

OBJECTIVE:

- 1 To **study** series and parallel connections of electrical elements experimentally.
- 2 To experimentally **verify** the current divider rule (**CDR**) for parallel circuits and the voltage divider rule (**VDR**) for series circuits.

APPARATUS: DC Power Supply

Ohmmeter, DC Voltmeter and DC Ammeter

Carbon Resistors: 100Ω , 150Ω , 220Ω and 330Ω .

THEORY:

> Series Conditions:

By definition, a series connection between any two electrical elements is such that the **same current passes through both elements**. For example element e1, e2, and e3 in Figure 1 are in series since the same current I1 passes through them.

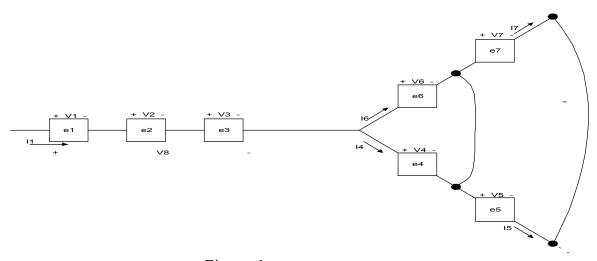


Figure 1

Parallel Connections:

By definition, a parallel connection between any two electrical elements is such that **the voltage is the same across both the elements**. For example, elements e4 and e6 in Figure 1 are in parallel, since the same voltage ($V_4 = V_6$) is across both of them. Also, element e5 and e7 are in parallel for a similar reason.

• Voltage Divider Rule (VDR):

For a discussion of VDR, refer to your textbook. As an example of VDR, in Figure 1, if $e1 = R_1$, $e2 = R_2$, and $e3 = R_3$, then:

$$V_1 = \frac{R_1}{R_1 + R_2 + R_3} V_8 \tag{1}$$

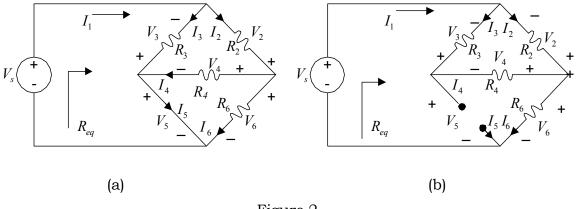
$$V_2 = \frac{R_2}{R_1 + R_2 + R_3} V_8 \tag{2}$$

• Current Divider Rule (CDR):

For a discussion of CDR, refer to your textbook. As an example of CDR in Figure 1, If $e4=R_4$ and $e6=R_6$, then:

$$I_4 = \frac{R_6}{R_4 + R_6} I_1 \tag{3}$$

For I₅ and I₇, CDR can be applied as


$$I_5 = \frac{R_7}{R_5 + R_7} (I_4 + I_6) \tag{4}$$

$$I_7 = \frac{R_5}{R_5 + R_7} (I_4 + I_6) \tag{5}$$

This is valid, since I_4 + I_6 is the total current passing though the parallel combination in this case.

PROCEDURE:

1- **Check the values** of resistors used in the circuit of Figure 2, using the Ohmmeter. Record the values in Table 1.

- Figure 2
- 2- **Connect** the circuit of **Figure 2a** and adjust the supply **voltage Vs to 10** V, using the DC voltmeter.
- 3- Measure the entire unknown voltages and currents shown. Record their values in Table 2.

- 4- Measure Req using an Ohmmeter and record its values in Table 2.
- 5- **Connect** the circuit of **Figure 2b** and adjust the supply voltage **Vs to 10 V**, using the DC voltmeter.
- 6- **Measure the entire unknown voltages and currents shown**. Record their values in Table3 (recall that when measuring current by an ammeter, <u>the ammeter should be placed in series with the element in which the current passes</u>. Keep this fact in mind when measuring I₅.)
- 7- **Measure Req.** and record its value in Table 3.

REPORT:

- 1- For the circuit shown in Figure 2a and Figure 2b, calculate: the unknown voltages and currents shown and the equivalent resistance seen by V_s . Record your results in Table 1 and Table 2.
- 2- Compare the theoretical and experimental values of voltages and currents and the equivalent resistance of both circuits. Calculate the percent errors.

QUESTIONS:

- > Referring to the circuit of **Figure 2a**:
 - 1. Are R_4 and R_6 in parallel or in series?
 - 2. Are R_3 and R_4 in parallel or in series?
 - 3. Are Vs and R_3 in parallel or in series?
 - 4. Are Vs and R_6 in series or in parallel?
 - 5. Are Vs and R_{eq} in parallel or in series?
 - 6. Is VDR applicable for applicable for R₃ and R₄?
 - 7. Is CDR applicable for R_4 and R_6 ?
 - 8. Is the parallel combination of R_4 and R_6 in series or in parallel with R_2 ?

Justify your answer in each case by referring to the experimental results.

> Referring to circuit of **Figure 2b**:

Questions 9-15: Answer questions 1-7 respectively for the circuit of Figure 2b.

16. Is the series combination of R_3 and R_4 in series or in parallel with R_2 ?

Justify your answer in each case by referring to the experimental results.

EXPERIMENT # 3 Laboratory Report

Name:	I.D. I	Lab.	Section:	

TABLE 1

Resistor Values:

Resistor	R_2	R ₃	R ₄	R ₆	
Nominal Value (Ohm)	100	220	150	330	
Ohmmeter reading					

TABLE 2

Circuit of Figure 2a:

Unknown	I_1	I_2	I_3	I 4	I_5	I ₆	V_2	V ₃	V_4	V ₅	V ₆	$R_{\rm eq}$
Theory												
Experiment												
% Error												

TABLE 3

Circuit of Figure 2b

Unknown	I_1	I_2	I_3	I_4	I_5	I_6	V_2	V_3	V ₄	V_5	V_6	$R_{\rm eq}$
Theoretical												
Experimental												
% Error												