KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
 Electrical Engineering Department

EE 208 ELECTRICAL SYSTEMS

Experiment \# 2 SERIES \& PARALLEL CIRCUITS RELATIONSHIPS

OBJECTIVE:

The objective of this experiment is to study the relation between the current, the voltage, and the resistance of the entire combination to that of the separate parts of the series circuit and the parallel circuit.

APPARATUS: AC Power Supply
Ohmmeter, 2 - AC Voltmeter and AC Ammeter
3-120 Lamps (40, 60 and 100 watts)
1 - Double switch

INTRODUCTION:

- Kirchhoff's Voltage Law (KVL):

The algebraic sum of all voltages around any closed path is equal to zero.

- Kirchhoff's current Law (KCL):

The algebraic sum of all currents at a junction point is equal to zero.
Appling the two lows to a series-connected elements result in:

1. The current passing through the elements is the same.
2. The total voltage across the elements is equal to the summation of the voltages across the individual elements.
3. If the elements are resistors, the equivalent resistance is the summation of the individual resistances.

$$
\begin{align*}
& \mathbf{I}_{\mathbf{L}}=\mathbf{I}_{\mathbf{1}}=\mathbf{I}_{\mathbf{2}}=\mathbf{I}_{\mathbf{3}} \tag{1}\\
& \mathbf{V}_{\mathbf{L}}=\mathbf{V}_{\mathbf{1}}+\mathbf{V}_{\mathbf{2}}+\mathbf{V}_{\mathbf{3}} \tag{2}\\
& \mathbf{R}_{\mathrm{eq}}=\mathbf{R}_{\mathbf{1}}+\mathbf{R}_{\mathbf{2}}+\mathbf{R}_{\mathbf{3}} \tag{3}
\end{align*}
$$

Appling the two lows to a parallel-connected elements result in:

1. The voltage across all the elements is the same.
2. The total current passing through elements is equal to the summation of the current passing through the individual elements.
3. If the elements are resistors, the equivalent conductance is the summation of the individual conductance.

$$
\begin{align*}
& \mathbf{I}_{\mathbf{L}}=\mathbf{I}_{\mathbf{1}}+\mathbf{I}_{\mathbf{2}}+\mathbf{I}_{\mathbf{3}} \tag{4}\\
& \mathbf{V}_{\mathbf{L}}=\mathbf{V}_{\mathbf{1}}=\mathbf{V}_{\mathbf{2}}=\mathbf{V}_{\mathbf{3}} \tag{5}\\
& \mathbf{G}_{\mathrm{eq}}=\mathbf{G}_{\mathbf{1}}+\mathbf{G}_{\mathbf{2}}+\mathbf{G}_{\mathbf{3}} \tag{6}
\end{align*}
$$

Part I series circuit

1. Connect the circuit shown in figure 1.

Figure 1
2. Connect a voltmeter in parallel and an ammeter in series with the voltage source to measure its voltage and its current.
3. Have the instructor check the circuit before energizing it.
4. Close the main switch and set the voltage of the source $\left(V_{s}=V_{L}\right)$ to $\mathbf{1 0 0} \mathrm{V}$.
5. With the source unchanged measure voltage $\mathbf{V}_{\mathbf{L}}$ and current $\mathbf{I}_{\mathbf{L}}$ and record your results in Table 1.
6. Open the main switch.
7. Connect a voltmeter and an ammeter to the first lamp to measure its voltage and current. (Use another voltmeter and keep the first voltmeter connected to the source.)
8. Close the main switch.
9. With the source unchanged measure voltage $\mathbf{V}_{\mathbf{1}}$ and current $\mathbf{I}_{\mathbf{1}}$ and record your results in Table 1.
10. Repeat steps 6 through 9 for remaining lamps and record your results in Table 1.

Part II parallel circuit

1. Connect the circuit shown in figure 2.

Figure 2
2. Connect a voltmeter in parallel and an ammeter in series with the voltage source to measure its voltage and its current.
3. Have the instructor check the circuit before energizing it.
4. Close the main switch and set the voltage of the source $\left(V_{s}=V_{L}\right)$ to $\mathbf{1 0 0} \mathrm{V}$.
5. With the source unchanged measure voltage $\mathbf{V}_{\mathbf{L}}$ and current $\mathbf{I}_{\mathbf{L}}$ and record your results in Table 2.
6. Open the main switch.
7. Connect a voltmeter and an ammeter to the first lamp to measure its voltage and current. (Use another voltmeter and keep the first voltmeter connected to the source.)
8. Close the main switch.
9. With the source unchanged measure voltage $\mathbf{V}_{\mathbf{1}}$ and current $\mathbf{I}_{\mathbf{1}}$ and record your results in Table 2.
10. Repeat steps 6 through 9 for remaining lamps and record your results in Table 2.

REPORT:

1. Using Ohm's Law and the data in Table 1 find the resistance of each element of the circuit given in Figure 1 and record your results in Table 3.
2. Using Ohm's Law and the data in Table 2 find the conductance of each element of the circuit given in Figure 2 and record your results in Table 4.
3. Fill in what is left in Tables 3 and 4.
4. Using the data measured in Tables $1 \& 3$ show that equations 1 through 3 are verify the experimentally.
5. Using the data measured in Tables $2 \& 4$ show that equations 4 through 6 are verify the experimentally.

QUESTIONS:

1. What is the relation between the line current and the current through each element in a series circuit?
2. What is the relation between the total voltage and the voltage across the individual element in a parallel-circuit?
3. What is the relation between total resistance and individual resistance in a parallel-circuit?
4. What would happen if one of the elements in a series-connected circuit burned out? What about in a parallel-connected circuit?
5. Which lamp is brighter in the series circuit: the low-resistance lamp or the high resistance lamp?
6. Which lamp is brighter in the parallel circuit: the low-resistance lamp or the high-resistance lamp?

EXPERIMENT \# 2 Laboratory Report

Name: \qquad I.D.

Lab. Section: \qquad

TABLE 1

V_{L}	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$	I_{L}	I_{1}	I_{2}	I_{3}

TABLE 2

V_{L}	V_{1}	$\mathrm{~V}_{2}$	$\mathrm{~V}_{3}$	I_{L}	I_{1}	I_{2}	I_{3}

TABLE 3

R_{1}	R_{2}	R_{3}	R_{L}	$R_{\text {eq }}=R_{1}+R_{2}+R_{3}$	\% Error in $R_{\text {eq }}$

TABLE 4

G_{1}	G_{2}	G_{3}	G_{L}	$\mathrm{G}_{\text {eq }}=\mathrm{G}_{1}+\mathrm{G}_{2}+\mathrm{G}_{3}$	\% Error in $\mathrm{G}_{\text {eq }}$

