KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

Electrical Engineering Department

EE 208 ELECTRICAL SYSTEMS

Experiment # 2 SERIES & PARALLEL CIRCUITS RELATIONSHIPS

OBJECTIVE:

The objective of this experiment is to study the relation between the current, the voltage, and the resistance of the entire combination to that of the separate parts of the **series circuit** and the **parallel circuit**.

APPARATUS: AC Power Supply Ohmmeter, 2 - AC Voltmeter and AC Ammeter 3 - 120 Lamps (40, 60 and 100 watts) 1 - Double switch

INTRODUCTION:

- **Kirchhoff's Voltage Law (KVL):** The <u>algebraic</u> sum of all voltages around any closed path is equal to zero.
- Kirchhoff's current Law (KCL):

The <u>algebraic</u> sum of all currents at a junction point is equal to zero.

Appling the two lows to a **series-connected** elements result in:

- 1. The current passing through the elements is the **same**.
- 2. The total voltage across the elements is equal to the **summation** of the voltages across the individual elements.
- 3. If the elements are resistors, the equivalent resistance is the **summation** of the individual resistances.

$\mathbf{I_L} = \mathbf{I_1} = \mathbf{I_2} = \mathbf{I_3}$	(1)
---	-----

$$V_L = V_1 + V_2 + V_3$$
 (2)

$$\mathbf{R}_{eq} = \mathbf{R}_1 + \mathbf{R}_2 + \mathbf{R}_3$$
 (3)

Appling the two lows to a **parallel-connected** elements result in:

- 1. The voltage across all the elements is the **same**.
- 2. The total current passing through elements is equal to the **summation** of the current passing through the individual elements.
- 3. If the elements are resistors, the equivalent conductance is the **summation** of the individual conductance.

$$\mathbf{V}_{\mathrm{L}} = \mathbf{V}_1 = \mathbf{V}_2 = \mathbf{V}_3 \tag{5}$$

$$G_{eq} = G_1 + G_2 + G_3$$
 (6)

PROCEDURE:

Part I SERIES CIRCUIT

1. Connect the circuit shown in **figure 1**.

- 2. Connect a **voltmeter** in parallel and an **ammeter** in series with the voltage source to measure its voltage and its current.
- 3. Have the **instructor** check the circuit before energizing it.
- 4. **Close** the main switch and **set** the voltage of the source ($V_s = V_L$) to **100** V.
- 5. With the source **unchanged** measure voltage V_L and current I_L and record your results in Table 1.
- 6. **Open** the main switch.
- 7. Connect a **voltmeter** and an **ammeter** to the first lamp to measure its voltage and current. (Use **another** voltmeter and keep the first voltmeter connected to the source.)
- 8. **Close** the main switch.
- 9. With the source **unchanged** measure voltage V_1 and current I_1 and record your results in Table 1.
- 10. **Repeat** steps 6 through 9 **for remaining** lamps and record your results in Table 1.

Part II PARALLEL CIRCUIT

1. Connect the circuit shown in **figure 2**.

Figure 2

- 2. Connect a **voltmeter** in parallel and an **ammeter** in series with the voltage source to measure its voltage and its current.
- 3. Have the **instructor** check the circuit before energizing it.
- 4. **Close** the main switch and **set** the voltage of the source ($V_s = V_L$) to **100** V.
- 5. With the source **unchanged** measure voltage V_L and current I_L and record your results in Table 2.
- 6. **Open** the main switch.
- 7. Connect a **voltmeter** and an **ammeter** to the first lamp to measure its voltage and current. (Use **another** voltmeter and keep the first voltmeter connected to the source.)
- 8. **Close** the main switch.
- 9. With the source **unchanged** measure voltage V_1 and current I_1 and record your results in Table 2.
- 10. **Repeat** steps 6 through 9 for **remaining lamps** and record your results in Table 2.

REPORT:

- 1. Using Ohm's Law and the data in Table 1 find the **resistance** of each element of the circuit given in Figure 1 and record your results in Table 3.
- 2. Using Ohm's Law and the data in Table 2 find the **conductance** of each element of the circuit given in Figure 2 and record your results in Table 4.
- 3. **Fill** in what is left in Tables 3 and 4.
- 4. Using the data measured in Tables 1 & 3 **show** that **equations** 1 through 3 are **verify** the experimentally.
- 5. Using the data measured in Tables 2 & 4 **show** that **equations** 4 through 6 are **verify** the experimentally.

QUESTIONS:

- 1. What is the relation between the line current and the current through each element in a series circuit?
- 2. What is the relation between the total voltage and the voltage across the individual element in a parallel-circuit?
- 3. What is the relation between total resistance and individual resistance in a parallel-circuit?
- 4. What would happen if one of the elements in a series-connected circuit burned out? What about in a parallel-connected circuit?
- 5. Which lamp is brighter in the series circuit: the low-resistance lamp or the high resistance lamp?
- 6. Which lamp is **brighter** in the **parallel** circuit: the low-resistance lamp or the high-resistance lamp?

EXPERIMENT # 2 Laboratory Report

TABLE 1

V_L	V_1	V_2	V ₃	I_L	I_1	I_2	I ₃

TABLE 2

VL	V ₁	V_2	V ₃	I_L	I ₁	I_2	I ₃

TABLE 3

R ₁	R_2	R ₃	R_L	$R_{eq} = R_1 + R_2 + R_3$	% Error in R _{eq}

TABLE 4

G ₁	G_2	G ₃	GL	$G_{eq} = G_1 + G_2 + G_3$	% Error in G _{eq}