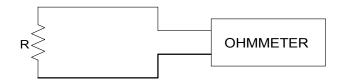
KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

Electrical Engineering Department

EE 208 ELECTRICAL SYSTEMS

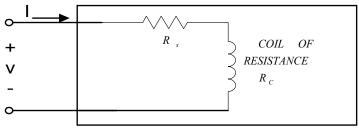
Experiment # 1 INTRODUCTORY EXPERIMENT

OBJECTIVE:


- 1 To study various measurements meters (Ohmmeter, Voltmeter and Ammeter).
- 2 To determine the resistance of a selection of resistors using different ways.
- **APPARATUS:**DC Power Supply
Ohmmeter, Voltmeter and Ammeter
Resistor: 100Ω , 470Ω , $1 K\Omega$, $3.3 K\Omega$ and $10 K\Omega$

<u>Part I</u>

INTRODUCTION:


In this course, three quantities will be measured using measurement devices: **Resistance** (Ω), **Voltage** (V), and **Current** (A). The three quantities are related by **Ohm's law: V = I R.**

To measure the **resistance** of a given resistor, use an <u>**Ohmmeter**</u>. The <u>isolated</u> resistor should be connected in <u>**parallel**</u> with the Ohmmeter, as shown in Figure 1.

Figure 1

To measure **voltage**, use a <u>Voltmeter</u>, which consists primarily of a coil of resistance R_c and a high resistance R_s connected to each other in series as shown in Figure 2.

Figure 2 Voltmeter

To measure the **voltage** <u>across</u> a given <u>electrical element</u> (such as a resistor, a voltage source, or a current source), connect the Voltmeter in <u>parallel</u> with the

electrical element. For instance, to measure the voltage V across the resistor R_2 shown in the circuit of Figure 3 connect the Voltmeter in parallel with R_2 .

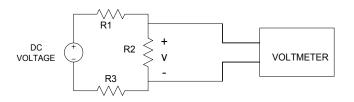


Figure 3

To measure the **current**, use an <u>Ammeter</u>, which consists primarily of a coil, R_c and a low resistance R_s connected to each other in parallel as shown in Figure 4.

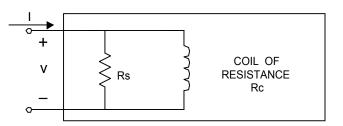
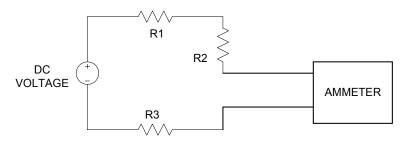
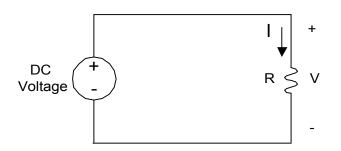


Figure 4. Ammeter

To measure the **current** <u>through</u> a given electrical element, connect the Ammeter in <u>series</u> with the element. For instance, to measure the current (I) passing through resistor R_2 shown in the circuit of Figure 5, the Ammeter is connected in series with R_2 .




Figure 5

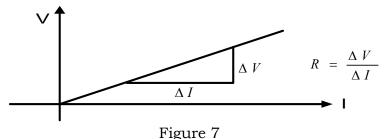
A device called **<u>multimeter</u>** consists of an Ohmmeter, a Voltmeter, and an Ammeter housed in one unit. There are two types of multimeters: **<u>analog</u> <u>multimeters</u>** and **<u>digital multimeters</u>**. The Voltmeter and the Ammeter described earlier are of the analog type. Both the analog and digital types are connected in the same manner to make a measurement.

PROCEDURE:

EE 208 - Electrical Systems Lab Experiments

- 1- Measure the resistance of the resistors given using the Ohmmeter and record the values in Table 1.
- 2- Connect the circuit as shown in Figure 6, set the resistor R to 100 Ω and the DC power supply to 10 V.
- 3- Measure the voltage across the resistor and the current through the resistor and write the results in Table 2.
- 4- Determine the value of the resistance using Ohm's law R=V/I and record it in Table 2.
- 5- Repeat step 2 through 4 for the other resistors (470 Ω , 1 K Ω , and 10 K Ω).

<u>Part II</u>

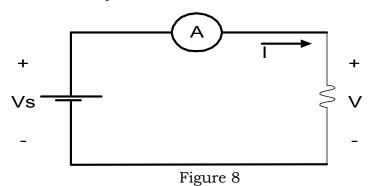

THEORY:

1- The basic relationship between voltage, current, and resistance is determined by Ohm's law:

$$\mathbf{V} = \mathbf{I} \mathbf{R} \tag{1}$$

Where: V = Voltage across the resistor (in Volts)

- I = Current through the resistor (in Amperes)
- R = Resistance of the resistor (in Ohms)
- 2- Given any resistor, its **resistance** can be found by one of **four** methods:
 - a- Using the **color codes**. This value is called the nominal value, and it is only approximate.
 - b- Direct measurement using an **Ohmmeter**.
 - c- Measuring the voltage across the resistor and the current through the resistor, then applying **Ohm's law**.
 - d- By **plotting** the **voltage** versus the **current**. The resulting graph is usually a straight line and the **slope** of this straight line equals the value of the resistance R, as seen in figure 7. Resistance that has a straight-line relationship between V and I is said to be operating in the linear region.


Note:

Resistors that are operated over the power rating will deviate from the straightline relationship between V and I. The resistor in this case is operating in the non-linear region. In such a case, the resistance is no longer equal the slope of the V versus I graphs. It may however, be calculated using the ratio V/I.

PROCEDURE:

You will be supplied with sets of 5 resistors.

- 1- Find the nominal value and the tolerance of each resistance using the **color codes**. Record your results in Table 3.
- 2- Using an **ohmmeter**, measure and record the resistance of each resistor in Table 3.
- 3- Connect the circuit as shown in Figure 8 for R = 100 Ω and perform the following:
 - a- Set the source voltage V_s to 12 V.
 - b- Measure V and I.
 - c- Repeat steps 3a and 3b for remaining resistors.
 - d- Record your results in Table 3.

4- Using **R** = 3.3 KΩ, vary the input voltage V_s from -10 to 10 volts (negative voltage are obtained by reversing the leads of the supply) and measure V and I in steps of 2 volts. Record the readings in Table 4.

REPORT:

- a- Complete Tables 1 through 4.
- b- Plot the voltage current characteristic obtained in step 4 of part II. Calculate the slope and check if that is equal to the resistance.

EXPERIMENT #1 Laboratory Report

TABLE 1

Resistor	\mathbf{R}_1	\mathbf{R}_2	R ₃	R 4	
Nominal value (Ω)	100	470	1,000	10,000	
Ohmmeter reading (Ω)					

TABLE 2

Nominal Value (Ω)	100	470	1,000	10,000
Voltage (V)				
Current (A)				
Value using (R =V/I)				

TABLE 3

Resistor Values:

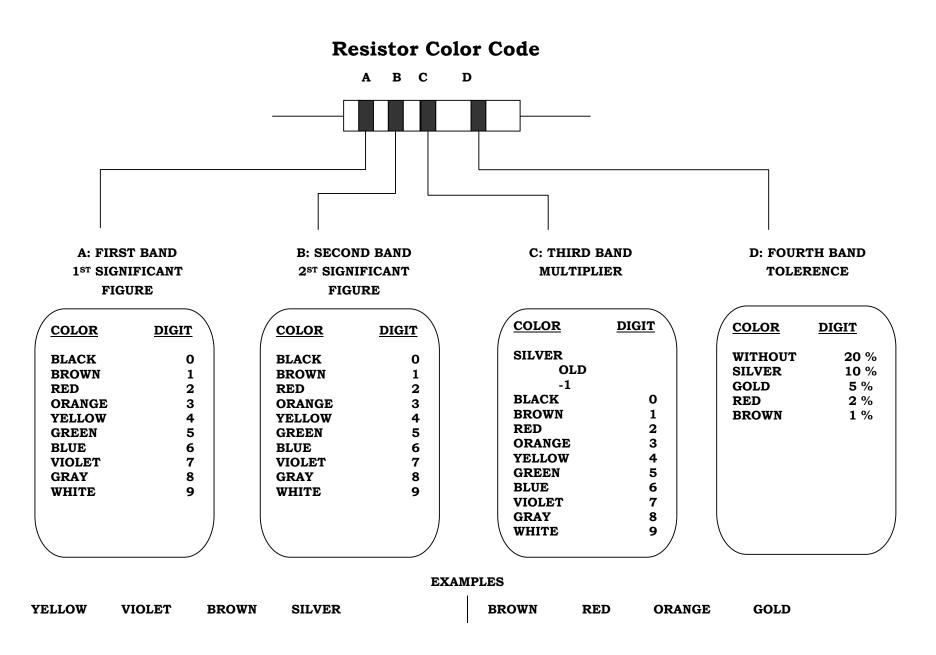

Resistor	R1	R2	R3	R4	R5
Nominal value					
Tolerance value					
Ohmmeter reading					
Voltage (V)					
Current (mA)					
Resistance from R = V/I					

TABLE 4

V-I Characteristic: $(R = 3.3 \text{ K}\Omega)$

V (volts)	-10	-8	-6	-4	-2	2	4	6	8	10
I (mA)										

Resistance = Slope of the line =

EE 208 - Electrical Systems Lab Experiments

4	7	0	10 %	<mark>=470, 10%</mark>	1	2	000	5 %	<mark>=12ΚΩ, 5%</mark>