KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
Electrical Engineering Department
EE 208 ELECTRICAL SYSTEMS

Experiment \# 1 INTRODUCTORY EXPERIMENT

OBJECTIVE:

1 - To study various measurements meters (Ohmmeter, Voltmeter and Ammeter).
2 - To determine the resistance of a selection of resistors using different ways.
APPARATUS: DC Power Supply
Ohmmeter, Voltmeter and Ammeter
Resistor: $100 \Omega, 470 \Omega, 1 \mathrm{~K} \Omega, 3.3 \mathrm{~K} \Omega$ and $10 \mathrm{~K} \Omega$

Part I

INTRODUCTION:

In this course, three quantities will be measured using measurement devices: Resistance (Ω), Voltage (V), and Current (A). The three quantities are related by Ohm's law: V = I R.

To measure the resistance of a given resistor, use an Ohmmeter. The isolated resistor should be connected in parallel with the Ohmmeter, as shown in Figure 1.

Figure 1
To measure voltage, use a Voltmeter, which consists primarily of a coil of resistance R_{c} and a high resistance R_{s} connected to each other in series as shown in Figure 2.

Figure 2 Voltmeter
To measure the voltage across a given electrical element (such as a resistor, a voltage source, or a current source), connect the Voltmeter in parallel with the

EE 208 - Electrical Systems Lab Experiments
electrical element. For instance, to measure the voltage V across the resistor R_{2} shown in the circuit of Figure 3 connect the Voltmeter in parallel with R_{2}.

Figure 3
To measure the current, use an Ammeter, which consists primarily of a coil, R_{c} and a low resistance R_{s} connected to each other in parallel as shown in Figure 4.

Figure 4. Ammeter
To measure the current through a given electrical element, connect the Ammeter in series with the element. For instance, to measure the current (I) passing through resistor R_{2} shown in the circuit of Figure 5, the Ammeter is connected in series with R_{2}.

Figure 5

A device called multimeter consists of an Ohmmeter, a Voltmeter, and an Ammeter housed in one unit. There are two types of multimeters: analog multimeters and digital multimeters. The Voltmeter and the Ammeter described earlier are of the analog type. Both the analog and digital types are connected in the same manner to make a measurement.

PROCEDURE:

EE 208 - Electrical Systems Lab Experiments
1- Measure the resistance of the resistors given using the Ohmmeter and record the values in Table 1.
2- Connect the circuit as shown in Figure 6, set the resistor R to 100Ω and the DC power supply to 10 V .
3- Measure the voltage across the resistor and the current through the resistor and write the results in Table 2.
4- Determine the value of the resistance using Ohm's law $\mathrm{R}=\mathrm{V} / \mathrm{I}$ and record it in Table 2.
5- Repeat step 2 through 4 for the other resistors $(470 \Omega, 1 \mathrm{~K} \Omega$, and $10 \mathrm{~K} \Omega)$.

Figure 6

Part II

THEORY:

1- The basic relationship between voltage, current, and resistance is determined by Ohm's law:

$$
\begin{equation*}
\mathbf{V}=\mathbf{I} \mathbf{R} \tag{1}
\end{equation*}
$$

Where: $\quad \mathrm{V}=$ Voltage across the resistor (in Volts)
$\mathrm{I}=$ Current through the resistor (in Amperes)
$\mathrm{R}=$ Resistance of the resistor (in Ohms)
2- Given any resistor, its resistance can be found by one of four methods:
a- Using the color codes. This value is called the nominal value, and it is only approximate.
b- Direct measurement using an Ohmmeter.
c- Measuring the voltage across the resistor and the current through the resistor, then applying Ohm's law.
d- By plotting the voltage versus the current. The resulting graph is usually a straight line and the slope of this straight line equals the value of the resistance R, as seen in figure 7. Resistance that has a straight-line relationship between V and I is said to be operating in the linear region.

Figure 7

Note:

Resistors that are operated over the power rating will deviate from the straightline relationship between V and I. The resistor in this case is operating in the non-linear region. In such a case, the resistance is no longer equal the slope of the V versus I graphs. It may however, be calculated using the ratio V/I.

PROCEDURE:

You will be supplied with sets of 5 resistors.
1- Find the nominal value and the tolerance of each resistance using the color codes. Record your results in Table 3.
2- Using an ohmmeter, measure and record the resistance of each resistor in Table 3.
3- Connect the circuit as shown in Figure 8 for $R=100 \Omega$ and perform the following:
a- Set the source voltage V_{s} to 12 V .
b- Measure V and I.
c- Repeat steps 3a and 3b for remaining resistors.
d- Record your results in Table 3.

Figure 8
4- Using $\mathbf{R}=3.3 \mathbf{K} \Omega$, vary the input voltage V_{s} from -10 to 10 volts (negative voltage are obtained by reversing the leads of the supply) and measure V and I in steps of 2 volts. Record the readings in Table 4.

REPORT:

a- Complete Tables 1 through 4.
b- Plot the voltage - current characteristic obtained in step 4 of part II. Calculate the slope and check if that is equal to the resistance.

EXPERIMENT \# 1 Laboratory Report

Name:
I.D.

Lab. Section: \qquad
TABLE 1

Resistor	$\mathbf{R}_{\mathbf{1}}$	$\mathbf{R}_{\mathbf{2}}$	$\mathbf{R}_{\mathbf{3}}$	$\mathbf{R}_{\mathbf{4}}$
Nominal value (Ω)	100	470	1,000	10,000
Ohmmeter reading (Ω)				

TABLE 2

Nominal Value (Ω)	$\mathbf{1 0 0}$	$\mathbf{4 7 0}$	$\mathbf{1 , 0 0 0}$	$\mathbf{1 0 , 0 0 0}$
Voltage (V)				
Current (A)				
Value using (R =V/I)				

TABLE 3

Resistor Values:

Resistor	R1	R2	R3	R4	R5
Nominal value					
Tolerance value					
Ohmmeter reading					
Voltage (V)					
Current (mA)					
Resistance from R = V/I					

TABLE 4
V-I Characteristic: ($\mathbf{R}=\mathbf{3 . 3} \mathbf{K} \Omega$)

V (volts)	-10	-8	-6	-4	-2	2	4	6	8	10
I (mA)										

$$
\text { Resistance }=\text { Slope of the line }=
$$

