
EE 390 Lab Manual, EE Department, KFUPM

Experiment #10

Introduction to the 8051 Microcontroller

10.0 Objectives:

The objective of this experiment is to learn to use the 8-bit 89C51 microcontroller to
implement a simple LED controlling system.

In this experiment, you will do the following:

• Understand the difference between microprocessors and microcontrollers

• Learn about the MCS-51 (8051) microcontrollers – in particular the ATMEL

89C51

• Implement a LED controlling system using the ATMEL 89C51 microcontroller

• Learn to use the Microcontroller/EEPROM programming tool: WINLV

10.1 Equipment, Software, and Components:

• MicroMaster LV48

• WINLV software

• Assembler and conversion utilities (exe2bin, bin2hex)

• AT89C51 microcontroller

• 11.0592 MHz crystal

• Resistors: 510, 8.2K

• Capacitors: 33pF (2), 10pF

• Proto-board (with 5V supply, LED’s, switches)

10.2 Introduction:

Microprocessors and Microcontrollers

A microprocessor is a general-purpose digital computer central processing unit. To
make a complete microcomputer, you add memory (ROM and RAM) memory decoders,
an oscillator, and a number of I/O devices. The prime use of a microprocessor is to read
data, perform extensive calculations on that data, and store the results in a mass storage
device or display the results. The design of the microprocessor is driven by the desire to
make it as expandable and flexible as possible.

A microcontroller is a true computer on a chip. The design incorporates all of the
features found in a microprocessor CPU: ALU, PC, SP, and registers, plus ROM, RAM,
parallel I/O, serial I/O, counters and a clock circuit – all in a single IC. The

 1

EE 390 Lab Manual, EE Department, KFUPM

microcontroller is a general-purpose device meant to read data, perform limited
calculations on that data and control its environment based on those calculations. The
prime use of a microcontroller is to control the operations of a machine using a fixed
program that is stored in ROM and does not change over the lifetime of the system. The
microcontroller is concerned with getting data from and to its own pins; the architecture
and instruction set are optimized to handle data in bit and byte size.

Therefore, a microcontroller is a highly integrated device which includes, on one chip,
all or most of the parts needed to perform an application control function.

Microcontroller Block Diagram

Microprocessor

• CPU is stand-alone, RAM, ROM,

I/O, timer are separate
• designer can decide on the amount

of ROM, RAM and I/O ports
• expansive
• versatile
• general-purpose
• mostly used in microcomputer

systems

Microcontroller

• CPU, RAM, ROM, I/O and timer,

etc. are all on a single chip
• fix amount of on-chip ROM, RAM,

I/O ports
• for applications in which cost,

power and space are critical
• single-purpose
• mostly used in embedded systems

Microprocessors vs. Microcontrollers

Microprocessor based System

Power
Dist’n

Reset
Control

Clock &
Timing

RAM
Processor

ROM
I/O Ports

I/O Pins

Power Reset Clocking

Program
ROM

Variable
RAM

Stack
RAM

Memory
Interface Unit

Processor & Built-in Registers

Data AddrCtrl

Microcontrollers are frequently found in home appliances (microwave oven,
refrigerators, television and VCRs, stereos), computers and computer equipment (laser
printers, modems, disk drives), cars (engine control, diagnostics, climate control),
environmental control (greenhouse, factory, home), instrumentation, aerospace, and
thousands of other uses. In many items, more than one processor can be found.

Microcontrollers come in many varieties. Depending on the power and features that are
needed, one might choose a 4, 8, 16, or 32 bit microcontroller. The following table lists
some of the commonly used microcontrollers.

 2

EE 390 Lab Manual, EE Department, KFUPM

4-bit Microcontrollers

Texas Instruments TMS 1000

National COP420

Hitachi HMCS40

Toshiba TLCS47

8-bit Microcontrollers

Intel 8048

Intel 8051

Microchip PIC16C56

National COP820

Motorola 68HC11

Texas Instruments TMS7500

Zilog Z8

16-bit Microcontrollers

Motorola MC68332

Motorola 68HC16

Intel MCS-96 Family of Microcontrollers

National HPC16164

Hitachi H8/532

32-bit Microcontrollers

Intel 80960CA, KA, KB, MC

LR 33000

AMD Am29050

NS 32000

Table: Some of the commonly used microcontrollers

10.2.1 MCS-51 Family of Microcontrollers

The MCS-51 is a family of microcontroller ICs developed, manufactured, and marketed
by Intel Corporation. Other IC manufacturers, such as Siemens, AMD, ATMEL, Philips,
etc. are licensed “second source” suppliers of devices in the MCS-51 family.

10.2.2 The 8051 Microcontroller

 3

EE 390 Lab Manual, EE Department, KFUPM

The generic MCS-51 IC is the 8051 8-bit microcontroller, the first device in the family
offered commercially. It is the world's most popular microcontroller core, made by many
independent manufacturers (truly multi-sourced). There were 126 million 8051s (and
variants) shipped in 1993!! Its features are summarized below:

- CPU with Boolean processor
- 4K bytes ROM (factory masked programmed)
- 128 bytes RAM
- Four 8-bit I/O ports
- Two 16-bit timer/counters
- Serial Interface (programmable full-duplex)
- 64K external code memory space
- 64K external data memory space
- Five interrupts (2 priority levels; 2 external)

10.2.3 8051 Flavors

The 8051 has the widest range of variants of any embedded controller on the market.
The smallest device is the Atmel 89c1051, a 20 Pin FLASH variant with 2 timers, UART,
20mA. The fastest parts are from Dallas, with performance close to 10 MIPS! The most
powerful chip is the Siemens 80C517A, with 32 Bit ALU, 2 UARTS, 2K RAM, PLCC84
package, 8 x 16 Bit PWMs, and other features.

Among the major manufacturers are:

 AMD Enhanced 8051 parts (no longer producing 80x51 parts)
 Atmel FLASH and semi-custom parts, e.g., 89C51
 Dallas Battery backed, program download, and fastest variants
 Intel 8051 through 80c51gb / 80c51sl
 OKI 80c154, mask parts
 Philips 87c748 thru 89c588 - more variants than anyone else
 Siemens 80c501 through 80c517a, and SIECO cores

 4

EE 390 Lab Manual, EE Department, KFUPM

10.2.4 An Architectural Overview of the MCS-51 (8051)
Microcontroller

Figure: Block Diagram of the 8051 Core

10.2.5 Data Storage

The 8051 has 256 bytes of RAM on-chip. The lower 128 bytes are intended for internal
data storage. The upper 128 bytes are the Special Function Registers (SFR). The lower
128 bytes are not to be used as standard RAM. They house the 8051’s registers, its
default stack area, and other features.

Oscillator
and timing

4K

ROM

128 Bytes

RAM

Two 16 Bit
Timer/Event

Counters

8051
CPU

Bus
Control

Programmable
I/O

Serial
Port

Internal data bus

Counter
 Inputs

Interrupt
Control

Subsystem
Interrupts

Serial Serial
Input Output P0 P1 P3 External Interrupts Control P2

00H

Special
Function
Registers

7FH
80H

FFH

Internal
Data

Storage

5

EE 390 Lab Manual, EE Department, KFUPM

 Register Banks

• The lowest 32 bytes of the on-chip RAM form
4 banks of 8 registers each.

• Only one of these banks can be active at any
time.

• Bank is chosen by setting 2 bits in PSW
• Default bank (at power up) is bank 0 (locations

00 – 07).
• The 8 registers in any active bank are referred

to as R0 through R7.

Given that each register has a specific address; it
can be accessed directly using that address even if
its bank is not the active one.

Bank 00

Bank 01

Bank 02

Bank 03

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F

R0
R1
R2
R3
R4
R5
R6
R7
R0
R1
R2
R3
R4
R5
R6
R7
R0
R1
R2
R3
R4
R5
R6
R7
R0
R1
R2
R3
R4
R5
R6
R7

10.2.6 Special Function Registers

The upper 128 bytes of the on-chip RAM are used to house special function registers. In
reality, only about 25 of these bytes are actually used. The others are reserved for future
versions of the 8051.

These are registers associated with important functions in the operation of the MCS-51.

Some of these registers are bit-addressable as well as byte-addressable. The address of
bit 0 of the register will be the same as the address of the register.

• ACC and B registers – 8 bit each
• DPTR : [DPH:DPL] – 16 bit combined
• PC : Program Counter – 16 bits
• Stack pointer SP – 8 bit
• PSW : Program Status Word
• Port Latches
• Serial Data Buffer
• Timer Registers
• Control Registers

See Appendix B for a complete list of Special Function Registers and their addresses.

 6

EE 390 Lab Manual, EE Department, KFUPM

Register A or ACC – Accumulator

This register is commonly used for move operation and arithmetic instructions. It
operates in a similar manner to the 8086 accumulator. It is also bit addressable. It can be
referred to in several ways:

• Implicitly in op-codes.
• Referred to as ACC (or A) for instructions that allow specifying a register.
• By its SFR address 0E0H.

Register B

It is commonly used as a temporary register. It is also bit addressable.

• Used by two op-codes
o MUL AB, DIV AB

• B register holds the second operand and will hold part of the result
o Upper 8 bits of the multiplication result
o Remainder in case of division.

• Can also be accessed through its SFR address of 0F0H.

DPH and DPL Registers

These are two 8-bit registers which can be combined into a 16-bit DPTR – Data Pointer.
The DPTR is used by commands that access external memory.

• Also used for storing 16bit values
MOV DPTR, #data16 ; setup DPTR with 16bit ext address
MOVX A, @DPTR ; copy mem[DPTR] to A

• Can be accessed as 2 separate 8-bit registers if needed.
• DPTR is useful for string operations and look up table (LUT) operations.

Port Latches – P0, P1, P2, and P3

These registers specify the value to be output on an output port or the value read from an
input port. They are also bit addressable. Each port is connected to an 8-bit register in the
SFR.

P0 = 80H, P1 = 90H, P2 = A0H, P3 = B0H

• First bit has the same address as the register.
• Example: P2 has address A0H in the SFR, so

o P2.7 or A7H refer to the same bit.
• All ports are configured for output at reset.

 7

EE 390 Lab Manual, EE Department, KFUPM

PSW – Program Status Word

Program Status Word is a bit addressable 8-bit register that has all the status flags.

CY AC F0 RS1 RS2 OV - P

Symbol Position Function

CY PSW.7 Carry Flag
AC PSW.6 Auxiliary Carry Flag. For BCD Operations
F0 PSW.5 Flag 0. Available to the user for general purposes.

RS1 PSW.4
RS2 PSW.3

Register bank select bits. Set by software to determine which
register bank is being used.

OV PSW.2 Overflow Flag
- PSW.1 Not used
P PSW.0 Parity Flag. Even Parity.

10.2.7 8051 Instructions

The 8051 has 255 instructions. Every 8-bit op-code from 00 to FF is used except for A5.
The instructions are grouped into 5 groups:

• Arithmetic
• Logic
• Data Transfer
• Boolean
• Branching

The following table lists some of the commonly used instructions. See Appendix A for a
complete list of the 8051 instructions.

Instruction Description Execution Cycle
ACALL sub1 Call a subroutine labeled sub1 2
CJNE a, b, addr Compare a and b, if they are not equal then jump to addr 2
CLR x Set the bit x to 0 1
DJNZ a, addr Decrease a by 1, then check if a = 0, then jump to addr 2
INC a Increase a by 1 1-2
MOV a, b Move the content in b to a 1-2
MOVC a, addr Move the content stored in address addr to a 2
RET Return to main program from a subroutine 2
RETI Return to main program from an interrupt subroutine 2
SETB x Set the bit x to 1 1
SJMP addr Jump to the addr 2
XRL a, b Perform a XOR b (XOR: Exclusive Or) 1-2

 8

EE 390 Lab Manual, EE Department, KFUPM

10.2.8 ATMEL 89C51 Microcontroller

The AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K
bytes of Flash Programmable and Erasable Read Only Memory (PEROM). The
device is manufactured by Atmel and is compatible with the industry-standard MCS-51
instruction set and pin-out. The on-chip Flash allows the program memory to be
reprogrammed in-system or by a conventional nonvolatile memory programmer. By
combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51 is
a powerful microcomputer which provides a highly-flexible and cost-effective solution to
many embedded control applications.

Features

• Compatible with MCS-51™ Products
• 4K Bytes of In-System Reprogrammable Flash Memory Endurance: 1,000

Write/Erase Cycles
• Fully Static Operation: 0 Hz to 24 MHz
• Three-level Program Memory Lock
• 128 x 8-bit Internal RAM
• 32 Programmable I/O Lines
• Two 16-bit Timer/Counters
• Six Interrupt Sources
• Programmable Serial Channel
• Low-power Idle and Power-down Modes

A detailed Block Diagram of the AT89C51 microcontroller is shown in the figure below.

 9

EE 390 Lab Manual, EE Department, KFUPM

Detailed Block Diagram

 10

EE 390 Lab Manual, EE Department, KFUPM

The AT89C51 comes in a 40 pin package. The Pin Configuration of the AT89C51
microcontroller is shown in the diagram below.

89C51

PDIP Pin Configuration

32 pins are used for the 4 ports - P0, P1, P2, and P3
1 pin each for VCC and VSS
1 pin for the ALE (Address Latch Enable)
1 pin for EA/VPP

• EA - External Address
• VPP - Program Voltage for EPROM based versions of the 8051

1 pin each for XTAL1 and XTAL2 - Connections for clock crystal
1 pin for PSEN - “Program Store Enable”

• Read signal for external program memory
1 pin for RST - Reset

 11

EE 390 Lab Manual, EE Department, KFUPM

10.3 Pre-lab:

1. Review all the above sections of this experiment and Appendix A, B, and C.
2. Look for information on the 8051 microcontroller in the library and on the

internet.

10.4 Lab Work:

In this experiment, we will implement a simple LED control system on the 89C51
microcontroller. This implementation involved three steps:

1. Software programming 2. Hardware connections 3. Microcontroller programming

Procedure: Software

1. Use an editor to write the program shown below. Name your file as
led_blink.asm.

; This program blinks LEDs every half second

ORG 00H ; After reset, start fetching instructions from 00H

 MOV A, #55H ; load 0101 0101 in A
AGAIN:
 MOV P1, A ; move data to Port A

 ACALL DELAY ; call delay routine

 CPL A ; invert A to 1010 1010
 SJMP AGAIN ; repeat blinking

DELAY: ; this routine implements a delay 0f 500ms
 MOV R4, #05 ; move 5 in R4
OUTER2: MOV R3, #200 ; move 200 in R3
OUTER1: MOV R2, #0255 ; move 255 in R2
INNER: DJNZ R2, INNER ; decrement R2 until 0
 DJNZ R3, OUTER1 ; decrement R3 until 0
 DJNZ R4, OUTER2 ; decrement R4 until 0
 RET

END

2. Assemble and link your program using the TASM assembler to produce
led_blink.exe.

3. Generate the HEX file led_blink.hex for your program.

 12

EE 390 Lab Manual, EE Department, KFUPM

Procedure: Hardware

1. Turn OFF the power supply to your board.
2. Obtain the necessary components from your lab instructor and connect the circuit

as shown in the schematic below:

3. Connect the rest of the pins of Port 1 to an LED each.
Note 1: Only P1.0 (Pin 0 of Port 1) is shown connected to an LED.
Note 2: You may be directly able to connect to LED’s on the board provided
without using any resistor with the LED’s. Check with your lab instructor.

4. Make sure all your connections are properly done and turn ON the power supply.

5. Observe that no LED is blinking.

 13

EE 390 Lab Manual, EE Department, KFUPM

Procedure: Microcontroller Programming

Step 1: Run WinLV
Launch the WinLV program. See Appendix C - An Introduction to WinLV.

Note: During start-up, the red light of the programmer will go ON indicating that the
software has successfully found the programmer. If the software fails it will display a
prompt to enter a demo-mode. If this is the case, double check the cable connected to the
parallel port and the power supply of the programmer.

Step 2: Select Device (ATMEL 89C51 microcontroller)
Choose the device that you are using by selecting it from the Select Device window. To
open the Select Device window – click the left hand mouse button on Programmer from
the top menu bar then click on Select Device. Use the mouse to browse through the Parts
Database and select a device from the Programmable Parts section then click on Accept
to confirm your choice.

Step 3: Load File into Buffer
Select the file you would like to program into the Microcontroller following these steps:-

• Select the File menu and then Open…
Select which file you want to load into the buffer OR type the file name into the
File Name box. Locate the led_blink.hex file generated from the assembly code.

• If any files that you expecting to see aren't there try using the Files of Type drop
down menu to select which file type is displayed in the main window.

• Use the Open as drop down menu to select which Format the file will be opened
as and loaded into the buffer. Make sure that the value of the field "Open as" is :
HEX – Intel" or " HEX - auto recognition ".

• Set the Defaults to pre fill the buffer with 0xFF so that all empty address locations
are filled with FF.

Step 4: Place Device in Programmer
Place the device you've selected to program into the ZIF socket on the programmer.
Make sure that the device is aligned with the bottom of the ZIF socket.

Step 5: Programme the Device
Follow these final steps to finish programming the device:

• Select Operations from the Programmer menu to view the “Operations for
Device” dialogue window.

• Click on the Programme button in the Operations dialogue window.
• The device in the socket will now be erased, programmed and verified.

Finally, disconnect the IC from the programmer and reconnect it to the circuit. Reset the
microcontroller and check if your program is working correctly.

 14

	Experiment #10
	Microprocessors and Microcontrollers

