
EE 200 Lab Manual, EE Department, KFUPM

EXPERIMENT #6: XOR IMPLEMENTATION AND PARITY CODE

OBJECTIVES:

• Design and implement logic circuits using only XOR gates
• Design and implement a simple Parity Code Error Detection System

Equipment and ICs:

• Mini-Lab ML-2001 lab station
• 1 - IC 7493 4-bit Ripple Counter
• 3 - IC 7486 Quadruple 2-input XOR gates
• IC 7404 Hex Inverter gates
• 5 PCB mount SPDT switches

Introduction:

The XOR function for three variables converted to a Boolean expression is shown below:

T
f
e
a

⊕ ⊕

⊕ ⊕

he Boolean expression and the truth table clearly indicates that the three-variable XOR
unction is equal to 1 if and only if one variable is equal to 1 or if all three variables are
qual to 1. In other words, the XOR function is equal to 1 if an odd number of variables
re equal to 1. Hence, the multiple-variable XOR function is defined as an odd function.

1

EE 200 Lab Manual, EE Department, KFUPM
Parity Generation and Checking:
A parity bit is used for the purpose of detecting errors during transmission of binary data.
A parity bit is an extra bit included with a binary message to make the number of 1’s
either odd or even. The message, including the parity bit, is transmitted and then checked
at the receiving end for errors. An error is detected if the checked parity at the receiver
does not correspond with the one transmitted. The circuit that generates the parity bit in
the transmitter is called a parity generator. The circuit that checks the parity in the
receiver is called a parity checker. Both parity generator and parity checker circuits can
be implemented using XOR gates.

2

EE 200 Lab Manual, EE Department, KFUPM
Part 1: XOR as an Odd function

A large room has four doors and a switch near each door controls a light in the room. The
light in the room can be turned ON or OFF by changing the state of any of the switches.
The light will be ON if exactly one or three switches are closed and it will be OFF if two
or four or no switches are closed. If the light is OFF when two switches are closed, then
closing the third switch turns the light ON. Let the switches be denoted by A, B, C, and D
and the light by L. Assume: Light ON = 1, Light OFF = 0, Switch open = 0, Switch
closed = 1.

Pre-lab Work: (All the Pre-lab work must be shown in the Pre-lab report)

1. Obtain the truth table for function L.
2. Obtain the Boolean expression for function L from the truth table.
3. Draw the logic diagram for function L using AND, OR, NOT gates and

compute the cost of the circuit in terms of literals, terms, and gates.
4. Comment on the distribution of 1’s in the k-map for function L.
5. Show that function L can be implemented using only XOR gates.
6. Draw and simulate your circuit in LogicWorks. Include your LogicWorks

drawing in the pre-lab report.

Lab Work: (All the Lab work must be shown in the Lab report)

1. Implement the logic diagram of L on the proto-board as shown below.
a. Connect the 4 outputs of IC 7493 to inputs A, B, C, and D.
b. Connect output F to one LED or indicator lamp.

2. Apply all 16 combinations (0000-1111) of 4 inputs to your circuit through IC
7493 by pushing the Pulser-button as many times. You can observe the input
sequence on the 4 indicator lamps connected with the outputs of IC 7493.

3. Observe the output L for all combinations of inputs (switches). Record your
observations in a truth table.

4. Compare the truth table above with the truth table obtained in Step 1 of Pre-
Lab work and verify the operation of the circuit.

3

EE 200 Lab Manual, EE Department, KFUPM
5. Compute the cost of the circuit in terms of gates and ICs.

OBSERVATIONS:

Function
 Literals Terms Gates ICs

Table: Circuit Cost

L
using basic

gates

Number of

A B C D L
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

L
using XOR

gates

 4

EE 200 Lab Manual, EE Department, KFUPM

Part 2: Parity Bit Error Detection Circuit

Design and implement a circuit that detects errors during transmission of a 4-bit message
from point X1. An even parity bit is included with the message before transmission. The
5-bit data including the parity bit is received at point X2 that can detect an odd number of
errors in the data received. A block diagram of such a circuit is shown below:

C

ircuit Description:

• IC 7493 4-bit Ripple Counter must be connected to count in binary. This IC is
used to generate a 4-bit message.

• Inverters are connected (with a bypass switch) in the data transmission path to
manually introduce bit errors due to channel noise. This is the simplest way to
introduce errors in the data in the transmission path. To let the signal pass with
out error flip the switch up, otherwise flip the switch down.

• The Parity Generator block at the Transmitter must generate an even parity bit
for each 4-bit message received from IC 7493. The 5-bit data together with the
parity bit is sent such that it always has an even number if 1’s. The data goes
through the transmission channel where it may get corrupted due to noise, and as
a result a 1 may become 0 and vice versa.

• The Parity Checker block at the Receiver generates an error signal if there are
errors in the 5-bit data received. If the number of 1’s in the data received is odd,
then the error PC = 1, otherwise it is 0.

5

EE 200 Lab Manual, EE Department, KFUPM
Pre-lab Work:

1. Obtain the truth table for 4-bit Parity Generator function Pg.
2. Implement function Pg using minimum number of XOR gates. Draw the logic

diagram.
3. Obtain truth table for 5-bit Parity Checker function PC.
4. Implement function PC using minimum number of XOR gates. Draw the logic

diagram.
5. Redraw Figure 3 shown above by replacing the Parity Generator and Parity

Checker blocks with their respective logic diagrams.
• Use an SPDT switch with an inverter in the transmission channel.
• Replace the IC 7493 block with the following figure:

6. Draw and simulate your circuit in LogicWorks. Include your LogicWorks
drawing in the pre-lab report.

Lab Work: (Make sure to switch off power while making/breaking any connection)

Parity Generation:
1. Connect the 4 outputs of IC 7493 to the inputs of Parity Generator circuit

(Remember that output QA is the least significant bit of the counter).
2. Connect the 4 outputs of IC 7493 to four indicators lamps to observe the input

sequence. Connect the output of Parity Generator circuit also to one LED or
indicator lamp.

3. Apply all 16 combinations (0000-1111) of 4 inputs to your circuit through IC
7493 by pushing the Pulser-button as many times. You can observe the input
sequence on the 4 indicator lamps connected with the outputs of IC 7493.

4. Observe the output Pg for all combinations of inputs. Record your observations in
a truth table.

5. Compare the truth table above with the truth table obtained in Step 1 of Pre-Lab
work and verify the operation of the circuit.

 6

EE 200 Lab Manual, EE Department, KFUPM
Channel Simulation:
6. Now connect the 4 outputs of IC 7493 to four inverters and the output of the

Parity Generator circuit to another inverter in the order as shown in Figure 5.
7. Connect 5 SPDT switches on the proto-board before the Parity Checker circuit as

shown in Figure 5 below.
8. Connect each output of IC 7493 and the Parity Generator circuit to the top pin of

one SPDT switch in the order as shown in Figure 5.
9. Connect the output of each inverter to the bottom pin of one SPDT switch

respectively.
10. Connect the middle pin of each SPDT switch to the input of Parity Checker circuit

in the order as shown in Figure 5.
11. Connect the middle pin of each SPDT switch to one lamp indicator to observe the

data received by the Parity Checker circuit.

12. Flip the SPDT switch UP to let the signal pass through to the Parity Checker
with out error. Flip the switch DOWN to invert the signal going to the Parity
Checker circuit.

Parity Checking:
13. Push the pulser-button connected to IC 7493 to generate the 4-bit message and

parity bit.
14. Verify that when the 5 SPDT switches are in the ‘UP” position, the message is

received at the Parity Checker with out error. Observe the indicator lamps.
15. Verify that when an odd (1, 3, 5) number of switches are in the “DOWN”

position the Parity Checker generates an error. Observe the indicator lamp
connected to the output of the Parity Checker.

16. Verify that when an even (2, 4) number of switches are in the “DOWN”
position the Parity Checker does not generate an error. Observe the indicator
lamp connected to the output of the Parity Checker.

17. Observe the output PC for all combinations of inputs. Record your observations
in a truth table.

18. Compare the truth table above with the truth table obtained in Step 3 of Pre-Lab
work and verify the operation of the circuit.

 7

	EXPERIMENT #6: XOR IMPLEMENTATION AND PARITY CODE

