Ch3 Operations on one random variable-Expectation

Previously we define a random variable as a mapping from the sample space to the real line

We will now introduce some operations on the random variable. Most of these operations are based on the concept "expectation"

Expectation

Expectation is the name given to the process of averaging of a random variable X .

The followings are equivalents:

- Expectation or expected value of random variable X , which we use the notation $E[X]$
- The "mean value " of random variable X
- The "statistical average" of random variable X

The following notation are equivalent

$$
\mathrm{E}[\mathrm{X}]=\overline{\mathrm{X}}
$$

Example:3.1-1

Expected value of a random variable

The everyday averaging procedure used in the above example carries over directly to RV

Example:
Let X be a random variable the has the following sample space values

$$
S_{x}=\{1,2,3,4\}
$$

Now if the numbers are equally likely to occur or selected

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{x}}=\{1,2,3,4\}
\end{aligned}
$$

Probabilty Mass Function

$$
S_{x}=\{1,2,3,4\}
$$

Probabilty Mass Function

$$
\overline{\mathrm{X}}=\underset{\mathrm{X}=1}{(1)} \underset{\mathrm{P}(\mathrm{X}=1)}{\left(\frac{1}{2}\right)}+\underset{\mathrm{X}=2}{(2)} \underset{\mathrm{P}(\mathrm{X}=2)}{\left(\frac{1}{8}\right)}+\underset{\mathrm{X}=3}{(3)\left(\frac{1}{8}\right)}+\underset{\mathrm{X}(\mathrm{X}=3)}{(4)} \underset{\mathrm{X}(\mathrm{X}=4)}{(4)}\left(\frac{1}{4}\right)=\mathbf{2 . 1 2 5}
$$

In general then

$\bar{X}=\sum_{x_{i} \in S_{X}} x_{i} P\left(X=x_{i}\right)$
where each value of the random variable $\mathrm{X}\left(\mathrm{x}_{\mathrm{i}}\right)$ is weighted by the Probability $\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)$

This motivate the concept of expected value or mean value of RV X,

$$
\mathrm{E}[\mathrm{X}]=\overline{\mathrm{X}}=\sum_{\mathrm{x}_{\mathrm{i}} \in \mathrm{~S}_{\mathrm{X}}} \mathrm{x}_{\mathrm{i}} \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right) \quad \text { if } \mathrm{X} \text { is discrete values }
$$

$$
\mathrm{E}[\mathrm{X}]=\overline{\mathrm{X}}=\int_{-\infty}^{\infty} \mathrm{xf} \mathrm{f}_{\mathrm{x}}(\mathrm{x}) \mathrm{dx}
$$

if X is continuous value with
Probability density

In the discrete random variable we use the probability mass $\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)$ to weight the random variable.

$$
\overline{\mathrm{X}}=\sum_{\mathrm{x}_{\mathrm{i}} \in \mathrm{~S}_{\mathrm{X}}} \mathrm{x}_{\mathrm{i}} \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)
$$

In the continuous random variable we use the density $f_{x}(x)$ to weight the random variable.

$$
\mathrm{E}[\mathrm{X}]=\overline{\mathrm{X}}=\int_{-\infty}^{\infty} \mathrm{xf}_{\mathrm{x}}(\mathrm{x}) \mathrm{dx}
$$

Observe that $\quad f_{x}(x) d x$ represent the probability of the random variable X at the interval dx

If the random variable X is symmetrical about a line $x=a$

$$
\Rightarrow \mathrm{f}_{\mathrm{X}}(\mathrm{x}+\mathrm{a})=\mathrm{f}_{\mathrm{X}}(-\mathrm{x}+\mathrm{a}) \quad \Rightarrow \mathrm{E}[\mathrm{X}]=\mathrm{a}
$$

Example 3.1-2

Expected value of a Function of a random variable

Assume a random variable X which has the following values and probabilities
$\mathrm{X}=\{1,2,3\} \quad \mathrm{P}(\mathrm{X}=1)=\frac{1}{3} \quad \mathrm{P}(\mathrm{X}=2)=\frac{2}{5} \quad \mathrm{P}(\mathrm{X}=3)=\frac{4}{15}$
Now define the random variable $\mathrm{Y}=\mathrm{X}^{2}$

$$
\begin{aligned}
& \Rightarrow \mathrm{Y}=\{1,4,9\} \quad \mathrm{P}(\mathrm{Y}=1)=\frac{1}{3} \quad \mathrm{P}(\mathrm{Y}=4)=\frac{2}{5} \quad \mathrm{P}(\mathrm{Y}=9)=\frac{4}{15}
\end{aligned}
$$

Example

$$
P_{X}(x)= \begin{cases}1 / 4 & x=1,2,3,4 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
Y=g(X)= \begin{cases}10.5 X-0.5 X^{2} & 1 \leq X \leq 5 \\ 50 & 6 \leq X \leq 10\end{cases}
$$

What is $E[Y]$?

$$
\begin{aligned}
E[Y]=\sum_{x=1}^{4} P_{X}(x) g(x) & =(1 / 4)\left[(10.5)(1)-(0.5)(1)^{2}\right] \\
& +(1 / 4)\left[(10.5)(2)-(0.5)(2)^{2}\right] \\
& +(1 / 4)\left[(10.5)(3)-(0.5)(3)^{2}\right] \\
& +(1 / 4)\left[(10.5)(4)-(0.5)(4)^{2}\right] \\
& =(1 / 4)[10+19+27+34]=22.5
\end{aligned}
$$

In general then

$$
E[g(X)]=\sum_{i=1}^{N} g\left(x_{i}\right) P\left(x_{i}\right)
$$

for discrete random variable

$$
E[g(x)]=\int_{-\infty}^{\infty} g(x) f_{x}(x) d x
$$

for continuous random variable

Conditional Expectation

We define the conditional density function for a given event

$$
\begin{aligned}
& \mathrm{B}=\{\mathrm{X} \leq \mathrm{b}\} \\
& f_{X}(x \mid X \leq b)=\left\{\begin{array}{cl}
\frac{f_{X}(x)}{\int_{-\infty}^{b} f_{x}(x) d x} & x<b \\
0 & x \geq b
\end{array}\right.
\end{aligned}
$$

we now define the conditional expectation in similar manner

$$
\begin{array}{r}
E[X \mid B]=\int_{-\infty}^{\infty} x f_{x}(x \mid B) d x=\underbrace{\int_{-\infty}^{b} x f_{x}(x \mid B) d x}_{x<b}+\underbrace{\int_{b}^{\infty} x f_{x}(x \mid B) d x}_{x \geq b} \\
=\int_{-\infty}^{b} x \underbrace{\frac{f_{X}(x)}{\int_{-\infty}^{b} f_{x}(x) d x} d x+\underbrace{\int_{b}^{\infty} x 0 d_{x}}_{0}=\underbrace{\int_{-\infty}^{b} x f_{x}(x) d x}_{\text {constant } F_{x}(b)}}_{\text {constant }=F_{x}(b)}
\end{array}
$$

Moments

The expected value defined previously as

$$
\mathrm{E}[\mathrm{X}]=\overline{\mathrm{X}}=\int_{-\infty}^{\infty} \mathrm{xf} \mathrm{X}_{\mathrm{X}}(\mathrm{x}) \mathrm{dx}
$$

if X is continuous value with probability density $f_{X}(x)$

Is called the 1st moment of the random variable X with probability density $f_{x}(x)$

The word moment is used because a similar form exist in static were the 1 st moment represent the center of gravity

There are two type of moments that is of interest

Example Assume a mass is distributed on one dimension x as shown below were $m(x)$ is the mass density function is

Then we can calculate the 1 st moment or center of gravity M as

$$
M=\frac{\int_{a}^{b} x m(x) d x}{\int_{\text {total mass }}^{\int_{a}^{b} m(x) d x}}
$$

In the probability case the total area under the density function is unity or 1

The expected value of the function of random variable X was defined as

$$
E[g(x)]=\int_{-\infty}^{\infty} g(x) f_{x}(x) d x
$$

Let the function $g(X)$ defined as

$$
\mathrm{g}(\mathrm{X})=\mathrm{X}^{\mathrm{n}} \quad \mathrm{n}=0,1,2, \ldots
$$

Then we can define the $\mathrm{n}^{\text {th }}$ moment (about the mean) m_{n} as

$$
m_{n}=E\left[X^{n}\right]=\int_{-\infty}^{\infty} x^{n} f_{x}(x) d x
$$

Clearly

$$
\mathrm{m}_{0}=\underbrace{\mathrm{E}\left[\mathrm{X}^{0}\right]}_{\mathrm{E}[1]=1}=\underbrace{\int_{-\infty}^{\infty} \mathrm{x}^{0} \mathrm{f}_{\mathrm{X}}(\mathrm{x}) \mathrm{dx}}_{\int_{-\infty}^{\infty} \mathrm{f}_{\mathrm{X}}(\mathrm{x}) \mathrm{dx}=1}=1 \text { The area of the function } \mathrm{f}_{\mathrm{X}}(\mathrm{x})
$$

$m_{1}=E\left[X^{1}\right]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\bar{X} \quad$ The expected value of X

Central Moments

Another type of moments of interest is the central moment (about the mean) defined as

$$
\mu_{\mathrm{n}}=\mathrm{E}\left[(\mathrm{X}-\overline{\mathrm{X}})^{\mathrm{n}}\right]=\int_{-\infty}^{\infty}(\mathrm{x}-\overline{\mathrm{X}})^{\mathrm{n}} \mathrm{f}_{\mathrm{X}}(\mathrm{x}) \mathrm{dx}
$$

the m_{n} moments are expected values about the origin however the central moment m_{n} is moment or expected value about the mean or average $\overline{\mathrm{X}}$

$$
\mu_{1}=\mathrm{E}\left[(\mathrm{X}-\overline{\mathrm{X}})^{1}\right]=\mathrm{E}[\mathrm{X}]-\mathrm{E}[\overline{\mathrm{X}}]=\overline{\mathrm{X}}-\overline{\mathrm{X}}=0
$$

were we have used the fact that
$\mathrm{E}[\mathrm{a}]=\mathrm{a}$

Moments

Moments about the origin

$$
\begin{aligned}
\mathrm{m}_{\mathrm{n}} & =\mathrm{E}\left[\mathrm{X}^{n}\right]=\sum_{\mathrm{i}=1}^{\mathrm{N}} \mathrm{x}_{\mathrm{i}}^{n} \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right) \\
\mathrm{m}_{\mathrm{n}} & =\mathrm{E}\left[\mathrm{X}^{\mathrm{n}}\right]=\int_{-\infty}^{\infty} \mathrm{x}^{\mathrm{n}} \mathrm{f}_{\mathrm{X}}(\mathrm{x}) \mathrm{dx} \\
\mathrm{~m}_{1} & =\mathrm{E}[\mathrm{X}]=\overline{\mathrm{X}}
\end{aligned}
$$

Moments about the mean called central moments

$$
\begin{aligned}
\mu_{\mathrm{n}} & =\mathrm{E}\left[(\mathrm{X}-\overline{\mathrm{X}})^{\mathrm{n}}\right] \\
& =\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\mathrm{x}_{i}-\overline{\mathrm{X}}\right)^{n} \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right) \\
\mu_{\mathrm{n}} & =\mathrm{E}\left[(\mathrm{X}-\overline{\mathrm{X}})^{\mathrm{n}}\right] \\
& =\int_{-\infty}^{\infty}(\mathrm{x}-\overline{\mathrm{X}})^{\mathrm{n}} \mathrm{f}_{\mathrm{X}}(\mathrm{x}) \mathrm{dx}
\end{aligned}
$$

Variance and skew (مأل)

The second central moment μ_{2} is so important, that it is given the name variance and have the special notation σ_{x}^{2}

Thus the variance is given by

$$
\sigma_{\mathrm{x}}^{2}=\mu_{2}=\mathrm{E}\left[(\mathrm{X}-\overline{\mathrm{X}})^{2}\right]=\int_{-\infty}^{\infty}(\mathrm{x}-\overline{\mathrm{X}})^{2} \mathrm{f}_{\mathrm{x}}(\mathrm{x}) \mathrm{dx}
$$

σ_{X} (the positive square root of the variance) is called the standered deviation of RV X
σ_{x} is a measure of the spread of the random variable X about its mean or average
σ_{X} is a measure of the spread of the random variable X about its mean or average

The spread of $f_{1}(x)$ is more than the spread of $f_{2}(x)\left(\sigma_{1}>\sigma_{2}\right)$

Variance can be found from a knowledge of first moment $\left(m_{1}\right)$ and second moments (m_{2}) as follows

$$
\begin{aligned}
\sigma_{\mathrm{x}}^{2}=\mu_{2}=\mathrm{E}\left[(\mathrm{X}-\overline{\mathrm{X}})^{2}\right] & =\mathrm{E}\left[\mathrm{X}^{2}-2 \overline{\mathrm{X}} \mathrm{X}+\overline{\mathrm{X}}^{2}\right] \\
& =\mathrm{E}\left[\mathrm{X}^{2}\right]-2 \overline{\mathrm{X}} \mathrm{E}[\mathrm{X}]+\overline{\mathrm{X}}^{2} \\
& =\mathrm{E}\left[\mathrm{X}^{2}\right]-\overline{\mathrm{X}}^{2} \\
& =\mathrm{m}_{2}-\mathrm{m}_{1}^{2}
\end{aligned}
$$

Example 3.2-1

Properties of the variance σ_{x}

Let c be a constant and X be a RV
(1) σ_{c}^{2}

The probability density function of a constant "deterministic number" is a delta function with spread zero

(2) $\sigma_{x+c}^{2}=\sigma_{x}^{2}$

The variance does not change by shifting the random variable, the spread will remain the same, on the other hand shifting effect the mean only
(3) $\sigma_{\mathrm{cx}}^{2}=\mathrm{c}^{2} \sigma_{\mathrm{x}}^{2}$

The third central moment $\mu_{3}=\mathrm{E}\left[(\mathrm{X}-\overline{\mathrm{X}})^{3}\right]$ is a measure of the a symmetry of $f_{x}(x)$ about $x=\bar{X}=m_{1}$

It will be called the "skew" of the density function
If $f_{x}(x)$ symmetric about $x=\bar{X}$, it has zero skew (i.e $\mu_{3}=0$)
$\mu_{\mathrm{n}}=0$ for all odd n .
The normalized third central moment $\quad \mu_{3} / \sigma_{x}^{3}$ is known as the skewness or coefficient of skewness of the probability density function

Useful Inequalities

A useful tool in some probability problems are some inequalities such as Chebychev's inequality and Markov's Inequality.

Chebychev's Inequality

It state that for a RV X,

$$
\mathrm{P}\{|\mathrm{X}-\overline{\mathrm{X}}| \geq \epsilon\} \leq \sigma_{\mathrm{X}}^{2} / \epsilon^{2} \quad \text { for any } \varepsilon>0
$$

$$
P\{|X-\bar{X}| \geq \epsilon\} \leq \sigma_{x}^{2} / \epsilon^{2}
$$

Proof

$\mathrm{P}\{|\mathrm{X}-\overline{\mathrm{X}}| \geq \epsilon\}=\mathrm{P}\{\mathrm{X}-\overline{\mathrm{X}} \geq \epsilon$ and $\mathrm{X}-\overline{\mathrm{X}} \leq-\epsilon\}$

$$
=P\{X \geq \bar{X}+\epsilon \text { and } X \leq \bar{X}-\epsilon\}
$$

$$
=\int_{-\infty}^{\bar{x}-\epsilon} f_{x}(x) d x+\int_{\bar{X}+e}^{\infty} f_{x}(x) d x=\int_{|x-\bar{x}| \geq e}^{\infty} f_{X}(x) d x
$$

but since $\quad \sigma_{X}^{2}=\int_{-\infty}^{\infty}(x-\bar{X})^{2} f_{X}(x) d x \geq \int_{|x-\bar{x}| \geq \in \in}^{\infty} \underbrace{(x-\bar{X})^{2}}_{(x-\bar{X})^{2} \geq \varepsilon^{2}} f_{X}(x) d x$

$$
\begin{aligned}
& \geq \epsilon^{2} \int_{|x-\bar{x}| e e_{x}}^{\infty} f_{x}(x) d x=\epsilon^{2} P\{|X-\bar{X}| \geq \epsilon\} \\
& \Rightarrow P\{|X-\bar{X}| \geq \epsilon\} \leq \sigma_{x}^{2} / \epsilon^{2}
\end{aligned}
$$

$$
\mathrm{P}\{|\mathrm{X}-\overline{\mathrm{X}}| \geq \epsilon\} \leq \sigma_{\mathrm{X}}^{2} / \epsilon^{2}
$$

Another form of Chebychev's Inequality is
$P\{|X-\bar{X}|<\epsilon\} \geq 1-\left(\sigma_{X}^{2} / \epsilon^{2}\right)$
A consequence of that if $\sigma_{x}^{2} \rightarrow 0$ for a random variable, then
$\mathrm{P}\{|\mathrm{X}-\overline{\mathrm{X}}|<\epsilon\} \rightarrow 1 \quad$ or $\quad \mathrm{P}\{\mathrm{X}=\overline{\mathrm{X}}\} \rightarrow 1$
In other words, if the variance of the RV X approach zero, the probability approaches 1 , that X will equal its mean.

Markov's Inequality

Let X be a non negative random number, then

$$
\mathrm{P}\{\mathrm{X} \geq \mathrm{a}\} \leq \mathrm{E}[\mathrm{X}] / \mathrm{a}-\mathrm{a}>0
$$

3.3 Function that Give moments

The expected value of a function of random variable defined previously as
$E[g(X)]=\int_{-\infty}^{\infty} g(x) f_{X}(x) d x \quad$ if X is continuous value with probability density $f_{X}(x)$
Now if $g(X)=e^{j w X}$ were $j=\sqrt{-1}$ then the expcted value of $g(X)$ is give as
$E[g(X)]=E\left[e^{j \omega X}\right]=\int_{-\infty}^{\infty} e^{j \omega X} f_{X}(x) d x=\Phi_{\mathrm{X}}(\omega)$
The function $\Phi_{\mathrm{X}}(\omega)(-\infty<\omega<\infty)$ is called the characteristic functionof a random variable
$\Phi_{\mathrm{X}}(\omega)$ is the Fourier Transform (with sign of ω reversed) of the density function $f_{X}(x)$
Note the Fourier Transform of the density function $f_{X}(x)$ is given as $\int_{-\infty}^{\infty} f_{X}(x) e^{-j \omega X} d x$

$$
\left.\begin{array}{l}
f_{X}(x) \Leftrightarrow \Phi_{X}(\omega)=\text { Fourier Transform }\left\{f_{X}(x)\right\}_{\omega \rightarrow-\omega}=\int_{-\infty}^{\infty} e^{j \omega X} f_{X}(x) d x \\
\left\{\Phi_{X}(\omega)\right\}_{\omega \rightarrow-\omega} \Rightarrow f_{X}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \Phi_{X}(\omega) \mathrm{e}^{-j \omega X} \mathrm{~d} \omega \\
\text { Inverse } \\
\text { Fourier } \\
\text { Transform }
\end{array}\right)
$$

$$
\Phi_{\mathrm{X}}(\omega)=\int_{-\infty}^{\infty} e^{j \omega X} f_{X}(x) d x
$$

Let us differentiate the characteristic function $\Phi_{\mathrm{X}}(\omega)$ with respect ω as follows:

$$
\frac{d}{d \omega} \Phi_{\mathrm{X}}(\omega)=\frac{d}{d \omega} \int_{-\infty}^{\infty} e^{j \omega X} f_{X}(x) d x=\int_{-\infty}^{\infty} \frac{d}{d \omega} e^{j \omega X} f_{X}(x) d x=j \int_{-\infty}^{\infty} X e^{j \omega X} f_{X}(x) d x
$$

$$
\text { Now if we set } \omega=\left.0 \quad \frac{d}{d \omega} \Phi_{\mathrm{X}}(\omega)\right|_{\omega=0} \quad \text { we get }
$$

$$
\begin{gathered}
\left.\frac{d}{d \omega} \Phi_{\mathrm{X}}(\omega)\right|_{\omega=0}=j \int_{-\infty}^{\infty} X e^{j(0) X} f_{X}(x) d x=j \int_{-\infty}^{\infty} X f_{X}(x) d x=j \bar{X}=j m_{1} \\
\Rightarrow m_{1}=\left.(-j) \frac{d}{d \omega} \Phi_{\mathrm{X}}(\omega)\right|_{\omega=0}
\end{gathered}
$$

In general $\quad m_{\mathrm{n}}=\left.(-j)^{\mathrm{n}} \frac{d^{\mathrm{n}} \Phi_{\mathrm{X}}(\omega)}{d \omega^{\mathrm{n}}}\right|_{\omega=0}$

Example Let X be a random variable with an exponential probability density function given as

$$
m_{1}=E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{\infty} x e^{-x}=1
$$

Now let us find the $1^{\text {st }}$ moment (expected value) using the characteristic function

$$
\begin{aligned}
& \Phi_{\mathrm{X}}(\omega)=\int_{-\infty}^{\infty} e^{j \omega X} e^{-x} d x=\text { Fourier Transform }\left\{e^{-x}\right\}_{\omega \rightarrow-\omega}=\left\{\frac{1}{1+j \omega}\right\}_{\omega \rightarrow-\omega}=\frac{1}{1-j \omega} \\
& m_{1}=\left.(-j) \frac{d}{d \omega} \Phi_{\mathrm{X}}(\omega)\right|_{\omega=0} \\
& \frac{d}{d \omega} \Phi_{\mathrm{X}}(\omega)=\frac{d}{d \omega}\left[\frac{1}{1-j \omega}\right]=\frac{j}{(1-j \omega)^{2}} \Rightarrow m_{1}=(-j)\left[\frac{j}{(1-j \omega)^{2}}\right]_{\omega=0}=\left[\frac{-j^{2}}{(1-j(0))^{2}}\right]_{\omega=0}=1
\end{aligned}
$$

3.4 Transformations of A Random Variable

Let X be a random variable with a known distribution $\mathrm{F}_{\mathrm{X}}(\mathrm{x})$ and a known density $\mathrm{f}_{\mathrm{X}}(\mathrm{x})$.
Let $\mathrm{T}($.$) be a transformation or a mapping or a function that maps$ the R.V X into Y as

$$
\mathrm{Y}=\mathrm{T}(\mathrm{X})
$$

The problem is to find $\mathrm{F}_{\mathrm{Y}}(\mathrm{y})$ and $\mathrm{f}_{\mathrm{Y}}(\mathrm{y})$.
You can view the problem as a block box problem

In general X can be a discrete, continuous or mixed random variable and the Transformation T can be

Linear
Non-linear
Segmented
Staircase
We will consider three cases:
(1) X is continuous and T is continuous and monotonically increasing or decreasing

(2) X is continuous and T is continuous nonmonotonic

(3) X is discrete and T is continuous

Monotonic Increasing Transformations of a Continuous Random Variable

A transformation T is called monotonically increasing if
$\mathrm{T}\left(\mathrm{x}_{1}\right)<\mathrm{T}\left(\mathrm{x}_{2}\right)$ for any $\mathrm{x}_{1}<\mathrm{x}_{2}$.

Assume that T is continuous and differentiable at all values of x for which $\mathrm{f}_{\mathrm{X}}(\mathrm{x}) \neq 0$.
$y_{0}=T\left(x_{0}\right)$ or $x_{0}=T^{-1}\left(y_{0}\right)$

The events $\left\{\mathrm{Y} \leq \mathrm{y}_{0}\right\}$ and $\left\{\mathrm{X} \leq \mathrm{x}_{0}\right\}$ are equivalent.
$\Rightarrow \mathrm{P}\left\{\mathrm{Y} \leq \mathrm{y}_{0}\right\}=\mathrm{P}\left\{\mathrm{X} \leq \mathrm{x}_{0}\right\}$
$\Rightarrow F_{Y}\left(y_{0}\right)=P\left\{Y \leq y_{0}\right\}=P\left\{X \leq x_{0}\right\}=F_{X}\left(x_{0}\right)$
$\Rightarrow \int_{-\infty}^{y_{0}} f_{Y}(y) d y=\int_{-\infty}^{x_{0}=T^{-1}\left(y_{0}\right)} f_{X}(x) d x$
Differentiating both sides with respect to y_{0} and using Leibniz rule
Leibniz rule
If $G(u)=\int_{\alpha(u)}^{\beta(u)} H(x, u) d x$
Then $\frac{d G(u)}{d u}=H[\beta(u), u] \frac{d \beta(u)}{d u}-H[\alpha(u), u] \frac{d \alpha(u)}{d u}+\int_{\alpha(u)}^{\beta(u)} \frac{\partial H(x, u)}{\partial u} d x$

$$
\int_{-\infty}^{y_{0}} f_{Y}(y) d y=\int_{-\infty}^{x_{0}=T^{-1}\left(y_{0}\right)} f_{X}(x) d x
$$

Leibniz rule

If $G(u)=\int_{\alpha(u)}^{\beta(u)} H(x, u) d x$
Then $\frac{d G(u)}{d u}=H[\beta(u), u] \frac{d \beta(u)}{d u}-H[\alpha(u), u] \frac{d \alpha(u)}{d u}+\int_{\alpha(u)}^{\beta(u)} \frac{\partial H(x, u)}{\partial u} d x$

Now the LHS

$$
\Rightarrow \frac{d}{d y_{0}} \int_{-\infty}^{y_{0}} f_{Y}(y) d y=f_{Y}\left(y_{0}\right) \frac{d y_{0}}{d y_{0}}-f_{Y}\left(y_{0}\right)(0)+\int_{-\infty}^{y_{0}} \frac{d f_{Y}(y)}{d y_{0}} d y=f_{Y}\left(y_{0}\right)
$$

$\int_{-\infty}^{y_{0}} f_{Y}(y) d y=\int_{-\infty}^{x_{0}=T^{-1}\left(y_{0}\right)} f_{X}(x) d x \quad \mathbf{L H S} \frac{d}{d y_{0}} \int_{-\infty}^{y_{0}} f_{Y}(y) d y=f_{Y}\left(y_{0}\right)$

Leibniz rule

If $G(u)=\int_{\alpha(u)}^{\beta(u)} H(x, u) d x$
Then $\frac{d G(u)}{d u}=H[\beta(u), u] \frac{d \beta(u)}{d u}-H[\alpha(u), u] \frac{d \alpha(u)}{d u}+\int_{\alpha(u)}^{\beta(u)} \frac{\partial H(x, u)}{\partial u} d x$

The RHS

$$
\begin{aligned}
& \frac{d}{d y_{o}} \int_{-\infty}^{x_{0}=T^{-1}\left[y_{0}\right]} f_{X}(x) d x=f_{X}\left[x_{0}\right] \frac{d x_{0}}{d y_{0}}-f_{X}\left(x_{0}\right)(0)+\int_{-\infty}^{x_{0}=T^{-1}\left[y_{0}\right]} \frac{d f_{X}(x)}{d y_{0}} d x=f_{X}\left(T^{-1}\left(y_{0}\right)\right) \frac{d T^{-1}\left(y_{0}\right)}{d y_{0}} \\
& \Rightarrow f_{Y}\left(y_{0}\right)=f_{X}\left(T^{-1}\left(y_{0}\right)\right) \frac{d T^{-1}\left(y_{0}\right)}{d y_{0}}
\end{aligned}
$$

Since the results apply for any y_{0},

$$
\begin{aligned}
& \Rightarrow f_{Y}(y)=f_{X}\left[T^{-1}(y)\right] \frac{d T^{-1}(y)}{d y} \\
& \text { or } \quad f_{Y}(y)=f_{X}(x) \frac{d x}{d y}
\end{aligned}
$$

Monotonic Decreasing Transformations of a Continuous Random Variable

A transformation T is called monotonically decreasing if $\mathrm{T}\left(\mathrm{x}_{1}\right)>\mathrm{T}\left(\mathrm{x}_{2}\right)$ for any $\mathrm{x}_{1}<\mathrm{x}_{2}$.

$$
F_{Y}\left(y_{0}\right)=P\left\{Y \leq y_{0}\right\}=P\left\{X \geq x_{0}\right\}=1-F_{X}\left(x_{0}\right)
$$

$$
\int_{-\infty}^{y_{0}} f_{Y}(y) d y=1-\int_{-\infty}^{x_{0}=T^{-1}\left(y_{0}\right)} f_{X}(x) d x
$$

$$
\frac{d}{d y_{0}} \int_{-\infty}^{y_{0}} f_{Y}(y) d y=f_{Y}(y)=0-f_{X}\left[T^{-1}\left(y_{0}\right)\right] \frac{d T^{-1}\left(y_{0}\right)}{d y_{0}}
$$

since $\frac{d T^{-1}\left(y_{0}\right)}{d y_{0}}$ is negative (monotone decreasing)
$\Rightarrow f_{Y}(y)=f_{X}\left[T^{-1}(y)\right]\left|\frac{d T^{-1}(y)}{d y}\right|=f_{X}(x)\left|\frac{d x}{d y}\right|$
Then we conclude that
$f_{Y}(y)=f_{X}(x)\left|\frac{d x}{d y}\right|$
for both increasing and decreasing monotonic transformation.

Example 3.4.1

Letting T be the linear transformation $Y=T(X)=a X+b$, where a and b are any real constants, then $X=T^{-1}(Y)=(Y-b) / a$ and $d x / d y=1 / a$
$\operatorname{Using} f_{Y}(y)=f_{X}\left[T^{-1}(y)\right]\left|\frac{d T^{-1}(y)}{d y}\right|$, we get $f_{Y}(y)=f_{X}\left(\frac{y-b}{a}\right)\left|\frac{1}{a}\right|$

If X is assumed to be Gaussian with density function given by
$f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} e^{-\frac{\left(x-a_{X}\right)^{2}}{2 \sigma_{X}^{2}}}$, we get
$f_{Y}(y)=\frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} e^{-\frac{\left[\left(y-b / a-a_{X}\right)\right]^{2}}{2 \sigma_{X}^{2}}}\left|\frac{1}{a}\right|=\frac{1}{\sqrt{2 \pi\left(a^{2} \sigma_{X}^{2}\right)}} e^{-\frac{\left[y-\left(a a_{X}+b\right)\right]^{2}}{2 a^{2} \sigma_{X}^{2}}}$

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi\left(a^{2} \sigma_{X}^{2}\right)}} e^{-\frac{\left[y-\left(a a_{X}+b\right)\right]^{2}}{2 a^{2} \sigma_{X}^{2}}}
$$

Which is the density function of another Gaussian random variable having

$$
a_{Y}=a a_{X}+b \quad \text { and } \quad \sigma_{Y}^{2}=a^{2} \sigma_{X}^{2}
$$

Nonmonotonic Transformations of a Continuous Random Variable

A transformation may not be monotonic(increasing and decreasing) in the more general case it can be both increasing and decreasing as shown below

The event $\left\{\mathrm{Y} \leq \mathrm{y}_{0}\right\}$ may correspond to more than one event of the random variable X .

$$
\left\{Y \leq y_{0}\right\} \equiv\left\{x \leq x_{1}\right\} \cup\left\{x_{2} \leq x \leq x_{3}\right\}
$$

$$
\left\{Y \leq y_{0}\right\} \equiv\left\{x \leq x_{1}\right\} \bigcup\left\{x_{2} \leq x \leq x_{3}\right\}=\left\{x \mid Y \leq y_{0}\right\}
$$

$$
P\left\{Y \leq y_{0}\right\}=P\left\{x \leq x_{1}\right\}+P\left\{x_{2} \leq x \leq x_{3}\right\}=P\left\{x \mid Y \leq y_{0}\right\}=\int_{\left\{x \mid Y \leq y_{0}\right\}} f_{X}(x) d x
$$

$$
\Rightarrow F_{Y}\left(y_{0}\right)=\int_{\left\{x \mid Y \leq y_{0}\right\}} f_{X}(x) d x
$$

$$
\Rightarrow f_{Y}\left(y_{0}\right)=\frac{d F_{Y}\left(y_{0}\right)}{d y_{0}}=\frac{d}{d y_{0}} \int_{\left\{x \mid Y \leq y_{0}\right\}} f_{X}(x) d x \Rightarrow f_{Y}(y)=\sum_{\mathrm{n}} \frac{\mathrm{f}_{\mathrm{X}}\left(\mathrm{x}_{\mathrm{n}}\right)}{\left.\frac{\mathrm{dT}(\mathrm{x})}{\mathrm{dx}}\right|_{\mathrm{x}=\mathrm{x}_{\mathrm{n}}}}
$$

Example 3.4.2

Let X be a random variable, and $Y=T(X)=\mathrm{c} X^{2}=X^{2}(\mathrm{c}=1)$ be a square law transformation shown in the following figure.

We shall find $f_{Y}(y)$

The event $\{Y \leq y\}$ occurs when $\{-\sqrt{y} \leq x \leq \sqrt{y}\}=\{x \mid Y \leq y\}$, therefore

$$
\Rightarrow P\{Y \leq y\}=P\{-\sqrt{y} \leq x \leq \sqrt{y}\}
$$

$$
\Rightarrow F_{Y}(y)=P\{-\sqrt{y} \leq x \leq \sqrt{y}\}=\int_{-\sqrt{y}}^{\sqrt{y}} f_{X}(x) d x \quad y \geq 0
$$

$$
\Rightarrow f_{Y}(y)=\frac{d F_{Y}(y)}{d y}=\frac{d}{d y} \int_{-\sqrt{y}}^{\sqrt{y}} f_{X}(x) d x \quad y \geq 0
$$

Upon use of Leibniz's rule, we obtain

$$
\begin{aligned}
f_{Y}(y) & =f_{X}(\sqrt{y}) \frac{d(\sqrt{y})}{d y}-f_{X}(-\sqrt{y}) \frac{d(-\sqrt{y})}{d y} \\
& =\frac{f_{X}(\sqrt{y})+f_{X}(-\sqrt{y})}{2 \sqrt{y}} \quad y \geq 0
\end{aligned}
$$

Example

$f_{X}(x)$
Let X be a random variable with uniform density between 0 and 2
If $Y=X^{2}$ is a transformation, find $f_{Y}(y)$?

$$
Y=T[X]=X^{2}
$$

Solution

$x= \pm \sqrt{y} \Rightarrow$ There are two roots $\quad x_{1}=+\sqrt{y} \quad x_{2}=-\sqrt{y} \quad \frac{\mathrm{~d} y}{d x}=2 x$

$$
f_{Y}(y)=\left.\sum_{\mathrm{n}} f_{X}\left(x_{n}\right) \frac{\mathrm{d} x}{d T(\mathrm{x})_{x=x_{n}}}\right|_{\mathrm{n}}=\left.\sum_{X}\left(x_{n}\right) \frac{\mathrm{d} x}{d y}\right|_{x=x_{n}}=f_{X}\left(x_{1}\right)\left|\frac{\mathrm{d} x}{d y}\right|_{x=x_{1}}+\left.f_{X}\left(x_{2}\right) \frac{\mathrm{d} x}{d y}\right|_{x=x_{2}}
$$

$$
=f_{X}(\sqrt{y})\left|\frac{1}{2 x}\right|_{x=\sqrt{y}}+f_{X}(-\sqrt{y})\left|\frac{1}{2 x}\right|_{x=-\sqrt{y}}=\left(\frac{1}{2}\right) \frac{1}{2 \sqrt{y}}+(0) \frac{1}{2 \sqrt{y}}=\frac{1}{4 \sqrt{y}}
$$

$$
f_{Y}(y)=\frac{1}{4 \sqrt{y}} \quad y \in[0,4]
$$

$$
Y=T[X]=X^{2}
$$

Example

Let X be a random variable with Gaussian density of zero mean and unit varaince
If $Y=X^{2}$ is a transformation, find $f_{Y}(y)$?

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\left(\frac{x^{2}}{2}\right)} \quad \square f_{Y}(y) ?
$$

Solution

$x= \pm \sqrt{y} \Rightarrow$ There are two roots $x_{1}=+\sqrt{y}$

$$
x_{2}=-\sqrt{y} \quad \frac{\mathrm{~d} y}{d x}=2 x
$$

$$
f_{Y}(y)=f_{X}(\sqrt{y})\left|\frac{1}{2 x}\right|_{x=\sqrt{y}}+f_{X}(-\sqrt{y})\left|\frac{1}{2 x}\right|_{x=-\sqrt{y}}
$$

$$
=\frac{1}{\sqrt{2 \pi}} e^{-\left(\frac{(\sqrt{y})^{2}}{2}\right)}\left(\frac{1}{2 \sqrt{y}}\right)+\frac{1}{\sqrt{2 \pi}} e^{-\left(\frac{(-\sqrt{y})^{2}}{2}\right)}\left(\frac{1}{2 \sqrt{y}}\right)=\frac{1}{\sqrt{2 \pi y}} e^{-\left(\frac{y}{2}\right)} y \geq 0
$$

Example 4 Let X be a random variable with the following sample space and probabilities mass

$$
\begin{array}{llll}
S_{X}=\{-2,-1,0,1,2,3\} & P(X=-2)=\frac{1}{6} & P(X=-1)=\frac{1}{6} & P(X=0)=\frac{1}{6} \\
& P(X=1)=\frac{1}{6} & P(X=2)=\frac{1}{6} & P(X=3)=\frac{1}{6}
\end{array}
$$

If $\mathrm{Y}=\mathrm{X}^{2}$ find $\mathrm{f}_{\mathrm{Y}}(\mathrm{y})$?
Solution $S_{Y}=\{0,1,4,9\}$

$$
\begin{gathered}
\{Y=0\} \equiv\{X=0\} \Rightarrow \mathrm{P}(Y=0)=\mathrm{P}(X=0)=\frac{1}{6} \\
\{Y=1\} \equiv\{X=-1\} \bigcup\{X=1\} \Rightarrow \mathrm{P}(Y=1)=\mathrm{P}(X=-1)+\mathrm{P}(X=1)=\frac{1}{3} \\
\{Y=4\} \equiv\{X=-2\} \bigcup\{X=2\} \Rightarrow \mathrm{P}(Y=4)=\mathrm{P}(X=-2)+\mathrm{P}(X=2)=\frac{1}{3} \\
\{Y=9\} \equiv\{X=3\} \Rightarrow \mathrm{P}(Y=9)=\mathrm{P}(X=3)=\frac{1}{6} \\
\Rightarrow \mathrm{f}_{\mathrm{Y}}(\mathrm{y})=\sum_{\mathrm{n}} \mathrm{P}\left(\mathrm{y}_{\mathrm{n}}\right) \delta\left(\mathrm{y}-\mathrm{y}_{\mathrm{n}}\right)=\frac{1}{6} \delta(\mathrm{y})+\frac{1}{3} \delta(\mathrm{y}-1)+\frac{1}{3} \delta(\mathrm{y}-4)+\frac{1}{6} \delta(\mathrm{y}-9)
\end{gathered}
$$

