
Ch3   Operations on one random  

           variable-Expectation 

Previously we define a random variable as a mapping from the  

sample space to the real line 

We will now introduce some operations on the random variable.  

Most of these operations are based on the concept  “expectation” 



Expectation 

Expectation is the name given to the process of averaging of  

a random variable X.  

The followings are equivalents: 

 Expectation or expected value of random variable X  , which we    

   use the notation E[X]  

 The “mean value ” of random variable X   

 The “statistical average” of random variable X   

The following notation are equivalent E[X] = X

Example:3.1-1 



Expected value of a random variable 

The everyday averaging procedure used in the above example carries 

over directly to RV 

Example:   

Let  X be a random variable the has the following sample space values 

XS  = {1, 2, 3, 4}

Now if the numbers are equally likely to occur or selected  
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Probabilty Mass Function
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Probabilty Mass Function
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In general then  

i X

i i

x  S

X = x  P(X = x ) 




where each value of the random variable  X  (xi) is  weighted by the  

Probability  P(X= xi) 

This motivate the concept of expected value or mean  value of RV  X,  
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x  S

E X  = X = x P(x )


 if   X  is discrete values  

  XE X  = X = xf (x)dx



if   X  is continuous value with 

Probability density  



In the discrete random variable we use the probability mass  

 to weight the random variable.  
iP(X = x )

In the continuous random variable we use the density   

to weight the random variable. 
Xf (x)

Observe that                     represent the probability of the random 

variable X at the interval dx 

 

Xf (x)dx

Example 3.1-2 

If the random variable  X  is symmetrical about a line  x = a   

X Xf (x  a) = f ( x  a)     E X  = a

dx

x x dx

f(x)
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X = x  P(X = x ) 




  XE X  = X = xf (x)dx






Expected value of a Function of a random variable 

Assume a random variable  X  which has the following values and  

probabilities 

X = {1, 2, 3}
1

P(X=1) = 
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2
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4
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In general then  

 
N

i i

i=1

E g(X)  = g(x )P(x ) for discrete random variable  

  XE g(x)  = g(x)f (x)dx



for continuous  random variable  



Conditional Expectation 

We define the conditional density function for a given  event  

B = { X  b}

X

b

XX

f (x)
x < b

f (x)dxf (x|X  b) = 

0 x  b






 






we now define the conditional expectation in similar manner  
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Moments  

The expected value defined previously as  

  XE X  = X = xf (x)dx




if   X  is continuous value with  probability density  Xf (x)

Is called the 1st  moment  of the random variable X with probability  

density  
Xf (x)

The word  moment  is used because a similar form exist in  static 

were the  1st  moment   represent the center of gravity 

There are two type of  moments  that is of interest 

Moments  about the origin Moments  about the mean called central moments 



Example   Assume a mass is distributed on one dimension x as 

shown below were  m(x) is the mass density  function is  

x

m(x)

M
0 a b

Then we can calculate the 1st  moment   or   center of gravity  M  as  

total mas

b

a

a
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m(x x) 





In the probability case the total area 

under the density function is unity or 1  



The expected value of the  function of random variable  X  was 

defined as   

  XE g(x)  = g(x)f (x)dx




Let  the function  g(X) defined as  

ng(X) = X        n = 0, 1, 2, ...

th

nThen we can define the n  moment    m  as(about the mean)

n n

n Xm  = E X  = x f (x)dx
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Clearly  
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1 Xm  = E X  = xf (x)dx = The expectedX    val Xue of  



   



Central Moments  

Another type of moments of interest is the central moment  

(about the mean)  defined as 

n n

n Xμ  = E (X  X)  = (x  X) f (x)dx



    

the  mn moments are expected values about the  origin however the 

central moment mn is moment or expected value about the mean or 

average   X
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1

1μ  = E (X X)  = E[X]  E[X] = X  X = 0    

were we have used the fact that   
constant

E[ a ] = a



  

Moments  

Moments  about the origin Moments  about the mean  

called central moments 
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Variance and skew (مائل) 

2

2

x

The second central moment   is so important ,  that it is given the 

name   and have the special notation ζ



variance

Thus the variance is given by  

2 2 2

x 2 Xζ = μ  = E (X  X)  = (x  X) f (x)dx



    

Xζ ( the positive square root of the variance) is called the 

standered deviation of RV  X  

      is a measure of the spread  of the random variable  X  about its 

mean or average  
Xζ



1ζ

2ζ

21ζ  > ζ

1f (x)

2f (x)

       is a measure of the spread  of the random variable  X  about 

its mean or average 
Xζ

The spread of              is  more than the spread of         

 
1f (x) 2f (x)

      

 21ζ  > ζ

   



 2 2= E X 2XE X  + X   

Example 3.2-1 

  

1
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Variance can be found from a knowledge of  first moment 

and second mo

(m )

(m )ments  as follows
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x 2ζ = μ  = E (X  X) =E X 2XX + X
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Properties of the variance   Xζ

  

Let  c  be  a constant  and  X  be a RV  

   

2

c(1)    ζ

The  probability density function of a constant “deterministic number” 

is a delta function with spread zero  

c
x

Xf (x)

(x  c) 

0
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x + c x(2)    ζ  ζ  

2 2 2

cx x(3)       ζ  c ζ  

The third central moment                                     is a measure of the    

a symmetry of                  about    

3

3μ  = E (X  X)  

1x = X = mXf (x)

It will be called the  “skew” of the density function 

X 3If   f (x)   symmetric about   x = X   ,  it has zero skew (i.e  μ  = 0   )

nμ  = 0   for all  odd  n .

3

3 xμ ζ The normalized third central moment                    is known as the 

skewness or coefficient of skewness of the probability density 

function   

The variance does not change by shifting the 

random variable, the spread will remain the 

same , on the other hand shifting effect the 

mean only 



Useful Inequalities  

A useful tool in some probability problems are some inequalities 

such as Chebychev’s inequality and  Markov’s Inequality. 

 Chebychev’s  Inequality 

  It state that for a  RV  X ,    

  2 2

XP X  X   є   ζ є    for any e > 0  



Proof 

X X + εX  ε

  2 2
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Another form of  Chebychev’s  Inequality  is  

  2 2

XP X  X  <   1  (ζ )    

  2 2

XP X  X   є   ζ є  

A consequence  of that  if  
2

Xζ  0  for a random variable , then  

 P X  X  <   1    P{X = X}   1 or     

In other words, if the  variance of the RV  X approach 

zero, the probability approaches 1 , that X will equal its 

mean.  



Markov’s  Inequality  

Let X be a non negative random number , then  

   P X  a   E X a  a > 0  



        if   X  is continuous value with  probability dens ( )ity   ( ) ( ( ))  XX
f xf x dxX xE g g




 
 

 

3.3 Function that Give moments 

The expected value of a function of random variable defined previously as  

 Now if       were       then the expcted value of   1    is give as( )  (  ) jwX
jg X e g X 
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X
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X
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Example Let  X  be a random variable with an exponential    

                 probability density function given as 
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Now let us find the 1st moment (expected value) using the characteristic function 
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3.4 Transformations of A Random Variable 

The problem is to find FY(y) and fY(y). 

You can view the problem as a 

block box problem 

Let T(.) be a transformation or a mapping or a function that maps 

the R.V X into Y as  

                             Y = T(X) 
 

Let X be a random variable with a known distribution FX(x) and  

a known density fX (x). 



(1)  X is continuous and T is continuous and monotonically 

increasing or decreasing 

In general X can be a discrete, continuous or mixed random 

variable and the Transformation T can be  

Linear 

Non-linear 

Segmented 

Staircase 

We will consider three cases: 



(2) X is continuous and T is continuous nonmonotonic 

(3)  X is discrete and T is continuous 



A transformation T is called monotonically increasing if  

T(x1) < T(x2) for any x1 < x2. 

Assume that T is continuous and differentiable at all values of x for 

which fX(x) ≠ 0. 

Monotonic Increasing Transformations of a 
Continuous Random Variable 

 

1

0 0 0 0( ) ( )y T x or x T y 



The events {Y ≤ y0} and {X ≤ x0} are equivalent. 

     P {Y ≤ y0} = P {X ≤ x0}  

Differentiating both sides with respect to y0 and using Leibniz rule 
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Leibniz rule
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Leibniz rule

0 0

0
0 0 0

00 0

( )
( ) ( ) ( )(0) ( )

y y

Y

Y Y Y Y

df yd dy
dyf y dy f y f y f y

dydy dy
 

    

Now the LHS



1 1
0 0 0 0[ ] [ ] 1

10 0
0 0 0

00 0

( ) ( )
( ) [ ] ( )(0) ( ( ))

x T y x T y

X

X X X X

o

df xdx dT yd
dxf x dx f x f x f T y

dydy dy dy

   


 

    

The RHS

1
1 0

0 0

0

( )
( ) ( ( ))Y X

dT y
f y f T y

dy


 

01
0 0 0  ( )

0

0

( )

( )

( )

( )

( )   ( )      ( ) ( )    

  ( ) ( , )

( ) ( ) ( ) ( , )
 [ ( ), ] [ ( ), ]

y
y x T y

Y X Y Y

u

u

u

u

d
f y dy f x dx f y dy f y

dy

G u H x u dx

dG u d u d u H x u
H u u H u u dx

du du du u
T

If

hen









 
 



 


 




  



  





LHS

Leibniz rule
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Since the results apply for any y0, 



Monotonic Decreasing Transformations of a 
Continuous Random Variable 

A transformation T is called monotonically decreasing if  

T(x1) > T (x2) for any x1 < x2. 
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for both increasing and decreasing monotonic transformation. 

Then we conclude that  

1

0

0

( )
since is negative (monotone decreasing)

dT y

dy



1
1 ( )

( )  ( )  ( )  Y X X

dT y dx
f y f T y f x

dy dy


    

( )  ( )  
dx

f y f x
Y X dy





1
1 ( )

Using ( ) ( ) ,  we getY X

dT y
f y f T y

dy


   

1
( ) ( )Y X

y b
f y f

a a




If X is assumed to be Gaussian with density function given by  

 
2

2
( / )

2

21 1
( )

2

X

X

y

X

ab a

Yf y e
a





 




1

  

Letting  be the linear transformation ( ) ,  

where  and  are any real constants,  
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Example 3.4.1
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Which is the density function of another Gaussian random variable having  

2 2 2    and     Y X Y Xa aa b a   
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Nonmonotonic Transformations of a Continuous  

Random Variable 

A transformation may not be monotonic(increasing and decreasing)  

in the more general case it can be both increasing and decreasing as  

shown below 

The event {  Y ≤ y0  }   may correspond to more than one event  

of the random variable X. 
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Example 3.4.2 

Let X be a random variable, and Y=T(X)=cX2 =X2 ( c =1 ) be a 

square law transformation shown in the following figure. 

We shall find fY(y) 
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Let  be a random variable with uniform density between 0 and 2X

Example 

2
If   is a transformation , find  ( ) ?
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Let  be a random variable with  of zero mean and unit varainceX

Example 

Gaussian density
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If   is a transformation , find  ( ) ?
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Example 4  Let  X  be a random variable  with the following sample  

                    space  and probabilities mass  

   { 2, 1, 0, 1, 2, 3}
X

S   
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( )       ( ) (
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If  Y = X2   find  fY(y)  ? 
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{ 0} 0} {Y X 
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n nY
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{ 2} { 2 4} }{ X XY   

        {0, 1, 4, 9}
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