EE 202-132
HW3 (Due Sunday, March 09-2014)
Prepared by: Dr. Kamal Harb

P1.

For the circuit shown in Figure 1, use the mesh-current method to calculate:
a)- The current in all the circuit.
b)- The power of each element in the circuit.

Figure 1.
Solution:
$10=8 \mathrm{I} 1-\mathrm{I} 2-0$
$0=-\mathrm{I} 1+5 \mathrm{I} 2-\mathrm{I} 3$
$10=0-\mathrm{I} 2+6 \mathrm{I} 3$
$\mathrm{I} 1=1.32 \mathrm{~A} ; \mathrm{I} 2=0.619 \mathrm{~A} ; \mathrm{I} 3=1.77 \mathrm{~A}$;
$\mathrm{P}(10 \mathrm{~V})=\mathrm{I} 1 . \mathrm{V}=1500 / 113$;
$P^{\prime}(10 \mathrm{~V})=\mathrm{I} 3 . V=2000 / 113 ;$
$P(R x)=(I x)^{2} . R x($ For each individual resistance)
$P(R=1)=(I 1-I 2)^{2} .(1)$
$P(R=1)=(I 2-I 3)^{2}$.

P2.
For the circuit shown in Figure 2, use the node-voltage method to calculate the power in the voltage sources.

Figure 2.
$V 1=25 ; V 4=-20 V ; V 3=5 i x=5(V 2 / 5)=V 2 ;$
KCL at node 2:
$-\mathrm{V} 1(1 / 5)+\mathrm{V} 2(1 / 5+1 / 5+1 / 10)-\mathrm{V} 3(1 / 10)=0 ;(1)$
Sub. V1 and V3 $=>$ V2 $=12.5 \mathrm{v}$.
$\mathrm{I} 25=(\mathrm{V} 1-\mathrm{V} 2) / 5=2.5 \mathrm{v} .=>\mathrm{P} 25=\mathrm{I} . \mathrm{V}=\mathbf{2 . 5} . \mathbf{2 5}=\mathbf{6 2 . 5} \mathrm{w}$;
$\mathrm{I} 20=(\mathrm{V} 3-\mathrm{V} 4) / 5=6.5 \mathrm{v} .=>P 20=\mathrm{I} . \mathrm{V}=6.5 .20=130 \mathrm{w}$;

P3.
For the circuit shown in Figure 3, use the mesh-current method to calculate:
a)- The current i_{z}
b)- The power in the circuit.

Figure 4.

Solution:

$\mathrm{Iz}=(\mathrm{I} 1-\mathrm{I} 2) ;$
$20=\mathrm{I} 1(25)-\mathrm{I} 2(10)-\mathrm{I} 3(5)$
$10=-\mathrm{I} 1(10)+\mathrm{I} 2(20)-\mathrm{I} 3(5)$
$-10(\mathrm{I} 1-\mathrm{I} 2)=-\mathrm{I} 1(5)-\mathrm{I} 2(5)+\mathrm{I} 3(10)$
$\mathrm{I} 1=2 \mathrm{~A} ; \mathrm{I} 2=2 \mathrm{~A} ; \mathrm{I} 3=2 \mathrm{~A} ;$
$\mathrm{P} 20=\mathrm{I} 1(20)=40 \mathrm{~W}, \mathrm{P} 10=\mathrm{I} 2(10)=20 \mathrm{~W}$ and $\mathrm{P} 10 \mathrm{ix}=0 \mathrm{~W}$.

P4.
Use source transformations to reduce the circuit shown to a single loop, and then find the current \boldsymbol{I}. Draw a circuit for each step you take.

$$
I=(12-8) / 9=4 / 9 \mathrm{~A}
$$

