EE 202-Winter 2013-2014 (132) HW5 Prepared by: Dr. Mohammad S. Sharawi Due 13/4/2014

Q1 A voltage of 60 cos $4\pi t$ V appears across the terminals of a 3-mF capacitor. Calculate the current through the capacitor and the energy stored in it from t = 0 to

t = 0.125 s.

Q2 Find the equivalent capacitance between terminals *a* and *b* in the circuit of Fig. 1. All capacitances are in μ F.

Q3 In the circuit in Fig. 2, let $i_s = 30e^{-2t}$ mA and $v_1(0) = 50$ V, $v_2(0) = 20$ V. Determine: (a) $v_1(t)$ and $v_2(t)$, (b) the energy in each capacitor at t = 0.5 s.

Figure 2

Q5 Determine L_{eq} that may be used to represent the inductive network of Fig. 4 at the terminals.

Figure 5

Consider the circuit of Fig. 7. Find $v_0(t)$ if i(0) = 2 A and v(t) = 0.

Figure 7

