EE 202-Winter 2013-2014 (132) HW5

Prepared by: Dr. Mohammad S. Sharawi
 Due 13/4/2014

Q1 A voltage of $60 \cos 4 \pi \mathrm{t} \mathrm{V}$ appears across the terminals of a 3-mF capacitor. Calculate the current through the capacitor and the energy stored in it from $t=0$ to $\mathrm{t}=0.125 \mathrm{~s}$.

Q2 Find the equivalent capacitance between terminals a and b in the circuit of Fig. 1. All capacitances are in $\mu \mathrm{F}$.

Figure 1
Q3 In the circuit in Fig. 2, let $i_{s}=30 e^{-2 t} \mathrm{~mA}$ and $v_{1}(0)=50 \mathrm{~V}, v_{2}(0)=20 \mathrm{~V}$. Determine: (a) $v_{1}(t)$ and $v_{2}(t)$, (b) the energy in each capacitor at $t=0.5 \mathrm{~s}$.

Figure 2

Q4 Determine $\boldsymbol{L}_{\mathbf{e q}}$ at terminals $\boldsymbol{a}-\boldsymbol{b}$ of the circuit in Fig. 3.

Figure 3

Q5 Determine $\boldsymbol{L}_{\text {eq }}$ that may be used to represent the inductive network of Fig. 4 at the terminals.

Figure 4

Q6 Find the time constant of each of the circuits in Fig. 5.

Figure 5

Q7 In the circuit of Fig. 6, $v(0)=20 \mathrm{~V}$. Find $v(t)$ for $t>0$.

Figure 6

Q8 Consider the circuit of Fig. 7. Find $v_{0}(t)$ if $i(0)=2 \mathrm{~A}$ and $v(t)=0$.

Figure 7

