KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS ELECTRICAL ENGINEERING DEPARTMENT

EE 202

EXAM II

DATE: Sunday 13 April 2014
TIME: 6:30 PM - 8:00 PM *

SER \#	
ID\#	Solution - Updated
Name	
Section\#	

	Maximum Score	Score
Problem No 1	24	
Problem No 2	26	
Problem No 3	20	
Problem No 4	30	
Total	100	

Problem No 1:

Part (a):

For the circuit shown below, under DC conditions, the voltage between terminals a-b is:

(i) 0 V ,
(ii) 5 V ,
(iii) 1.667 V ,
(iv) 2.5 V ,
(v) 0.833 V ,
(vi) 7.5 V ,
(vii) 2 V ,
(viii) 0.556 V .

Part (b):

The current through an initially uncharged $4 \mu \mathrm{~F}$ capacitor is shown in Figure 3. The voltage across the capacitor terminals at $t=1.5$ seconds is:

(i) 10 V ,
(ii) 0 V ,
(iii) 10 mV ,
(iv) 15 KV ,
(v) 10 KV ,
(vi) 15 mV ,
(vii) 15 V ,
(viii) 30 V .

Part (c):

Compute the equivalent capacitance $\left(\mathrm{C}_{\mathrm{eq}}\right)$ of the capacitor network shown below.

(i) 2 F ,
(ii) 4 F ,
(iii) 6 F ,
(iv) 8 F ,
(v) 10 F , (vi) $12 \mathrm{~F}, \quad$ (vii) 14 F , (viii) 16 F .

Part (d):

Using source transformations, find the voltage " v " (in V):

(i) 12 ,
(ii) 24 ,
(iii) 36,
(iv) 48 ,
(v) 56,
(vi) 60 ,
(vii) 72 ,
(viii) 84 .

Part (e):

For the circuit shown below, find the current i_{o} :

(i) 6 mA ,

$$
\text { (ii) }-6 \mathrm{~mA} \text {. }
$$

(iii) $4.8 \mathrm{~mA}, \quad$ (iv) -4.8 mA ,
(v) $3 \mathrm{~mA}, \quad$ (vi) $-3 \mathrm{~mA}, \quad$ (vii) $2.4 \mathrm{~mA}, \quad$ (viii) -2.4 mA .

Part (f):

Find the voltage v_{x} in the following circuit (Hint: Use the principal of superposition)

(i) 80 V ,
(ii) -80 V ,
(iii) 62 V ,
(iv) -62 V ,
(v) 13 V ,
(vi) -13 V ,
(vii) 38 V ,
(viii) -38 V .

Problem No 2:

Given the following circuit:

a) Find all the necessary equations to solve for the mesh currents i_{1}, i_{2}, i_{3}, and i_{4}. [Note: In this part do not simplify or solve any system of equations]

Solution:

Current Source 25A:

$$
i_{1}=-25
$$

Current Source 2.5 v y:

$$
i_{4}-i_{3}=2.5 v_{y}
$$

KVL in mesh 2 :

$$
2\left(i_{2}+25\right)+6 i_{2}-228+14 i_{2}+4\left(i_{2}-i_{4}\right)=0
$$

Super Mesh m3+m4:

$$
-170+15 i_{3}+30\left(i_{4}+25\right)+4\left(i_{4}-i_{2}\right)+18 i_{4}+12 i_{4}+25 i_{3}=0
$$

Help Equation for dependent source:

$$
v_{y}=4\left(i_{4}-i_{2}\right)
$$

b) Simplify the equations in part(a) and calculate the values of the mesh currents i_{1}, i_{2}, i_{3}, and i_{4}.

Solution:

Simplify the above equation into a matrix form, then solve for the mesh currents

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
26 & 0 & -4 \\
-10 & 1 & 9 \\
-4 & 40 & 64
\end{array}\right]\left[\begin{array}{l}
i_{1} \\
i_{2} \\
i_{3}
\end{array}\right]=\left[\begin{array}{c}
178 \\
0 \\
-580
\end{array}\right]} \\
& i_{1}=-25 \mathrm{~A}, \\
& i_{3}=-36 \mathrm{~A},
\end{aligned} i_{2}=9 \mathrm{~A}, \quad i_{4}=14 \mathrm{~A} . ~ \$
$$

c) Find the expressions and the values of the power delivered by the two current sources. The expressions will be as functions of the mesh currents (i_{1}, i_{2}, i_{3}, and i_{4}).

Solution:

$P_{\text {delivered by the } 25 \text { A Current Source }}=[v][i]$

$$
\begin{aligned}
& =-\left[2\left(i_{2}-i_{1}\right)+30\left(i_{4}-i_{1}\right)\right]\left[i_{1}\right] \\
& =-\left[-32 i_{1}+2 i_{2}+30 i_{4}\right]\left[i_{1}\right] \\
& =\left[2\left(i_{2}+25\right)+30\left(i_{4}+25\right)\right][25] \\
& =30.95 \mathrm{~kW}
\end{aligned}
$$

$P_{\text {delivered by the } 2.5 \mathrm{v}_{\mathrm{y}}}$ Current Source $=[v][i]$

$$
\begin{aligned}
& =\left[30\left(i_{4}-i_{1}\right)+4\left(i_{4}-i_{2}\right)+30 i_{4}\right]\left[2.5(4)\left(i_{4}-i_{2}\right)\right] \\
& =\left[-30 i_{1}-4 i_{2}+64 i_{4}\right]\left[10 i_{4}-10 i_{2}\right] \\
& =\left[30\left(i_{4}+25\right)+4\left(i_{4}-i_{2}\right)+30 i_{4}\right]\left[2.5(4)\left(i_{4}-i_{2}\right)\right] \\
& =80.5 \mathrm{~kW}
\end{aligned}
$$

Problem No 3:

For the circuit shown below:
a) Find the value of the resistor R so that maximum power is transferred to it.
b) Find the value of maximum power that is transferred to the resistance R.

Solution

(a) Thevenin's equivalent at the terminals of R must be found.

KVL:

$$
\begin{aligned}
& -10-2+4+8 I_{0}=0 \\
& \Rightarrow \quad I_{0}=1 \mathrm{~A} \\
& \Rightarrow \quad V_{o c}=10-4 I_{0}=6 \mathrm{~V} \\
& \boldsymbol{R}_{\text {Th: }}:
\end{aligned}
$$

$$
R_{\text {Th }}=4 \Omega\|(1+6 \| 6) \Omega=4 \Omega\| 4 \Omega=2 \Omega
$$

\therefore For maximum power transfer $\quad R=R_{T h}=2 \Omega$
(b) Maximum power transferred: $P_{\max }=\frac{V_{T h}^{2}}{4 R_{T h}}=4.5 \mathrm{~W}$

Problem No 4:
In the circuit shown in the Figure, the switch was closed for a long time. At time $t=0$, the switch was open. Find an expression for the current $\mathrm{i}_{\mathrm{L}}(\mathrm{t})$ inside the inductor for $\mathrm{t} \geq 0$.

Sol.
before opening the switch,

$$
i_{1}=\frac{20}{s+7.5}=\frac{1.6 \mathrm{~A}}{}
$$

$$
i_{L}(0)=\frac{i_{1}}{2}=0.8 \mathrm{~A}
$$

after oping the switch

$$
\Sigma=\frac{L}{R_{q}}
$$

to fined Req;

$$
\begin{aligned}
& 1=3 i_{x}+6 i_{2} \\
& i_{x}=0.5 i_{x}+i_{2} \\
& v_{x}=3 i_{2} \\
& \Rightarrow i_{x}=1.5 i_{2}+i_{2}=2.5 i_{2} \\
& \Rightarrow 1=7.5 i_{2}+6 i_{2} \Rightarrow i_{2}=\frac{2}{27} A \\
& i_{x}=\frac{5}{27} A \\
& R_{e y}=\frac{1}{i_{x}}=\frac{27}{5}=\frac{5.4 \Omega}{1}=\frac{10 m}{5.4}=1.852 \mathrm{msec} \\
& \Rightarrow \tau=\frac{L}{R_{e y}} \\
& \Rightarrow \quad i_{L}(t)=i_{1}(0) e^{-\frac{t}{\tau}} \quad A, t \geqslant 0 \\
&
\end{aligned}
$$

