KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

EE 202

EXAM II

DATE: Sunday 13 April 2014

TIME: 6:30 PM - 8:00 PM *

SER #	
ID#	Solution - Updated
Name	
Section#	

	Maximum Score	Score
Problem No 1	24	
Problem No 2	26	
Problem No 3	20	
Problem No 4	30	
Total	100	

Problem No 1:

Part (a):

For the circuit shown below, under DC conditions, the voltage between terminals a-b is:

Part (b):

The current through an initially uncharged 4 μ F capacitor is shown in Figure 3. The voltage across the capacitor terminals at t=1.5 seconds is:

Part (c):

Compute the equivalent capacitance (C_{eq}) of the capacitor network shown below.

(v) 10 F, (vi) 12 F, (vii) 14 F, (viii) 16 F.

Part (d):

Using source transformations, find the voltage "v" (in V):

Part (e):

For the circuit shown below, find the current i_o :

Part (f):

Find the voltage v_x in the following circuit (Hint: Use the principal of superposition)

Problem No 2:

Given the following circuit:

a) Find all the necessary equations to solve for the mesh currents i_1 , i_2 , i_3 , and i_4 . [Note: In this part do not simplify or solve any system of equations]

Solution:

Current Source 25A: $i_1 = -25$

- Current Source 2.5v_y: $i_4 - i_3 = 2.5 v_y$
- KVL in mesh 2: $2(i_2 + 25) + 6i_2 - 228 + 14i_2 + 4(i_2 - i_4) = 0$

Super Mesh m3+m4: -170+15 i_3 +30(i_4 +25)+4(i_4 - i_2)+18 i_4 +12 i_4 +25 i_3 =0

Help Equation for dependent source: $v_y = 4(i_4 - i_2)$ b) Simplify the equations in part(a) and calculate the values of the mesh currents i_1 , i_2 , i_3 , and i_4 .

Solution:

Simplify the above equation into a matrix form, then solve for the mesh currents

$$\begin{bmatrix} 26 & 0 & -4 \\ -10 & 1 & 9 \\ -4 & 40 & 64 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \end{bmatrix} = \begin{bmatrix} 178 \\ 0 \\ -580 \end{bmatrix}$$
$$i_1 = -25 \text{ A}, \qquad i_2 = 9 \text{ A},$$
$$i_3 = -36 \text{ A}, \qquad i_4 = 14 \text{ A}.$$

c) Find the expressions and the values of the power delivered by the two current sources. The expressions will be as functions of the mesh currents $(i_1, i_2, i_3, and i_4)$.

Solution:

$$P_{\text{delivered by the 25 A Current Source}} = \begin{bmatrix} v \end{bmatrix} \begin{bmatrix} i \end{bmatrix}$$

$$= -\begin{bmatrix} 2(i_{2} - i_{1}) + 30(i_{4} - i_{1}) \end{bmatrix} \begin{bmatrix} i_{1} \end{bmatrix}$$

$$= -\begin{bmatrix} -32i_{1} + 2i_{2} + 30i_{4} \end{bmatrix} \begin{bmatrix} i_{1} \end{bmatrix}$$

$$= \begin{bmatrix} 2(i_{2} + 25) + 30(i_{4} + 25) \end{bmatrix} \begin{bmatrix} 25 \end{bmatrix}$$

$$= 30.95 \text{ kW}$$

$$P_{\text{delivered by the 2.5 v_{y} Current Source}} = \begin{bmatrix} v \end{bmatrix} \begin{bmatrix} i \end{bmatrix}$$

$$= \begin{bmatrix} 30(i_{4} - i_{1}) + 4(i_{4} - i_{2}) + 30i_{4} \end{bmatrix} \begin{bmatrix} 2.5(4)(i_{4} - i_{2}) \end{bmatrix}$$

$$= \begin{bmatrix} -30i_{1} - 4i_{2} + 64i_{4} \end{bmatrix} \begin{bmatrix} 10i_{4} - 10i_{2} \end{bmatrix}$$

$$= \begin{bmatrix} 30(i_{4} + 25) + 4(i_{4} - i_{2}) + 30i_{4} \end{bmatrix} \begin{bmatrix} 2.5(4)(i_{4} - i_{2}) \end{bmatrix}$$

$$= \begin{bmatrix} 30(i_{4} + 25) + 4(i_{4} - i_{2}) + 30i_{4} \end{bmatrix} \begin{bmatrix} 2.5(4)(i_{4} - i_{2}) \end{bmatrix}$$

$$= 80.5 \text{ kW}$$

Problem No 3:

For the circuit shown below:

- a) Find the value of the resistor R so that maximum power is transferred to it.
- b) Find the value of maximum power that is transferred to the resistance R.

Solution

(a) Thevenin's equivalent at the terminals of R must be found.

KVL:

$$-10-2+4+8I_{0} = 0$$

$$\Rightarrow I_{0} = 1 A$$

$$\Rightarrow V_{oc} = 10-4I_{0} = 6 V$$

$$R_{Th}:$$

$$4\Omega$$

$$+ R_{Th} \leq 6\Omega$$

 $R_{Th} = 4\Omega \parallel (1+6\parallel 6)\Omega = 4\Omega \parallel 4\Omega = 2\Omega$

:. For maximum power transfer $R = R_{Th} = 2 \Omega$ (b) Maximum power transferred: $P_{\text{max}} = \frac{V_{Th}^2}{4R_{Th}} = 4.5 \text{ W}$

Problem No 4:

In the circuit shown in the Figure, the switch was closed for a long time. At time t=0, the switch was open. Find an expression for the current $i_L(t)$ inside the inductor for $t \ge 0$.

to find Req i

$$1 = 3ix + 6iz$$

$$2x = 0.50x + iz$$

$$3x = 1.50x + iz = 2.5iz$$

$$3x = 1.50x + iz = 2.5iz$$

$$3x = 1.50x + iz = 2.5iz$$

$$3x = 1.50x + 6iz$$

$$3x = 2.7 A$$

$$2x = \frac{5}{37} A$$

$$Req = \frac{1}{7x} = \frac{27}{5} = \frac{54.0}{5x}$$

$$3x = \frac{2}{5} = \frac{1.852 \text{ m/sc.}}{8x}$$

$$3x = \frac{1.852 \text{ m/sc.}}{8x}$$