Question 1:

For the circuit below, use a series of source transformations all the way (only source transformations) to find the voltage v_{e}.

Solution:

1) [] Two source transformations from the left and write to get:

2) []:Combine the two resistors 3 and 13 Ohms to get:

3) [] One source transformation from the left:

4) []:Combine the two voltage sources and two resistors to get:

5) []:One source transformation from the left to get:

6) []:Apply KCL and the upper node and Ohms Law on the three resistors to get:
$v_{e}\left(\frac{1}{6}+\frac{1}{13}+\frac{1}{4}\right)-3-5=0$
$v_{e}=16.21 \mathrm{~V}$

Question 2:

For the circuit shown, the voltage
$v_{g}(t)=\left\{\begin{aligned}-2 t+2 \mathrm{~V} & , 0 \leq t \leq 1 \\ 2 t-2 \mathrm{~V} & , 1 \leq t \leq 2\end{aligned}\right.$
and $i_{L}(0)=-1 \mathrm{~A}$
a) Find the current $i(\mathrm{t})$ for $0<\mathrm{t}<1 \mathrm{~s}$
b) Find i (1)
c) Find the energy stored in the inductor at $t=1 \mathrm{~s}$
d) Find the current $i(\mathrm{t})$ for $1<\mathrm{t}<2 \mathrm{~s}$

Solution
a)

$$
\begin{array}{ll}
i=i_{R}+i_{L} \\
i_{R} & =\frac{\nu_{g}}{2}=-t+1
\end{array} \quad 0<t<1
$$

$$
i_{L}=\frac{1}{0.5} \int 0_{8} d t+i_{L}(0) \quad 0<t<1
$$

$$
=\frac{1}{0.5} \int_{0}^{t}(-2 t+2) d t-1 \quad 0<t<1
$$

$$
=2\left[-t^{2}+2 t\right]-1 \quad 0<t<1
$$

$$
i=-2 t^{2}+3 t A
$$

$$
0<t<1
$$

b)

$$
i(1)=1 \mathrm{~A}
$$

c)

$$
W(1)=1 / 2 L i^{2}(1)=1 / 2(0.5)(1)^{2}=1 / 4 \mathrm{~J}
$$

d)

$$
i_{R}=\frac{v_{g}}{2}=t-1 \quad 1<t<2
$$

$$
\begin{aligned}
i_{L} & =\frac{1}{0.5} \int_{0}^{0} d t+t_{2}(1) & & 1<t<2 \\
& =\frac{1}{0.5} \int_{1}^{t}(2 t-2) d t+1 & & 1<t<2 \\
& =2\left[t^{2}-2 t-1+2\right]+1 & & 1<t<2 \\
i & =2 t^{2}-3 t+2 A & & 1<t<2
\end{aligned}
$$

Question 3:

For the circuit below, the switch has been Closed for long time before opening at $t=0$. All currents $\mathrm{i}(\mathrm{t})$ are in mA , and voltages $\mathrm{v}(\mathrm{t})$ in V . Circle the correct answer for the parts a to i .
a) Find $i_{0}\left(0^{-}\right)$:
i) -3
ii) -2
iii) -1
iv) 0
(v) 1.
vi) 2
vii) 3
b) Find $v_{C}\left(0^{-}\right)$:
i) -20
ii) -10
iii) -5
iv) 0
v) 5
$\begin{array}{ll}\text { vi) } 10 & \text { vii) } 20\end{array}$
c) Find $i_{0}\left(0^{+}\right)$:
i) -3
ii) -2
iii) -1
iv) 0
v) 1
vi) $2 \quad$ vii) 3
d) Find $v_{C}\left(0^{+}\right)$:
i) -20
ii) -10
iii) -5
iv) 0
v) 5
vi) 10
vii) 20
e) Find $i_{0}(\infty)$:
i) -3
ii) -2
iii) -1
(iv) 0
v) $1 \quad$ vi) 2
vii) 3
f) Find $v_{c}(\infty)$:
i) -20
ii) -10
iii) -5
iv) 0
v) 5
vi) 10
vii) 20
g) Find $i_{c}\left(0^{-}\right)$:
i) -3
ii) -2
iii) -1
(iv) 0
v) 1
vi) 2
vii) 3
h) Find $i_{c}\left(0^{+}\right)$:
i) -3
ii) -2
(iii) -1
iv) 0
v) 1
vi) 2
vii) 3
i) Find $i_{C}(\infty)$:
i) -3
ii) -2
iii) -1
(iv) 0
v) $1 \quad$ vi) 2
vii) 3
k) Write the expression of $i_{0}(t)$ for $t>0$. $\Lambda_{d}(t)=e^{-\frac{t}{2}}{ }_{m A}, t>0$

1) Write the expression of $\mathrm{i}_{\mathrm{c}}(\mathrm{t})$ for $t>0$.

$$
\lambda_{c}(t)=-e^{-\frac{t}{2}} m t^{t} t>
$$

$$
t=0
$$

Question 4:

For the circuit below, find the following:
a) The open circuit voltage between $a b$.
b) The Thevenin resistor R_{th}.

Solution:

a) To find the open circuit voltage:

- to start with the below circuit. Voc $=40 \mathrm{~V}$.

b) To find the Thevenin resistor:
$-\quad$ Rth $=4 \Omega$.

