Question 1:

For the circuit below, use a series of source transformations all the way (only **source transformations**) to find the **voltage** v_e .

Solution:

1) [] Two source transformations from the left and write to get:

2) []:Combine the two resistors 3 and 13 Ohms to get:

3) [] One source transformation from the left:

4) []:Combine the two voltage sources and two resistors to get:

5) []:One source transformation from the left to get:

6) []:Apply KCL and the upper node and Ohms Law on the three resistors to get:

$$v_e\left(\frac{1}{6} + \frac{1}{13} + \frac{1}{4}\right) - 3 - 5 = 0$$

 $v_e = 16.21 \text{ V}$

Question 2:

For the circuit shown, the voltage

$$v_g(t) = \begin{cases} -2t + 2 V & , \ 0 \le t \le 1 \\ 2t - 2 V & , \ 1 \le t \le 2 \end{cases}$$

and $i_{L}(0) = -1A$

- a) Find the current i(t) for 0 < t < 1 s
- b) Find *i*(1)
- c) Find the energy stored in the inductor at t=1 s
- d) Find the current i(t) for 1 < t < 2 s

Solution

a)

 $i = i_R + i_L$

$$i_R = \frac{v_g}{2} = -t+1$$
 $0 < t < 1$

$$i_L = \frac{1}{0.50} v_s dt + i_L(0) \qquad 0 < t < 1$$

$$= \frac{1}{0.5} \int_{0}^{t} (-2t+2) dt - 1 \qquad 0 < t < 1$$

$$= 2[-t^2+2t]-1 \qquad 0 < t < 1$$

 $i = -2t^2 + 3t A$ 0 < t < 1

b)
i(1) =1 A
c)

$$W(1)=1/2Li^{2}(1)=1/2(0.5)(1)^{2}=1/4 J$$

d)

$$i_R = \frac{v_R}{2} = t - 1$$
 $1 < t < 2$

$$i_{L} = \frac{1}{0.5} \int_{1}^{0} \frac{dt}{s} dt + (1) \qquad 1 < t < 2$$
$$= \frac{1}{0.5} \int_{1}^{0} \frac{(2t-2)dt}{s} dt + 1 \qquad 1 < t < 2$$

$$= 2[t^2 - 2t - 1 + 2] + 1 \qquad 1 < t < 2$$

$$i = 2t^2 - 3t + 2A$$
 $1 < t < 2$

Question 3:

For the circuit below, the switch has been Closed for long time before opening at t = 0. All currents i(t) are in mA, and voltages v(t) in V. <u>Circle the correct answer for the parts a to i</u>.

a) Find $i_0 (0^-$):						
i) -3	ii) -2	iii) -1	iv) 0	(V) 1)	vi) 2	vii) 3	
b) Find v_c (0	o ⁻):			\smile	\sim		
i) - 20	ii) -10	iii) -5	iv) 0	v) 5	(vi) 10) vii) 20	
c) Find $i_0 (0^4)$	+):				-		
i) -3	ii) -2	iii) -1	iv) 0	(v) 1)	vi) 2	vii) 3	
d) Find v_c ((0 ⁺):			\smile			
i) -20	ii) -10	iii) -5	iv) 0	v) 5	(vi) 10) vii) 20)
e) Find $i_0 (\infty$):		-				
i) -3	ii) -2	iii) -1	(iv) 0)	v) 1	vi) 2	vii) 3	
f) Find v_c	(∞):		0				
i) -20	ii) -10	iii) -5	(iv) 0)	v) 5	vi) 10	vii) 20)
g) Find i_c (0"):		\bigcirc				
i) – 3	ii) -2	iii) -1	(iv) 0	v) 1	vi) 2	vii) 3	
h)Find $i_C (0)$) ⁺):	\frown					
i) -3	ii) – 2	(iii) -1	iv) 0	v) 1	vi) 2	vii) 3	
i) Find i_C (x):		\bigcirc				
i) -3	ii) -2	iii) -1	(iv) 0	v) 1	vi) 2	vii) 3	Ē
		e (1) e (> 0	100	生い	120	Z = RC = lok x TUONT
j) Write the	expression o	$V_{c}(t)$ for l	2 0. 02(4)	=10 =	2 V	1=2,0	2=25
k) Write the	expression of	of $i_0(t)$ for t	> 0. Lo	(+)= <	EZ MA, t	20	
		A REMARKING TO SHE	L	(+) = -	- EZM	Atro	
 Write the 	expression o	$fi_c(t)$ for t	> 0.			0	
			5kΩ	2	kΩ	-0	
		_	-~~~		∽ −		•
	3	27 V (+) 6 kΩ	3	1	$10 \text{ k}\Omega \lesssim$	$200 \ \mu F = v_c(t)$
		5		1	i	(a)	$i_{c}(t)$
						(e) +	

Question 4:

For the circuit below, find the following:

- a) The open circuit voltage between ab.
- b) The Thevenin resistor R_{th} .

Solution:

- a) To find the open circuit voltage:
 - to start with the below circuit. Voc = 40 V.

- b) To find the Thevenin resistor: Rth = 4 Ω .

