EE 202-Fall 2012(121)
HW5 Solution
Dr. Alakhdhar
Due 1/12/2012
Q1Sketch the voltage $v(t)$ in the circuit shown. Assume $i_{s}(t)=0$ for $\mathbf{t} \leq 0$

Q2Sketch the voltage $v(t)$ in the circuit shown

$$
v(t)=L \frac{d i(t)}{d t}=2 \frac{d i_{s}}{d t}
$$

Q3Determine the equivalent inductance between the terminal

$$
\begin{aligned}
L_{e q} & =2 H+[(1 H+2 H+1 H) \|(1 H+2 H+3 H)] \\
& =2+[4 \| 6]=2+\frac{12}{5}=\frac{2}{5}^{2} H
\end{aligned}
$$

Q4Determine and sketch the voltage $v(t)$ for all t.

$$
\begin{aligned}
& v_{\text {final }}=\frac{16}{3} \quad \tau=R C=\frac{4}{3} \times 5=\frac{20}{3} \\
& \therefore v(t)=\frac{16}{3}+\left[8-\frac{16}{3}\right] e^{-3 t / 20}
\end{aligned}
$$

Q5 Determine and sketch the current $i_{L}(t)$ for all t.

$$
\begin{aligned}
& i_{x}=0 \\
& i_{L}\left(0^{-}\right)=i_{L}\left(0^{+1}\right. \\
& \\
& =\frac{10}{2}=5 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& 3\left(\frac{v_{L}}{3}\right)+i_{L}=0 \\
& 5 \frac{d_{L}}{d t}+i_{L}=0 \\
& \frac{d_{i}}{d t}+\frac{1}{5} i^{i}=0
\end{aligned}
$$

$$
\begin{aligned}
\therefore i_{L}(t) & =i_{L}\left(0^{t}\right) e^{-t / 5} \\
& =5 e^{t / 5} \underbrace{\tau=55}_{25}
\end{aligned}
$$

Q6 The switch in the circuit shown has been in position a for a long time. At $t=0$, it moves instantaneously to position b, where it remains for 350 ms before moving instantaneously to position c. Find $v_{0}(t)$ for $t \geq 0$.
$t<0$:

$v_{c}\left(0^{-}\right)=(50)(2000) \times 10^{-3}=100 \mathrm{~V}=v_{c}\left(0^{+}\right)$
$0 \leq t \leq 250 \mathrm{~ms}:$

$\tau=\infty ; \quad 1 / \tau=0 ; \quad v_{o}=100 e^{-0}=100 \mathrm{~V}$
$250 \mathrm{~ms} \leq t<\infty:$

$\tau=(6.25)(0.16) 10^{-3}=1 \mathrm{~ms} ; \quad 1 / \tau=1000 ; \quad v_{o}=100 e^{-1000(t-0.25)} \mathrm{V}$

Summary:
$v_{o}=100 \mathrm{~V}, \quad 0 \leq t \leq 250 \mathrm{~ms}$
$v_{o}=100 e^{-1000(t-0.25)} \mathrm{V}, \quad 250 \mathrm{~ms} \leq t<\infty$

