
Problem 1:

For the circuit shown above find the maximum power absorb by the load resistor R_L ?

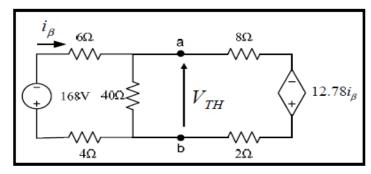
Since Pmax =
$$\frac{V_{oc}^2}{4R_{Hi}}$$
 we need Thevenin equivlant

Remove the Load RL and find V+n = Voc 5 tep0

li = ZA by inspection

$$L_1 = 2A$$
 by inspection

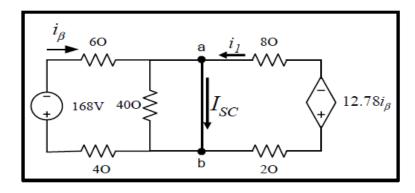
 $KUL \text{ on mesh } 2$
 $= -12 + 4(L_2 - L_1) + 8L_2 + 5(L_2 + 8L_2 = 0)$
 $= 4 + 4(L_2 - L_1) + 8L_2 + 5(L_2 + 8L_2 = 0)$
 $= 4 + 4(L_2 - L_1) + 8L_2 + 5(L_2 + 8L_2 = 0)$
 $= 4 + 4(L_2 - L_1) + 8L_2 + 5(L_2 + 8L_2 = 0)$


Deactivate independent sources to find R+n

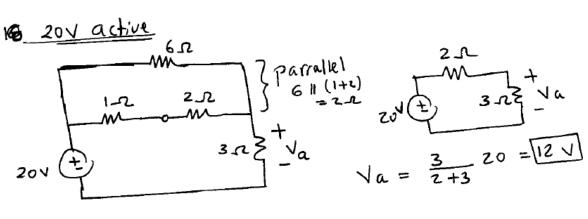
Problem 2:

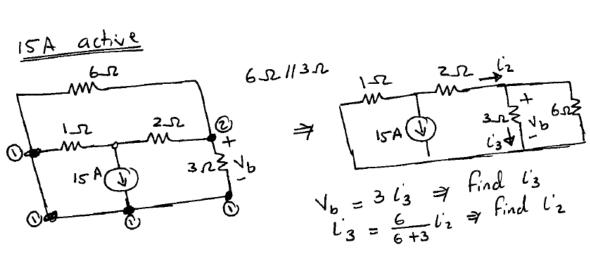
a) We need to calculate the Thevenin equivalent circuit.

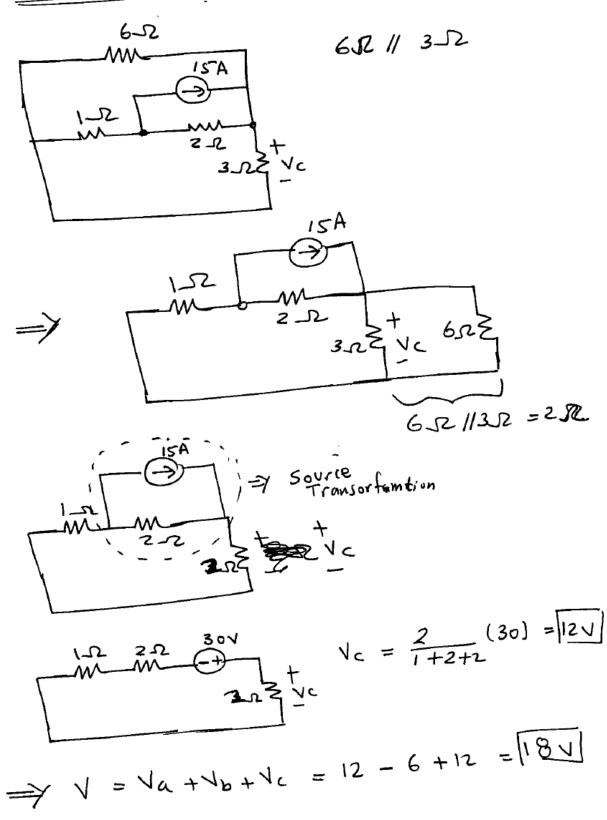
First, we calculate V_{TH} using node-voltage:


$$\begin{cases} \frac{V_{TH} + 168}{4 + 6} + \frac{V_{TH}}{40} + \frac{V_{TH} + 12.78i_{\beta}}{2 + 8} = 0 \\ i_{\beta} = -\frac{V_{TH} + 168}{4 + 6} \end{cases} \Rightarrow V_{TH} = 48.05 V$$

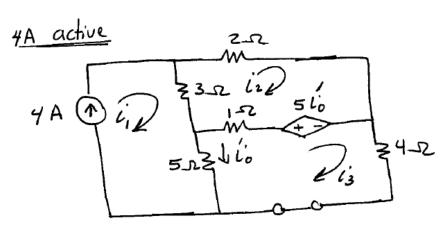
Then, we calculate the short-circuit current I_{sc} using the circuit below:


$$\begin{cases} i_{\beta} = \frac{-168}{4+6} = -16.8 \text{ A} \\ i_{1} = \frac{-12.78i_{\beta}}{2+8} = 21.47 \text{ A} \end{cases} \Rightarrow I_{SC} = i_{\beta} + i_{1} = 4.67 \text{ A} \Rightarrow R_{TH} = \frac{V_{TH}}{I_{SC}} = 10.29 \text{ }\Omega$$


$$R_L = R_{TH} = 10.29 \ \Omega$$


b)
$$P_{\text{max}} = \frac{V_{TH}^2}{4R_L} = 56.10 \ W$$

superposition > Deactivate all independent sources except one source remain a ctive.



15 A active

Problem4:

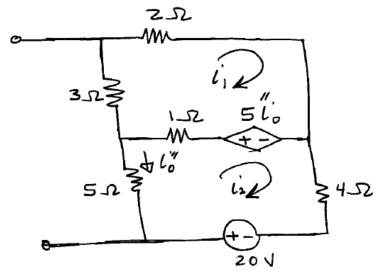
| L'₁ = 4A by inspection |
| L'₁ = 4A by inspection |
| |
$$3(li_2 - li_1) + 2li_2 - 5li_0 + 1(li_2 - li_3) = 0$$

| $-3li_1 + 6li_2 - 1li_3 - 5li_0 = 0$

| $-3li_1 + 6li_2 - 1li_3 = 4 - li_3$

| $-1i_1 - 1i_3 = 4 - li_3$

| $-1i_2 + 4li_3 - 5li_0 + 4li_3 - 5li_0 = 0$


| $-1i_2 + 5li_3 = 0 - 2$

| Solving (D), (D) For $li_3 \neq li_3 = 0.941$ A

| $-1i_2 + 5li_3 = 0.941$ A

| $-1i_3 = 3.05$ A

201 active

$$\frac{\text{kul on mesh } 0}{2 l_{1}^{2} - 5 l_{0}^{2} + 1 (l_{1}^{2} - l_{2}^{2}) + 3 l_{1}^{2} = 0}$$

$$6 l_{1}^{2} - l_{2}^{2} - 5 l_{0}^{2} = 0$$

$$l_{0}^{2} = - l_{2}^{2}$$

$$\Rightarrow 6 l_{1}^{2} + 4 l_{2}^{2} = 0 - 0$$

$$\frac{\text{Kul on muh (2)}}{5 l_0''' + 4 l_2' - 20 - 5 l_0'' + 1(l_2 - l_i) = 0}$$

$$- l_1' + 5 l_2' = 20 - 2$$

Solving (1) and (2) for
$$li \Rightarrow li = 3.53 \text{ A}$$

$$\Rightarrow loo = -li = -3.53 \text{ A}$$

$$\Rightarrow loo = loo + loo = -0.48 \text{ A}$$

Problem 5: $L_{eq}=L$

Problem 6: $C_{eq} = 4F$