EE 202-Fall 2012(121) HW6
 Dr. Mohammad S. Sharawi
 Due 15/12/2012

Q1 In the circuit of Fig. 1, determine:
(a) $i_{R}\left(0^{+}\right), i_{L}\left(0^{+}\right)$, and $i_{C}\left(0^{+}\right)$,
(b) $d i_{R}\left(0^{+}\right) / d t, d i_{L}\left(0^{+}\right) / d t$, and $d i_{C}\left(0^{+}\right) / d t$,
(c) $i_{R}(\infty), i_{L}(\infty)$, and $i_{C}(\infty)$.

Figure 1

Q2 In the circuit in Fig. 2, calculate $i_{o}(t)$ and $v_{o}(t)$ for $t>0$.

Figure 2

Q3 The responses of a series $R L C$ circuit are

$$
\begin{aligned}
& v_{C}(t)=30-10 e^{-20 \mathrm{t}}+30 e^{-10 \mathrm{t}} \mathrm{~V} \\
& i_{L}(t)=40 e^{-20 \mathrm{t}}-60 e^{-10 \mathrm{t}} \mathrm{~mA}
\end{aligned}
$$

where v_{C} and i_{L} are the capacitor voltage and inductor current, respectively. Determine the values of R, L, and C.

Q4 Find $v(t)$ for $t>0$ in the circuit in Fig. 3.

Figure 3

Q5 Given the circuit in Fig. 4, find $i(t)$ and $v(t)$ for $t>0$.

Figure 4

