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Switched Cosine
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cos (wot) <= 7[8(w — wy) + 8w + wy)]

Then, applying the convolution

Fw) = - f _. ..[S(w — A — og) + 8(ew — A + wp)lsing (AT/2)dA
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f()y =e""u(t),a>0

Exponential Pulse
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The Fourier transform of a periodic signal
fir) |

| 1. | | | L,
2T, -7 =Z0.T Ts 27, 37, t
2 2

f(t) = 2 C,elkont s — o f(r)e_f”“““’dr

k=—00 Tn T

the Fouriler transform

L —0a k=_:"' k:—f}{.‘ — 0
—> S ek Fs 2 S Cb(w — k) \@ — ki)

k=—00 k=—00

Fourier Transform of periodical function is a series of weighted impulses by Ck
Located at multiple integer ( harmonic) of the fundamental frequency ®o



2 Cre’*t <> 21 2 Cid(w — kay)
k=—0x k=—0x

We now express the above relation in a different form which we will see can help
Us find the Fourier Series coefficients C,

First, we define another function, which we will call the generating function

f@), —Tol2=1t=T,l2
l‘ —
8(1) {0 elsewhere

.f(r).' \ /
Y A —
A —
| . | | | L,
T -y | =0T Ts 2T, 375 t
2 2

Now we can write the periodical function f(t) in terms of g(t) as
JilE) = _Z 8(f — nl))
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f6y = 3 g(t — nTy)
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(8.4

Since g(t)*o(t — 1) = gt — ty) Then we can write () = > 8(t = nTy)

o0

f0) = 3 gys( - nTy=g(y* 3, 8t ~ nTy

n=—
The train of impulse functions is expressed by its Fourier series
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We now find the Fourier transform of the periodic train of rectangular pulses

fir) 4 _I:il
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2T, ~Th L 0.T Ts 27, 37, t

g(t) = Arect(t/T) ﬁ G(w) = AT sinc(Tw/2)
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The Fourier transform of a periodic signal

We now find the Fourier transform of the periodic train of rectangular pulses

fr) % _r—l, :
A O
| 1. | | | |,
—2T, ~-Ty, =T 0 T 7 A 0 315 t
2 2

g(t) = Arect(t/T) ﬁ G(w) = AT sinc(Tw/2)
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00 /
. 4z —2ml 4
Flw) = E AT wg sinc(kwgT'/2)6(w — kwy) AT ’/I T\\T AT,

fe=—00
A periodic signal and its frequency spectrum



5.5 APPLICATION OF THE FOURIER TRANSFORM
Frequency Response of Linear Systems

(onsider the simnle circuit R

i(7) R I{w)

+T T +
(0 L3 ‘ Vi) joL 3 Vyw)

9} o L O

i 5 Ldi(r) ; B Lafi(r)
vi(t) = Ri(t) i and w(1) = I

If we take the Fourier transform of each equation,

Vi(w) = Rl(w) + joLI(w) and V,(w)= joLl(®)

B [ . V (m) 1wl
l(w) = —Vi(w). = L = B :
DT REjel ™ Val®) R+ meVl(m) - e Vilw) R + joL

Note: voltage division could have been used

Vi(w) Vi(w) = Vi(w)H(w)
| (1) i
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= = — — - ZV - /_/V
H(w) = |H(w)| £d(w) Vi@V, Vl(m”{ 2 1)

ol

H (0)| =
H ) JR%+ (aL)?

ZLod(o) = %—tan‘1 (a;—l'j



EXAMPLE 5.17  Using the Fourier transform to find the response of a system to an input signal

h(t) = ﬁ eIREy(p) () = Va(t)
h(t) = (1/RC)e™"RCu(r) RCK x(t) = Vu(t) '

0 1 t

Y(w) = F{x(t)*h(t)} = X(0)H(w)

RC

y(t) = x(t)*h(t) = / _x(T}h{r — 7)dr

: _ . 1
H(m} = .’};{{”RC}E’_”RCH([}} — m X({U) - -fl"{VH{”} = V[j_m 5 Wﬁ{lﬂd):|

Therefore,

il 1 1 - 8(w)
Yi(w) =V : }[ + ﬁa[m)}: 1 i O
|1+ jRC || jo H jo(1 + joRC) ~ 1 + joRC

[ —Re 1 78(w) —RC 1
Y(a) = V sy =V T B
() |1+ jwRC " jo 1+ ijc} [1 + joRE @ {"’”)}




—RC 1
=V - + md
i [1 + joRC  jeo " “"’)}

The time-domain representation of the output can now be found:

y(t) = FH{Y ()} V[f“ {jm Bw) |~ {'lfRC}+fm:|

Using the transform pairs listed in Table 5.2, we find that
1
(I/RC) + jw

ul) &> =+ 7b@) R E,
Jw

Therefore, the time-domain expression for the output of the network is

(1) = V(1 = e u(t)
Therefore, the time-domain expression for the output of the network is

v'!r’{f} A

-

Vb _

y(t) = V(1 — e "®Yu(r)




5.6 ENERGY AND POWER DENSITY SPECTRA

An energy signal is defined E = / [£(1)|>dt <

O

o

| 1
If the signal is written in terms of its Fourier transform  f(t) = Py / F(w)e'"dw
T )

its energy equation can be rewrittenas F = / f(t)[%/ F(m)ef‘“’dm}dr
— O 'ﬂ- — i
F(—w) = / f(t)e“dt

E = L/ Fw)F(—w)dw
27 J_oo
F(—w) = F'(w)

where F (w) is the complex conjugate of the function F(w)

‘ E = L/ F(0)F'(0)do = i/_ | F()|2dw
27 J_ 27 oo



E=/ |f(r)lzdr=i/ |F(w)|?dw
- 2 |~

The relationship is known as Parseval’s theorem

Because the function | F(w)|? is a real and even function of frequency

E=— |F(m}|2dm=;/ |F(w)|%dw
0

N 27 |
The energy spectral density function of the signal f(t) is defined as
Ew) = i|F(n:u)|2 _ 1 F(w)F(w)
! T T

1 1 .
8/(0) = —IF()? = — F(@)F(0)

E=/ €f(w)dw
]
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Power Density Spectrum

consider signals that have infinite energy but contain a finite amount of power

For these signals, the normalized average signal power is finite

T
1 [2 ?
P= lim — (t)|7dt < o0
T—oa [ T f{ :I
Such signals are called power signals

Examples The step function, the signum function, and all periodic functions are of
power signals.

A problem with working in the frequency domain in the case of power signals

power signals have infinite energy and, therefore, may not be Fourier transformable

To overcome this problem, a version of the signal that is truncated in time is employed.



The signal (finite power and infinite energy)

A1) 4

-

may not have be Fourier transform

AN NN

rect (#/T) 4

r

w

—T72 0 T/2 t

The truncated signal fr(t) = f(r) rect(¢/T) has finite energy

fr(t) 4

o A\ |\ m
VAN VRS "

-

has a Fourier transform

fr(t) < Fr(w)

Y




Power Spectral Density

In working with power signals, it is often desirable to know how the total power of the signal is
distributed in the frequency spectrum.

v
N N EEPYINY
P = TLH}IL_T/% f(t) ~dt

Sine f7(f) has zero magnitude for |t| = T/2  Then we can write P as

]
P = lim

T—

Because f; (t) has finite energy, the integral term can be recognized as the total energy
contained in the truncated signal:

E = / fr(e)dt



E = / fr(t)|?dt

— i ' 2
Therefore P T]ll;]_l: ZwT]_x|FT(m) dw

’ oG l o OO ,
By Parseval’s theorem E = / | fr(t)|%dt = j—/ Fr(w) “dw
o 2T |-

Interchange the order of the limiting action on T and the integration

I B 2
=5/ lim_|F(w)do

The integrand is called the power spectral density

1  OC
- - o

) 00
_ i[ P (w)dw because P+(w) is an even function
T Jo



Parsevals Theorem for periodical signal

The average power for periodical signal is defined as
1 2
P = [t == [xox@yat
T, ? T, .

Now we would like to express P, in terms of the Fourier
Coefficients of x(t)

*

1 S Nt
P, =Tiojx<t)x(t)*dt =T—ij(t)[ chemj it

N=—o0
Ty

:ijx (t)( > C:ej”“%"jdt
T,J

N=—00
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© 1 ©
Pav=ijx(t) Y Celt | dt =—Ix(t)(2c:nemotjdt
To. T,

N=—o0 N=—00

The order of integration and summation can be inter changed

n=—o0

=2 Cﬁ[.rojx(t)e’””°tdt] = > C/C, =) c.[

To N=—o0 N=—00
Chn
Parsevals Them (for periodical signal)
1 2 o0 00
2
= — — 2 2
Py == |Ofdt = >c. —cz + 2>,
. M . v ] e \ ~ J
Time domain Frequency domain DC power Harmonic Power

Note [C,|=[C_,

Average power Is the sum of DC power and harmonics power



Parsevals Them

Aperiodical (none periodical) Periodical

e= [ nora- o [ e e =2 xefa- 3 e
O

n=—co

-C2 + 2i\cn\2
n=1



