
Operations on Multiple Random Variables
Previously we discussed operations on one Random Variable:
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Characteristic Function
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EXPECTED VALUE OF A FUNCTION OF Multiple RANDOM 
VARIABLES

Two Random Variables
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Joint Moment about the Origin
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n
n0m  = E[X ] the  nth moment mn of the  one random variable  X 

k
0km  = E[Y ] the  kth moment mk of the  one random variable  Y 

n + k      is called the order of the moments

Thus m02 , m20 and m11 are all 2ed order moments of X and Y   

The first order moments
are the expected values of  X  and  Y  and are the coordinates of 
the center of gravity of the function  fXY(x,y)
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The second-order moment  m11 = E[XY]  is called the correlation
of  X  and  Y and given the symbol   RXY   hence 
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XY = E[R X]E[Y]If the correlation can be written as

Then  the random variables X and Y  are said to be uncorrelated.

Statistically independence of   X  and  Y  → X and Y  are uncorrelated

The converse is not true  in general   
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Uncorrelated of   X  and  Y  does not imply that  X  and  Y  are 
Statistically independent in general, except for the Gaussian random 
variables as will be shown later 

If  RXY = 0 then the random variables X and Y are called orthogonal.

For N random variables  X1, X2, …,XN the (n1 + n2 + … nN) order 
joint moments are defined by 
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Joint Central Moments

We define the joint central moments for two random variables X 
and Y  as  follows 
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The second-order ( n + k =2) central moments are
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The second-order joint moment µ11 is very important. It is called the  
covariance of X and Y and is given the symbol CXY



The second-order joint moment µ11 is very important. It is called the  
covariance of X and Y and is given the symbol CXY
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XY 11C  = µ  = E (XY XY XY  XY)⎡ ⎤
⎢ ⎥⎣ ⎦

− − −

E[XY] E[X]Y XE[Y] XY= − − − = E[XY] XY XY XY− − +

X XY XYY   =   XY=   E[XR ] ]R [C E Y⇒ − −

Note on the 1-D , the variance was defined as
2 2= E[X ]  X−2

2X = µ  = E[(X  X) ]σ −

Which can be written as 

2X = µ  = E[(X  X)(X  X)]σ − − = E[XX]  XX−



X YXY Y X  = R   XY=  R  E[X] YC E[ ]− −

XY

0  if  X and Y are independents
 

E[X]E[Y] if X and Y are orthogo l 
C

na

⎧
⎪⎪
⎨
⎪
⎪⎩

=
−
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The normalized second order-moments defined as XY
X Y

Cρ = σ σ

is known as the correlation coefficient of X and Y 

It can be shown that   −1 ≤ ρ ≤ 1



For N random variables  X1, X2, …,XN the (n1 + n2 + … nN) order 
joint central moments are defined by 
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JOINT CHARACTERISTIC FUNTIONS

Let u first review the characteristic function for the single  random 
variable 

Let X be a random variable with probability density function  fX(x)

We defined the characteristic function ΦX(ω)  as follows 
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ΦX(ω)   is the Fourier transform of  fX(x) with the sign of ω is reverse 

The moments mn can be found from the characteristic function as 
follows:
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We now define the joint characteristic function of two random 
variables  X  and Y with joint probability density function  fXY(x,y) 
as follows 
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ΦX,Y(ω1,ω2)   is the two-dimensional Fourier Transform of fXY(x,y) 
with  reversal of   sign of ω1 and ω2

From the inverse two-dimensional Fourier Transform we have 
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By setting  ω2= 0  in the expression of ΦX,Y(ω1,ω2) above we obtain 
the following 
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The joint moments can be found from the joint characteristic function
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The Gaussian Random Variable
A random variable X is called Gaussian if its density function has the 
form
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JOINTLY GAUSSINA RANDOM VARIABLES

Two random variables X  and  Y  are said to be jointly gaussian or
Bivariate gaussian density if their joint density function is of the form 
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The joint Gaussian density function and its maximum is located at 
the point  (X,Y)

X,Y X,Y 2
X Y

1f (x,y)  f (X,Y) = 
2πσ σ 1 ρ

≤
−

The maximum value is obtained from 

The locus of constant values of                    will be an ellipse
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If               then the joint Gaussian density ρ = 0
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Introducing   auxiliary  V = X




	The Gaussian Random Variable

