# Ch3 Operations on one random variable-Expectation

Previously we define a random variable as a mapping from the sample space to the real line

We will now introduce some operations on the random variable. Most of these operations are based on the concept "expectation"

### **Expectation**

Expectation is the name given to the process of averaging of a random variable X.

The followings are equivalents:

- ullet Expectation or expected value of random variable X , which we use the notation E[X]
- The "mean value" of random variable X
- The "statistical average" of random variable X

The following notation are equivalent  $E[X] = \overline{X}$ 

#### Expected value of a random variable

The everyday averaging procedure used in the above example carries over directly to RV

#### Example:

Let X be a random variable the has the following sample space values

$$S_{x} = \{1, 2, 3, 4\}$$

Now if the numbers are equally likely to occur or selected

$$\overline{X} = \frac{1+2+3+4}{4} = \underbrace{(1)}_{X=1} \underbrace{(\frac{1}{4})}_{P(X=1)} + \underbrace{(2)}_{X=2} \underbrace{(\frac{1}{4})}_{P(X=2)} + \underbrace{(3)}_{X=3} \underbrace{(\frac{1}{4})}_{P(X=3)} + \underbrace{(4)}_{X=4} \underbrace{(\frac{1}{4})}_{P(X=4)}$$

In general then

$$\bar{X} = \sum_{x_i \in S_X} x_i P(X = x_i)$$

where each value of the random variable  $X(x_i)$  is weighted by the Probability  $P(X=x_i)$ 

This motivate the concept of expected value or mean value of RV X,

$$E[X] = \overline{X} = \sum_{x_i \in S_y} x_i P(x_i)$$
 if X is discrete values

$$E[X] = \overline{X} = \int_{-\infty}^{\infty} x f_X(x) dx$$
 if X is continuous value with Probability density

In the discrete random variable we use the probability mass  $P(X = x_i)$  to weight the random variable.

In the continuous random variable we use the density  $f_X(x)$  to weight the random variable.

Observe that  $f_X(x)dx$  represent the probability of the random variable X at the interval dx

If the random variable X is symmetrical about a line x = a

$$\Rightarrow f_X(x + a) = f_X(-x + a)$$
  $\Rightarrow E[X] = a$ 

Example 3.1-2

#### Expected value of a Function of a random variable

Assume a random variable X which has the following values and probabilities

$$X = \{1, 2, 3\}$$
  $P(X=1) = \frac{1}{3}$   $P(X=2) = \frac{2}{5}$   $P(X=3) = \frac{4}{15}$ 

Now define the random variable  $Y = X^2$ 

$$\Rightarrow Y = \{1, 4, 9\} \quad P(Y=1) = \frac{1}{3} \quad P(Y=4) = \frac{2}{5} \qquad P(Y=9) = \frac{4}{15}$$

$$\Rightarrow E[Y] = \underbrace{(1)}_{Y=1} \underbrace{(\frac{1}{3})}_{P(X=1)} + \underbrace{(4)}_{Y=4} \underbrace{(\frac{2}{5})}_{P(X=2)} + \underbrace{(9)}_{Y=9} \underbrace{(\frac{4}{15})}_{P(X=9)} = \sum_{y_i \in \{1,4,9\}} y_i P(Y=y_i)$$

In general then

$$E[g(X)] = \sum_{i=1}^{N} g(x_i)P(x_i)$$

for discrete random variable

$$E[g(x)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

for continuous random variable

#### **Conditional Expectation**

We define the conditional density function for a given event

$$B = \{ X \le b \}$$

$$f_X(x|X \le b) = \begin{cases} \frac{f_X(x)}{\int_{-\infty}^b f_X(x) dx} & x < b \\ 0 & x \ge b \end{cases}$$

we now define the conditional expectation in similar manner

$$E[X|B] = \int_{-\infty}^{\infty} x f_X(x|B) dx = \int_{-\infty}^{b} x f_X(x|B) dx + \int_{b}^{\infty} x f_X(x|B) dx$$

$$= \int_{-\infty}^{b} x \frac{f_X(x)}{\int_{-\infty}^{b} f_X(x) dx} dx + \int_{b}^{\infty} x 0 dx = \int_{-\infty}^{b} x f_X(x) dx$$

$$= \int_{-\infty}^{b} f_X(x) dx$$

## **Moments**

The expected value defined previously as

$$E[X] = \overline{X} = \int_{-\infty}^{\infty} x f_X(x) dx$$

if X is continuous value with probability density  $f_X(x)$ 

Is called the 1st *moment* of the random variable X with probability density  $f_x(x)$ 

The word *moment* is used because a similar form exist in static were the 1st *moment* represent the *center of gravity* 

**Example** Assume a mass is distributed on one dimension x as shown below were m(x) is the mass density function is



Then we can calculate the 1st moment or center of gravity M as



In the probability case the total area under the density function is unity or 1

The expected value of the function of random variable X was defined as

$$E[g(x)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Let the function g(X) defined as

$$g(X) = X^n$$
  $n = 0, 1, 2, ...$ 

Then we can define the  $n^{th}$  moment  $m_n$  as

$$m_n = E[X^n] = \int_{-\infty}^{\infty} x^n f_X(x) dx$$

### Clearly

$$m_0 = E[X^0] = \int_{-\infty}^{\infty} x^0 f_X(x) dx = 1$$
 The area of the function  $f_X(x)$ 

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

$$m_1 = E[X^1] = \int_{-\infty}^{\infty} x f_X(x) dx = \overline{X}$$
 The expected value of X

#### **Central Moments**

Another type of moments of interest is the central moment defined as

$$\mu_n = E[(X - \overline{X})^n] = \int_{-\infty}^{\infty} (x - \overline{X})^n f_X(x) dx$$

the  $m_n$  moments are expected values about the origin however the central moment  $m_n$  is moment or expected value about the mean or average  $\overline{X}$ 

$$\mu_0 = \underbrace{E\left[(X - \overline{X})^0\right]}_{E[1]=1} = \underbrace{\int_{-\infty}^{\infty} (X - \overline{X})^0 f_X(x) dx}_{\int_{-\infty}^{\infty} f_X(x) dx = 1} = 1 \quad \text{The area of the function } f_X(x)$$

were we have used the fact that E[a] = a

#### Variance and skew

The second central moment  $\mu_2$  is so important, that it is given the name *variance* and have the special notation  $\sigma_x^2$ 

Thus the variance is given by

$$\sigma_{\mathbf{x}}^2 = \mu_2 = \mathbf{E}\left[ (\mathbf{X} - \overline{\mathbf{X}})^2 \right] = \int_{-\infty}^{\infty} (\mathbf{x} - \overline{\mathbf{X}})^2 \mathbf{f}_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$

 $\sigma_{\rm X}$  (the positive square root of the variance) is called the standard deviation of RV X

 $\sigma_{X}$  is a measure of the spread of the random variable  $\,X\,$  about its mean or average

 $\sigma_{\scriptscriptstyle X}$  is a measure of the spread of the random variable X about its mean or average



The spread of  $f_1(x)$  is more than the spread of  $f_2(x)$   $(\sigma_1 > \sigma_2)$ 

variance can be found from a knowledge of first and second moments as follows

$$\sigma_{x}^{2} = \mu_{2} = E \left[ X^{2} - 2\overline{X}X + \overline{X}^{2} \right] = E \left[ X^{2} \right] - 2\overline{X}E \left[ X \right] + \overline{X}^{2}$$
$$= E \left[ X^{2} \right] - \overline{X}^{2} = m_{2} - m_{1}^{2}$$

Example 3.2-1

### **Properties of the variance** $\sigma_X$

Let c be a constant and X be a RV

$$(1)$$
  $\sigma_c^2$ 

The probability density function of a constant "deterministic number" is a delta function with spread zero



$$(2) \quad \sigma_{x+c}^2 = \sigma_x^2$$

The variance does not change by shifting the random variable, the spread will remain the same, on the other hand shifting effect the mean only

(3) 
$$\sigma_{cx}^2 = c^2 \sigma_x^2$$

The third central moment  $\mu_3 = E\Big[(X-\overline{X})^3\Big]$  is a measure of the a symmetry of  $f_X(x)$  about  $x=\overline{X}=m_1$ 

It will be called the "skew" of the density function

If  $f_X(x)$  symmetric about  $x = \overline{X}$ , it has zero skew (i.e  $\mu_3 = 0$ )

 $\mu_n = 0$  for all odd n.

The normalized third central moment  $\mu_3/\sigma_x^3$  is known as the skewness or coefficient of skewness of the probability density function

#### **Useful Inequalities**

A useful tool in some probability problems are some inequalities such as Chebychev's inequality and Markov's Inequality.

#### Chebychev's Inequality

It state that for a RV X,

$$P\{|X - \overline{X}| \ge \epsilon\} \le \sigma_X^2/\epsilon^2$$
 for any  $\epsilon > 0$ 

$$P\{|X - \overline{X}| \ge \epsilon\} \le \sigma_X^2/\epsilon^2$$

#### **Proof**

$$\overline{X} - \varepsilon \quad \overline{X} \quad \overline{X} + \varepsilon$$

$$P\{|X - \overline{X}| \ge \varepsilon\} = P\{X - \overline{X} \ge \varepsilon \text{ and } X - \overline{X} \le -\varepsilon\}$$

$$= P\{X \ge \overline{X} + \varepsilon \quad \text{and } X \le \overline{X} - \varepsilon\}$$

$$= \int_{-\infty}^{\overline{X} - \varepsilon} f_X(x) dx + \int_{\overline{X} + \varepsilon}^{\infty} f_X(x) dx = \int_{|x - \overline{X}| \ge \varepsilon}^{\infty} f_X(x) dx$$
but since 
$$\sigma_X^2 = \int_{-\infty}^{\infty} (x - \overline{X})^2 f_X(x) dx \ge \int_{|x - \overline{X}| \ge \varepsilon}^{\infty} (x - \overline{X})^2 f_X(x) dx$$

$$\geq \in^{2} \int_{|x-\overline{X}| \geq \varepsilon}^{\infty} f_{X}(x) dx = \in^{2} P\{|X-\overline{X}| \geq \varepsilon\}$$
$$\Rightarrow P\{|X-\overline{X}| \geq \varepsilon\} \leq \sigma_{X}^{2}/\varepsilon^{2}$$

$$P\{|X - \overline{X}| \ge \epsilon\} \le \sigma_X^2/\epsilon^2$$

Another form of Chebychev's Inequality is

$$P\{|X - \overline{X}| < \epsilon\} \ge 1 - (\sigma_X^2/\epsilon^2)$$

A consequence of that if  $\sigma_X^2 \to 0$  for a random variable, then

$$P\{|X - \overline{X}| < \epsilon\} \rightarrow 1$$
 or  $P\{X = \overline{X}\} \rightarrow 1$ 

In other words, if the variance of the RV X approach zero, the probability approaches 1, that X will equal its mean.

### Markov's Inequality

Let X be a non negative random number, then

$$P\{X \ge a\} \le E[X]/a - a > 0$$

## 3.4 Transformations of A Random Variable

Let X be a random variable with a known distribution  $F_X(x)$  and a known density  $f_X(x)$ .

Let T(.) be a transformation or a mapping or a function that maps the R.V X into Y as

$$Y = T(X)$$



The problem is to find  $F_Y(y)$  and  $f_Y(y)$ .

You can view the problem as a block box problem

$$X \longrightarrow Y = T(X) \qquad Y = f_Y(y)$$

In general X can be a discrete, continuous or mixed random variable and the Transformation T can be

Linear

Non-linear

Segmented

Staircase

We will consider three cases:

(1) X is continuous and T is continuous and monotonically increasing or decreasing





(2) X is continuous and T is continuous nonmonotonic



(3) X is discrete and T is continuous

# Monotonic Increasing Transformations of a Continuous Random Variable

A transformation T is called monotonically increasing if

$$T(x_1) \le T(x_2)$$
 for any  $x_1 \le x_2$ .



Assume that T is continuous and differentiable at all values of x for which  $f_X(x) \neq 0$ .

$$y_0 = T(x_0) \text{ or } x_0 = T^{-1}(y_0)$$

The events  $\{Y \le y_0\}$  and  $\{X \le x_0\}$  are equivalent.

$$\Rightarrow$$
 P {Y \le y<sub>0</sub>} = P {X \le x<sub>0</sub>}

$$\Rightarrow F_{Y}(y_{0}) = P\{Y \leq y_{0}\} = P\{X \leq x_{0}\} = F_{X}(x_{0})$$

$$\Rightarrow \int_{-\infty}^{y_0} f_Y(y) dy = \int_{-\infty}^{x_0 = T^{-1}(y_0)} f_X(x) dx$$

Differentiating both sides with respect to  $y_0$  and using Leibniz rule

Let

$$G(u) = \int_{\alpha(u)}^{\beta(u)} H(x, u) dx$$

$$\frac{dG(u)}{du} = H[\beta(u), u] \frac{d\beta(u)}{du} - H[\alpha(u), u] \frac{d\alpha(u)}{du} + \int_{\alpha(u)}^{\beta(u)} \frac{\partial H(x, u)}{\partial u} dx$$

Now the LHS,

$$\frac{d}{dy_0} \int_{-\infty}^{y_0} f_Y(y) dy = f_Y(y_0) \frac{dy_0}{dy_0} - f_Y(y_0)(0) + \int_{-\infty}^{y_0} \frac{df_Y(y)}{dy_0} dy$$

$$= f_Y(y_0)$$

The RHS

$$\frac{d}{dy_o} \int_{-\infty}^{x_0 = T^{-1}[y_0]} f_X(x) dx = f_X[x_0] \frac{dx_0}{dy_0} - f_X(x_0)(0) + \int_{-\infty}^{x_0 = T^{-1}[y_0]} \frac{df_X(x)}{dy_0} dx$$

$$= f_X(T^{-1}(y_0)) \frac{dT^{-1}(y_0)}{dy_0}$$

$$\Rightarrow f_Y(y_0) = f_X(T^{-1}(y_0)) \frac{dT^{-1}(y_0)}{dy_0}$$

Since the results apply for any  $y_0$ ,

$$\Rightarrow f_Y(y) = f_X \Big[ T^{-1}(y) \Big] \frac{dT^{-1}(y)}{dy}$$

or 
$$f_Y(y) = f_X(x) \frac{dx}{dy}$$

# Monotonic Decreasing Transformations of a Continuous Random Variable

A transformation T is called monotonically decreasing if

$$T(x_1) > T(x_2)$$
 for any  $x_1 < x_2$ .



$$F_Y(y_0) = P\{Y \le y_0\} = P\{X \ge x_0\} = 1 - F_X(x_0)$$

$$\int_{-\infty}^{y_0} f_Y(y) dy = 1 - \int_{-\infty}^{x_0 = T^{-1}(y_0)} f_X(x) dx$$

$$\frac{d}{dy_0} \int_{-\infty}^{y_0} f_Y(y) dy = f_Y(y) = 0 - f_X[T^{-1}(y_0)] \frac{dT^{-1}(y_0)}{dy_0}$$

since  $\frac{dT^{-1}(y_0)}{dy_0}$  is negative (monotone decreasing)  $\Rightarrow f_Y(y) = f_X \left[ T^{-1}(y) \right] \left| \frac{dT^{-1}(y)}{dy} \right| = f_X(x) \left| \frac{dx}{dy} \right|$ 

$$\Rightarrow f_Y(y) = f_X \left[ T^{-1}(y) \right] \left| \frac{dT^{-1}(y)}{dy} \right| = f_X(x) \left| \frac{dx}{dy} \right|$$

Then we conclude that

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right|$$

for both increasing and decreasing monotonic transformation.

# Nonmonotonic Transformations of a Continuous Random Variable

A transformation may not be monotonic(increasing and decreasing) in the more general case it can be both increasing and decreasing as shown below



The event  $\{ Y \le y_0 \}$  may correspond to more than one event of the random variable X.