
Ch3   Operations on one random 
variable-Expectation

Previously we define a random variable as a mapping from the 
sample space to the real line

We will now introduce some operations on the random variable. 
Most of these operations are based on the concept  “expectation”



Expectation

Expectation is the name given to the process of averaging of 
a random variable X. 

The followings are equivalents:

• Expectation or expected value of random variable X  , which we 
use the notation E[X] 

• The “mean value ” of random variable X  

• The “statistical average” of random variable X  

The following notation are equivalent E[X] = X
Example:3.1-1



Expected value of a random variable

The everyday averaging procedure used in the above example carries 
over directly to RV

Example:  
Let  X be a random variable the has the following sample space values

XS  = {1, 2, 3, 4}

Now if the numbers are equally likely to occur or selected 
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In general then 

i X

i i
x  S

X = x  P(X = x ) 
∈
∑

where each value of the random variable  X  (xi) is  weighted by the 
Probability  P(X= xi)

This motivate the concept of expected value or mean  value of RV X, 
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E X  = X = x P(x )
∈
∑ if   X  is discrete values 

if   X  is continuous value with 
Probability density [ ] XE X  = X = xf (x)dx
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In the discrete random variable we use the probability mass 
to weight the random variable. 

iP(X = x )

In the continuous random variable we use the density 
to weight the random variable.

Xf (x)

Observe that  represent the probability of the random 
variable X at the interval dx

Xf (x)dx

If the random variable  X  is symmetrical about a line  x = a  

[ ]E X  = a⇒X Xf (x  a) = f ( x  a)⇒ + − +

Example 3.1-2



Expected value of a Function of a random variable

Assume a random variable  X  which has the following values and 
probabilities

X = {1, 2, 3}
1P(X=1) = 
3

2P(X=2) = 
5

4P(X=3) = 
15

Now define the random variable   2Y = X
4P(Y=9) = 

15
1P(Y=1) = 
3

2P(Y=4) = 
5

Y = {1, 4, 9}⇒
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In general then 
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E g(X)  = g(x )P(x )∑ for discrete random variable 

for continuous  random variable [ ] XE g(x)  = g(x)f (x)dx
∞
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Conditional Expectation

We define the conditional density function for a given  event 
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we now define the conditional expectation in similar manner 

[ ]
x <

b

X X X

b x  

b

b

E X|B  = xf (x|B)dx = xf (x|B)dx  + xf (x|B)dx
≥

∞ ∞

−∞ −∞∫ ∫ ∫

XF (b)

0

constant = 

b
X

b b
X

f (x)= x  dx +  x 0 dx
f (x)dx

∞

−∞

−∞

∫ ∫
∫

X

b

X

b

X

F (constant = b)

xf (x)dx
=  

f (x)dx
−∞

−∞

∫
∫



Moments
The expected value defined previously as 

[ ] XE X  = X = xf (x)dx
∞

−∞∫
if   X  is continuous value with  probability density Xf (x)

Is called the 1st  moment of the random variable X with probability 
density Xf (x)

The word  moment is used because a similar form exist in  static 
were the  1st  moment represent the center of gravity



Example Assume a mass is distributed on one dimension x as 
shown below were  m(x) is the mass density  function is 

Then we can calculate the 1st  moment or   center of gravity  M as 
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In the probability case the total area 
under the density function is unity or 1 



The expected value of the  function of random variable  X  was 
defined as  

[ ] XE g(x)  = g(x)f (x)dx
∞

−∞∫

Let  the function  g(X) defined as 

ng(X) = X        n = 0, 1, 2, ...

Then we can define the nth moment               asnm

n n
n Xm  = E X  = x f (x)dx
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Clearly 
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Central Moments 

Another type of moments of interest is the central moment defined as

n n
n Xµ  = E (X  X)  = (x  X) f (x)dx

∞

−∞
⎡ ⎤− −⎣ ⎦ ∫

the  mn moments are expected values about the  origin however the 
central moment mn is moment or expected value about the mean or 
average  X
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1µ  = E (X X)  = E[X]  E[X] = X  X = 0⎡ ⎤− − −⎣ ⎦

were we have used the fact that  
constant

E[ a ] = a



Variance and skew

The second central moment  µ2 is so important , that it is given the 
name  variance and have the special notation  2

xσ

Thus the variance is given by 

2 2 2
x 2 Xσ = µ  = E (X  X)  = (x  X) f (x)dx

∞

−∞
⎡ ⎤− −⎣ ⎦ ∫

Xσ ( the positive square root of the variance) is called the 
standered deviation of RV  X 

is a measure of the spread  of the random variable  X  about its 
mean or average 

Xσ



is a measure of the spread  of the random variable  X  about 
its mean or average

Xσ

1σ

2σ

21σ > σ

1f (x)

2f (x)

The spread of           is  more than the spread of        
1f (x) 2f (x) ( )21σ  > σ



variance can be found from a knowledge of  first and second 
moments as follows 

[ ]2 2 2 2 2
x 2

2 2 2
2 1

σ = µ  = E X 2XX + X  = E X 2XE X  + X

    = E X  X  = m  m  

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦
⎡ ⎤ − −⎣ ⎦

Example 3.2-1



Properties of the variance  Xσ

Let  c  be  a constant  and  X  be a RV 

2
c(1)    σ

The  probability density function of a constant “deterministic number”
is a delta function with spread zero 

Xf (x)
(x  c)δ −



2 2
x + c x(2)    σ  σ  =

2 2 2
cx x(3)       σ  c σ  =

The third central moment                                     is a measure of the   
a symmetry of                  about   

3
3µ  = E (X  X)⎡ ⎤−⎣ ⎦

1x = X = mXf (x)

The variance does not change by shifting the 
random variable, the spread will remain the 
same , on the other hand shifting effect the 
mean only

It will be called the  “skew” of the density function

X 3If   f (x)   symmetric about   x = X   ,  it has zero skew (i.e  µ  = 0   )

nµ  = 0   for all  odd  n .
3

3 xµ σThe normalized third central moment                    is known as the 
skewness or coefficient of skewness of the probability density 
function



Useful Inequalities 

A useful tool in some probability problems are some inequalities
such as Chebychev’s inequality and  Markov’s Inequality.

Chebychev’s Inequality

It state that for a  RV  X ,   

{ } 2 2
XP X  X   є   σ є− ≥ ≤ for any ε > 0 
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{ } 2 2
XP X  X   є   σ є− ≥ ≤

Another form of  Chebychev’s Inequality  is 

{ } 2 2
XP X  X  <   1  (σ )− ∈ ≥ − ∈

A consequence  of that  if 2
Xσ  0 → for a random variable , then 

{ }P X  X  <   1 − ∈ → P{X = X}   1 →or    

In other words, if the  variance of the RV  X approach 
zero, the probability approaches 1 , that X will equal its 
mean. 



Markov’s  Inequality 

Let X be a non negative random number , then 

{ } [ ]P X  a   E X a  a > 0≥ ≤ −



3.4 Transformations of A Random Variable
Let X be a random variable with a known distribution FX(x) and 
a known density fX (x).

Let T(.) be a transformation or a mapping or a function that maps 
the R.V X into Y as 

Y = T(X)

The problem is to find FY(y) and fY(y).

You can view the problem as a 
block box problem



In general X can be a discrete, continuous or mixed random 
variable and the Transformation T can be 

Linear

Non-linear

Segmented

Staircase

We will consider three cases:

(1)  X is continuous and T is continuous and monotonically 
increasing or decreasing



(2) X is continuous and T is continuous nonmonotonic

(3)  X is discrete and T is continuous



Monotonic Increasing Transformations of a 
Continuous Random Variable

A transformation T is called monotonically increasing if 

T(x1) < T(x2) for any x1 < x2.

Assume that T is continuous and differentiable at all values of x for 
which fX(x) ≠ 0.

1
0 0 0 0( ) ( )y T x or x T y−= =



The events {Y ≤ y0} and {X ≤ x0} are equivalent.

P {Y ≤ y0} = P {X ≤ x0} 

Differentiating both sides with respect to y0 and using Leibniz 
rule

Let
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Now the LHS,
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Since the results apply for any y0,

1
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Monotonic Decreasing Transformations of a 
Continuous Random Variable

A transformation T is called monotonically decreasing if 

T(x1) > T (x2) for any x1 < x2.
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1
0

0
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for both increasing and decreasing monotonic transformation.



Nonmonotonic Transformations of a Continuous 
Random Variable
A transformation may not be monotonic(increasing and decreasing) 
in the more general case it can be both increasing and decreasing as 
shown below

The event {  Y ≤ y0 } may correspond to more than one event 
of the random variable X.
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