Ch3 Operations on one random
variable-Expectation

Previously we define a random variable as a mapping from the
sample space to the real line

We will now introduce some operations on the random variable.
Most of these operations are based on the concept “expectation”



EXxpectation

Expectation 1s the name given to the process of averaging of
a random variable X.

The followings are equivalents:

e Expectation or expected value of random variable X , which we
use the notation E[X]

e The “mean value ” of random variable X

e The “statistical average” of random variable X

The following notation are equivalent E[X]=X
Example:3.1-1



Expected value of a random variable

The everyday averaging procedure used in the above example carries
over directly to RV

Example:
Let X be a random variable the has the following sample space values

S, =11, 2, 3,4}

Now if the numbers are equally likely to occur or selected
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In general then

X= ) x, PX=x))

X;€ Sy

where each value of the random variable X (x,) 1s weighted by the
Probability P(X=x)

This motivate the concept of expected value or mean value of RV X,
E[X] =X = Z x.P(x,) if X is discrete values

. 1f X 1s continuous value with
E[X] =X=| xfy()dx  probability density



In the discrete random variable we use the probability mass P(X =x.)
to weight the random variable.

In the continuous random variable we use the density f, (x)
to weight the random variable.

Observe that  f, (x)dx represent the probability of the random
variable X at the interval dx

If the random variable X 1s symmetrical about a line x =a

=>fix +a)=1,(-x + a) :>E[X] =a

Example 3.1-2



Expected value of a Function of a random variable

Assume a random variable X which has the following values and
probabilities

X=1{1,2,3} P(le)zé P(X=2)=§ P(X=3)=%

Now define the random variable Yy = X?

4
=Y ={1,4,9} Ppy=1)= ! P(Y=4) = 2 P(Y=9)=
3 5 15
| 2 4
=E[Y]=() () +® () O ()= D, yP¥Y=y)
—~— 3 —~ 5 —~ 15 y.el1,4.9!
Y =1 Y =4 S~ Y =9 v 7
P(Y =1) P(Y =4) P(Y =9)
P(X=1) P(X=2) P(X=3) — Z YIP(X: X1)



In general then

g(X)] Zg(x )P(X;) for discrete random variable

Elg(x)] = J ) g(x)f, (x)dx for continuous random variable



Conditional Expectation

We define the conditional density function for a given event

B={X < b o
- X(X) X<b

f (xIX < b)= 4| fi(x)dx
0 X >Db

.

we now define the conditional expectation in similar manner
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Moments
The expected value defined previously as
E[X] =X = j_oo xfy (x)dx
if X 1s continuous value with probability density f, (x)

Is called the 1st moment of the random variable X with probability
density f, (x)

The word moment 1s used because a similar form exist in static
were the 1st moment represent the center of gravity



Example Assume a mass is distributed on one dimension x as
shown below were m(x) 1s the mass density function is

A

m(x)

Then we can calculate the 1st moment or center of gravity M as
b
j X m(x) dx

M= @ In the probability case the total area

under the density function is unity or 1

}m(x) dx

J

Y
total mass



The expected value of the function of random variable X was
defined as

E[e®)] = | g®f (x)dx
Let the function g(X) defined as
g(X)=X" n=0,1,2, ...

Then we can define the n' moment m_ as

n

m, =E[ X" | = j“; x"f, (x)dx



Clearly

m, = B[ X | = jz x’f (x)dx =1 The area of the function £, (x)

V - v
E[1] =1

J._O:O fx(x)dx =1

m, = E[Xl} = j O;XfX (x)dx =X The expected value of X



Central Moments

Another type of moments of interest 1s the central moment defined as

b, =E[X =X | = [ (x = X" (x)dx

the m_  moments are expected values about the origin however the
central moment m, 1s moment or expected value about the mean or

average X

W, = E[(X — )_()0] = f (X -X)f, (x)dx =1 The area of the function f (x)

E[1] =1

J._O:Cfx x)dx =1

w, =E[ (X-X)' | =E[X] - E[X]=X - X=0

were we have used the fact that EJ a

constant

]=a



Variance and skew

The second central moment p, 1s so important , that it 1s given the
name variance and have the special notation ¢’

Thus the variance is given by
oi=1, =E[(X - X7 | = [ (x - X)’fx(x)dx

Ox ( the positive square root of the variance) is called the
standered deviation of RV X

o, 1s a measure of the spread of the random variable X about its
mean or average



o, 1s a measure of the spread of the random variable X about
1ts mean or average
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The spread of  f (x) is more than the spread of f,(x) (0,>0,)



variance can be found from a knowledge of first and second
moments as follows

6,=p, =B X*-2XX +X* | =E[ X* | -2XE[X] + X’

=E[ X’ |- X’ =m,- m;]

Example 3.2-1



Properties of the variance o

Let ¢ be aconstant and X be a RV

1)

The probability density function of a constant “deterministic number”
1s a delta function with spread zero

fX (x)
4 o(X— ¢)
A




, , The variance does not change by shifting the
(2) oy,.= O, random variable, the spread will remain the
same , on the other hand shifting effect the
mean only
3) o. =c’o’

cX

The third central moment p, = E [(X - )_()3} 1s a measure of the

a symmetry of fy(X) about x=X-= m,

It will be called the “skew” of the density function

If f,(x) symmetric about x=X , it has zero skew (1.e n, =0 )

u =0 forall odd n.

The normalized third central moment U, / gi 1s known as the
skewness or coefficient of skewness of the probability density
function



Useful Inequalities

A useful tool in some probability problems are some inequalities
such as Chebychev’s inequality and Markov’s Inequality.

Chebychev’s Inequality

It state that fora RV X,

P{‘X — )_(‘ > e} < Gi/Cz forany8>0



Proof | |
)_(l—s )l_( }_(l—l—g

P{\X—)‘(\ Ze}ZPX—}_(Ze and X - X < —e
=P{X2)_(+€ and X S)_(—e}

X—€ 0
= Lo f (x)dx + jX £ (x)dx = j‘ o Bx (0

(x — )_()22 g’

butsince oy = [ (x — X)fy(x)dx > j“” (X - X)” fy (x)dx

>

e’ ,‘.\j_x\ZGfX(X)dx = & P{‘X — )_(‘ > e}

=P{X - X| = ¢f < o}/e



PIX - X| 2 e} < o}/e’
Another form of Chebychev’s Inequality is
P{\X - X| < e} > 1 - (6%/€)
A consequence of that if 65 — 0  for a random variable , then
PIX -X|<e 51 o  PX=X} o1

In other words, if the variance of the RV X approach
zero, the probability approaches 1, that X will equal 1ts
mean.



Markov’s Inequality

Let X be a non negative random number , then

P{X > a} < E[X]/a —a>0



3.4 Transformations of A Random Variable

Let X be a random variable with a known distribution F(x) and
a known density fy (x).

Let T(.) be a transformation or a mapping or a function that maps
the R.V X into Y as
Y = T(X)

T[X]

T

- X A
Frix)=PlX <x] F(y)=PY <y] ?
dF (x) dF,(y) 9

frn="—22 Jr(y) = &

The problem i1s to find Fy(y) and fi(y).

You can view the problem as a
X—— 7=7X) |——>7T
block box problem £l 705




In general X can be a discrete, continuous or mixed random
variable and the Transformation T can be

Linear
Non-linear
Segmented
Staircase
We will consider three cases:

(1) X 1s continuous and T is continuous and monotonically
increasing or decreasing

=T
Manatonic \ Monotonic

INCreasing decreasing




(2) X 1s continuous and T 1s continuous nonmonotonic

y=T)

Yo

/
S

(3) X is discrete and T 1s continuous




Monotonic Increasing Transformations of a
Continuous Random Variable

A transformation T 1s called monotonically increasing 1f
T(x,) <T(x,) for any x; <X,. o
¥y =T(x;)

= T(xljl

A
A

Assume that T 1s continuous and differentiable at all values of x for
which fy(x) # 0. s

=T(X,)0r x, =T (y,)




The events {Y <y,} and {X <x,} are equivalent.

= P {Y <y} =P {X <x,}
= F(Y) = P{Y <y} = P{X <x} = F(%)

:>j f, (y)dy = j T . (x)dx

Differentiating both sides with respect to y, and using Leibniz
rule

Let
B(u)
G = | H(xudx

a(U)

)
dG(u) _ H[,B(u),u]d'g(u) Hla (W), u]do:(u) oH (X, u)dx

du du du ., ou




Now the LHS,

df,
a4 j Ly = £, () 20— <y0><0>+j o

0

= fY (yo)
The RHS

d X0:T71[y0] dX XO:T’I[yO]df (X)
fox)dx=f.[x.1—2— f, (x.)(0)+ — X2 dx
dy, « (X) «| O]dyo x (X,)(0) [—

dT7'(y,)
dy,

=, T (¥y))

dT " (y,)

= f, (¥) = F (T (¥,)) dy




O

dT'(y)
dy

()]
) = f | T
fy (Y
—

dx
fy (X) d_y
) =
f, (y
or



Monotonic Decreasing Transformations of a
Continuous Random Variable

A transformation T 1s called monotonically decreasing 1f

T(xy) > T (x,) for any x, <X,.

FY(yo) — P{Y < yo} = P{X

Xo=T " (¥o)

[ fdy=1- [ t,(x0x

—00

dT " (y,)

d Yo »
Oy, j £ (y)dy = f,(y)=0—f, [T (y,)] 5



dT " (y,)

since 1s negative (monotone decreasing)
e dT'(y) dx
_ -1 _
= f,(y) = [Ty v L Py

Then we conclude that

() = fy (X

dx
dy

for both increasing and decreasing monotonic transformation.



Nonmonotonic Transformations of a Continuous
Random Variable

A transformation may not be monotonic(increasing and decreasing)

in the more general case 1t can be both increasing and decreasing as
shown below

yv=T(x)

A
/ x|

Theevent { Y <y, } may correspond to more than one event
of the random variable X.
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