Chapter 2: The Random Variable

The outcome of a random experiment need not be a number, for example tossing a coin or selecting a color ball from a box.

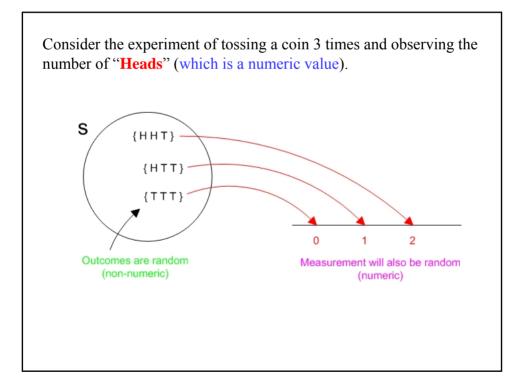
However we are usually interested not in the outcome itself, but rather in some measurement or numerical attribute of the outcome.

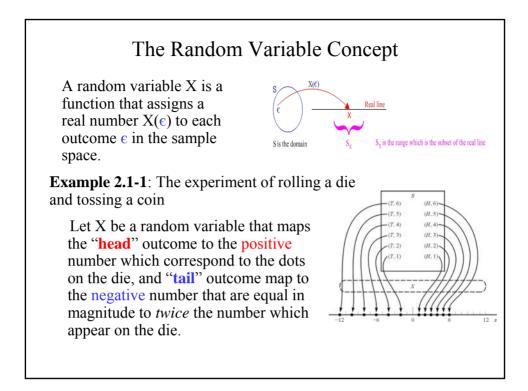
Examples

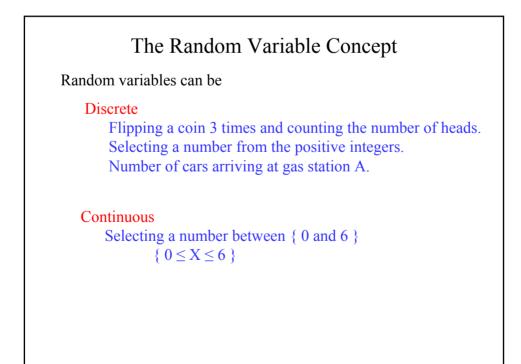
In tossing a coin we may be interested in the total number of heads and not in the specific order in which heads and tails

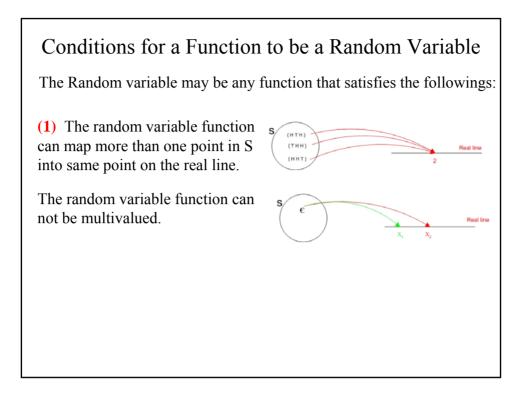
occur. In selecting a student name from an urn (box) we may be interested in the weight of the student.

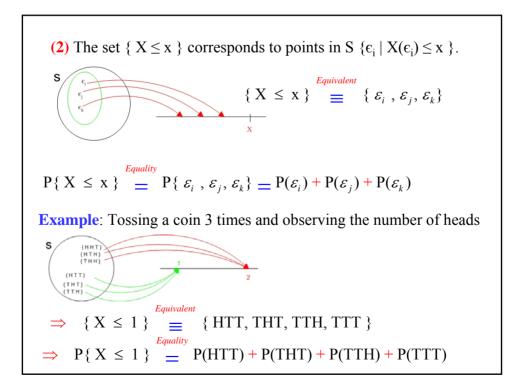
In each of these examples, a numerical value is assigned to the outcome.





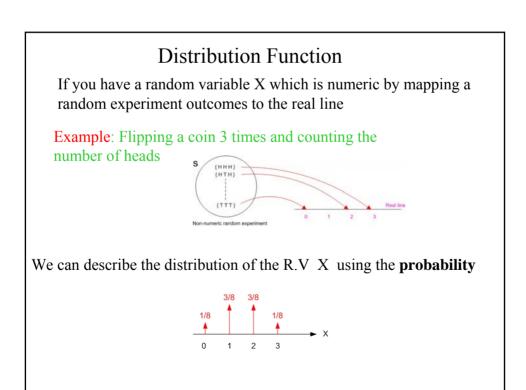






(3) $P{X=-\infty}=0 P{X=\infty}=0$

This condition does not prevent X from being $-\infty$ or $+\infty$ for some values of S. It only requires that the probability of the set of those S be zero.



We will define two more distributions of the random variable which will help us finally to calculate probability.

Distribution Function

We define the *cumulative probability distribution function*

 $F_X(x) = P\{X \le x\}$ where , $F_X(x)$ Small letter indicating parameter $F_X(x)$

Capital letter indicating

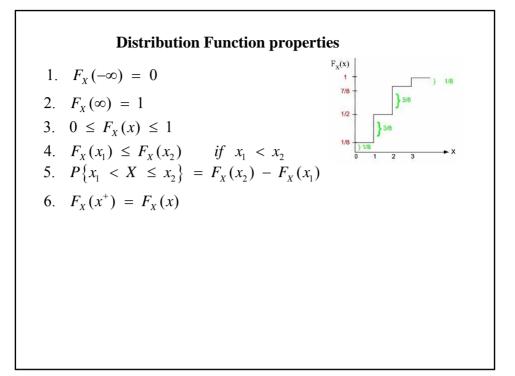
In our flipping the coin 3 times and counting the number of heads

$$F_X(2) = P\{X \le 2\}$$

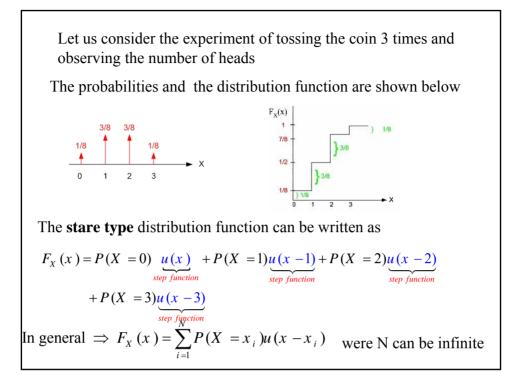
$$F_X(2) = P\{X \le 2\} = P\{X=0\} + P\{X=1\} + P\{X=2\}$$

$$= \frac{1}{8} + \frac{3}{8} + \frac{3}{8} = \frac{7}{8}$$

Example: Let
$$X = \{0, 1, 2, 3\}$$
 with $P(X = 0) = P(X = 3) = \frac{1}{8}$
 $P(X = 1) = P(X = 2) = \frac{3}{8}$
 $F_X(0) = P(X \le 0) = \frac{1}{8}$
 $F_X(1) = P(X \le 1) = P(X = 0) + P(X = 1) = \frac{1}{8} + \frac{3}{8} = \frac{1}{2}$
 $F_X(2) = P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} = \frac{7}{8}$
 $F_X(3) = P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1$
 $F_X(3) = P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1$



Example: Let
$$X = \{0, 1, 2, 3\}$$
 with $P(X = 0) = P(X = 3) = \frac{1}{8}$
 $P(X = 1) = P(X = 2) = \frac{3}{8}$
 $F_X(0) = P(X \le 0) = \frac{1}{8}$
 $F_X(1) = P(X \le 1) = P(X = 0) + P(X = 1) = \frac{1}{8} + \frac{3}{8} = \frac{1}{2}$
 $F_X(2) = P(X \le 2) = P(X = 0) + P(X = 1) + P(X = 2) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} = \frac{7}{8}$
 $F_X(3) = P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1$
 $F_X(3) = P(X \le 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1$

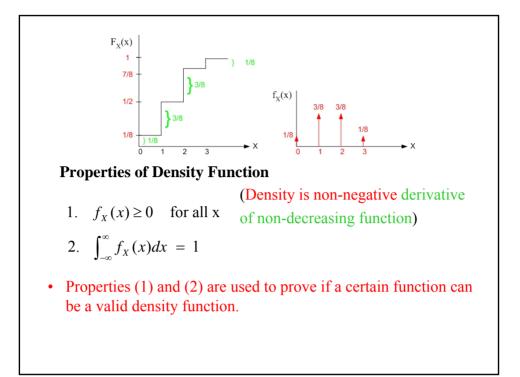


Density Function

We define the derivative of the distribution function F_X(x) as the probability density function f_X(x).
f_X(x) = dF_X(x)/dx

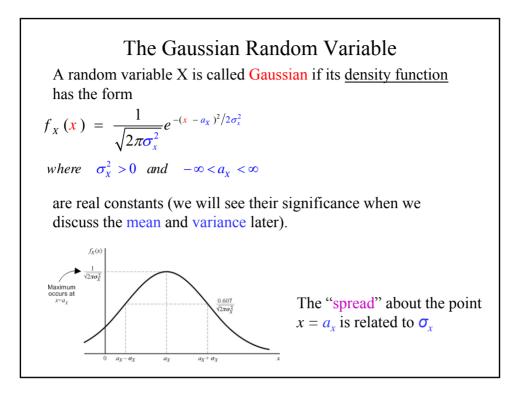
We call f_X(x) the density function of the R.V X
In our discrete R.V since
F_X(x) = ∑ P(X = x_i)u(x - x_i)

$$f_{X}(x) = \frac{d}{dx} \left(\sum_{i=1}^{N} P(X = x_{i}) u(x - x_{i}) \right) = \sum_{i=1}^{N} P(X = x_{i}) \frac{d}{dx} u(x - x_{i})$$
$$= \sum_{i=1}^{N} P(X = x_{i}) \delta(x - x_{i})$$
$$f_{X}(x) = \sum_{i=1}^{N} P(x_{i}) \delta(x - x_{i})$$



3.
$$F_X(x) = \int_{-\infty}^x f_X(\xi) d\xi$$

From (3)=> $F_X(\infty) = 1$
4. $P\{x_1 < X \le x_2\} = \int_{x_1}^{x_2} f_X(x) dx$
Since
 $P(x_1 < X \le x_2) = F(x_2) - F(x_1) = \int_{-\infty}^{x_2} f_X(x) dx - \int_{-\infty}^{x_1} f_X(x) dx$



The Gaussian density is the most important of all densities.

It accurately describes many practical and significant real-world quantities such as noise.

The distribution function is found from

$$F_X(x) = \int_{-\infty}^x f_X(\xi) d\xi$$

$$F_{X}(x) = \frac{1}{\sqrt{2\pi\sigma_{x}^{2}}} \int_{-\infty}^{x} e^{-(\xi - a_{X})^{2}/2\sigma_{x}^{2}} d\xi$$

The integral has no known closed-form solution and must be evaluated by numerical or approximation method.

However to evaluate numerically for a given x

$$F_{X}(x) = \frac{1}{\sqrt{2\pi\sigma_{x}^{2}}} \int_{-\infty}^{x} e^{-(\xi - a_{x})^{2}/2\sigma_{x}^{2}} d\xi$$

We need σ_{x}^{2} and a_{x}
Example: Let $\sigma_{x}^{2}=3$ and $a_{x}=5$, then
 $F_{X}(x) = \frac{1}{\sqrt{2\pi3}} \int_{-\infty}^{x} e^{-(\xi - 5)^{2}/2(3)} d\xi$
We then can construct the Table for various values of x.
$$\boxed{-20} F_{X}(-20) = \frac{1}{\sqrt{2\pi3}} \int_{-\infty}^{-20} e^{-(\xi - 5)^{2}/2(3)} d\xi \implies \text{Evaluate} \text{Numerically}$$

 $+6 F_{X}(6) = \frac{1}{\sqrt{2\pi3}} \int_{-\infty}^{6} e^{-(\xi - 5)^{2}/2(3)} d\xi \implies \text{Evaluate} \text{Numerically}$

Finally we will get a Table for various values of x. However there is a problem! The Table will only work for Gaussian distribution with $\sigma_x^{2=3}$ and $a_x=5$. We know that not all Gaussian distributions have $\sigma_x^{2=3}$ and $a_x=5$. Since the combinations of a_x and σ_x^2 are infinite (uncountable infinite) \Rightarrow Uncountable infinite tables to be constructed \Rightarrow Unpractical method To show that the general distribution function $F_X(x)$ of (2.4-2) can be found in terms of F(x) of (2.4-3) we make the variable change

$$u = (\xi - a_x)/\sigma_x$$

in (2.4-2) to obtain
$$F_x(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{(x - a_x)/\sigma_x} e^{-u^2/2} du$$

From (2.4-2), this expression is clearly equivalent to
$$F_x(x) = F\left(\frac{x - a_x}{\sigma_x}\right)$$

$$F_x(x) = \frac{1}{\sqrt{2\pi\sigma_x^2}} \int_{-\infty}^{x} e^{-(\xi - a_x)^2/2\sigma_x^2} d\xi$$

We will show that the general distribution function $F_X(x)$

$$F_{X}(x) = \frac{1}{\sqrt{2\pi\sigma_{x}^{2}}} \int_{-\infty}^{x} e^{-(\xi - a_{X})^{2}/2\sigma_{x}^{2}} d\xi$$

can be found in terms of the normalized Gaussian pdf f(x)

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$
 $a_x = 0$ $\sigma_x^2 = 1$

we make the variable change $u = (\xi - a_x)/\sigma_x$ in $F_x(x)$

$$F_{X}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{(x - a_{X})/\sigma_{x}} e^{-u^{2}/2} du = F(x)$$
$$F_{X}(x) = F\left(\frac{x - a_{X}}{\sigma_{x}}\right)$$

x	es of $F(x)$.01	.02	.03	.04	.05	.06	.07	.08	.09
			.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.0	.5000	.5040	.5080	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.1	.5398	.5438	.5478	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.2	.5793	.5832	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.3	.6179	.6217	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.4	.6554	.6591	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.5	.6915	.6950		.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.6	.7257	.7291	.7324	.7673	.7704	.7734	.7764	.7794	.7823	.785
0.7	.7580	.7611	.7642	.7967	.7995	.8023	.8051	.8078	.8106	.813
0.8	.7881	.7910	.7939 .8212	.8238	.8264	.8289	.8315	.8340	.8365	.838
0.9	.8159	.8186		.8485	.8508	.8531	.8554	.8577	.8599	.862
1.0	.8413	.8438	.8461	.8708	.8729	.8749	.8770	.8790	.8810	.883
1.1	.8643	.8665	.8686	.8907	.8925	.8944	.8962	.8980	.8997	.901
1.2	.8849	.8869	.8888	.9082	.9099	.9115	.9131	.9147	.9162	.917
1.3	.9032	.9049	.9066	.9082	.9251	.9265	.9279	.9292	.9306	.931
1.4	.9192	.9207	.9222	.9230	.9382	.9394	.9406	.9418	.9429	.944
1.5	.9332	.9345	.9357	.9484	.9495	.9505	.9515	.9525	.9535	.954
1.6	.9452	.9463	.9474	.9484	.9591	.9599	.9608	.9616	.9625	.963
1.7	.9554	.9564	.9573	.9664	.9671	.9678	.9686	.9693	.9699	.970
1.8	.9641	.9649	.9656		.9738	.9744	.9750	.9756	.9761	.976
1.9	.9713	.9719	.9726	.9732	.9793	.9798	.9803	.9808	.9812	.98
2.0	.9773	.9778	.9783	.9788	.9838	.9842	.9846	.9850	.9854	.98
2.1	.9821	.9826	.9830	.9834	.9836	.9878	.9881	.9884	.9887	.98
2.2	.9861	.9864	.9868	.9871	.9875	.9906	.9909	.9911	.9913	.99
2.3	.9893	.9896	.9898	.9901		.9929	.9931	.9932	.9934	.99
2.4		.9920	.9922	.9925	.9927	.9929	.9948	.9949	.9951	.99
2.5	.9938	.9940	.9941	.9943	.9945	.9940	.9961	.9962	.9963	.99
2.6	0053	9955	.9956	.9957	.9959	.9900		0070	0072	00

Other Distribution and Density Examples <u>Binomial</u> Let 0 , <math>N = 1, 2,..., then the function $f_x(x) = \sum_{k=0}^{N} {N \choose k} p^k (1-p)^{N-k} \delta(x-k)$ is called the binomial density function. ${N \choose k} = \frac{N!}{k!(N-k)!}$ is the binomial coefficient The density can be applied to the • Bernoulli trial experiment. • Games of chance. • Detection problems in radar and sonar. It applies to many experiments that have only two possible outcomes ($\{H,T\}$, $\{0,1\}$, $\{Target, No Target\}$) on any given trial (N).

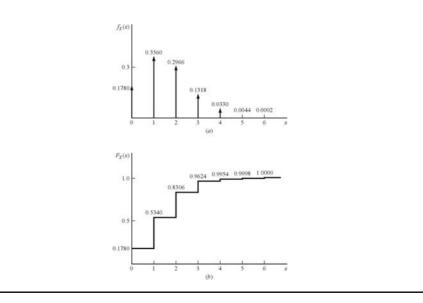
It applies when you have N trials of the experiment of only outcomes and you ask what is the probability of k-successes out of these N trials.

Binomial distribution
$$F_X(x) = \sum_{k=0}^{N} {\binom{N}{k} p^k (1-p)^{N-k} u(x-k)}$$

 $F_{\mathbf{x}}(\mathbf{x})$

$$N = 6 \qquad p = 0.25$$

The following figure illustrates the binomial density and distribution functions for N = 6 and p = 0.25.



Poisson

The Poisson RV X has a density and distribution

$$f_X(x) = e^{-b} \sum_{k=0}^{\infty} \frac{b^k}{k!} \,\delta(x-k)$$
$$F_X(x) = e^{-b} \sum_{k=0}^{\infty} \frac{b^k}{k!} \,u(x-k)$$
Where $b > 0$ is a real constant.

 $Binomial \rightarrow Poisson$

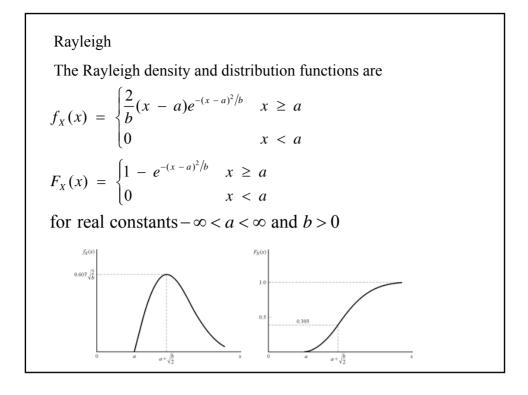
$$N \to \infty$$
$$p \to 0$$
$$Np = b \text{ (constant)}$$

The Poisson RV applies to a wide variety of counting-type applications:

- The number of defective units in a production line.

- The number of telephone calls made during a period of time.

- The number of electrons emitted from a small section of a cathode in a given time interval.



Conditional Distribution and Density Functions

For two events A and B the conditional probability of event A given event B had occurred was defined as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

We extend the concept of conditional probability to include random variables

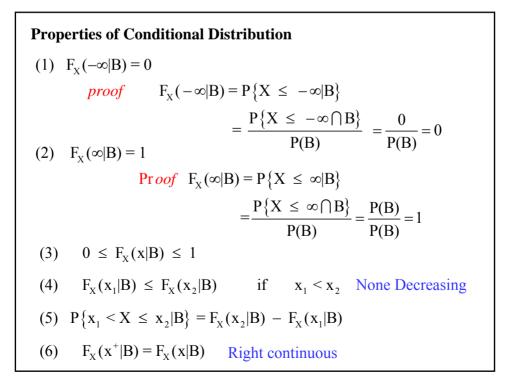
Conditional Distribution

Let X be a random variable and define the event A

$$A = \left\{ X \le x \right\}$$

we define the conditional distribution function $F_x(x|B)$

$$F_{X}(x|B) = P\{X \leq x|B\} = \frac{P\{X \leq x \cap B\}}{P(B)}$$



Conditional Density Functions

We define the Conditional Density Function of the random variable X as the derivative of the conditional distribution function

$$f_{X}(x|B) = \frac{dF_{X}(x|B)}{dx}$$

If $F_x(x|B)$ contain step discontinuities as when X is discrete or mixed (continues and discrete) then $f_x(x|B)$ will contain impulse functions.

Properties of Conditional Density

 $(1) \quad f_{X}(x|B) \geq 0$

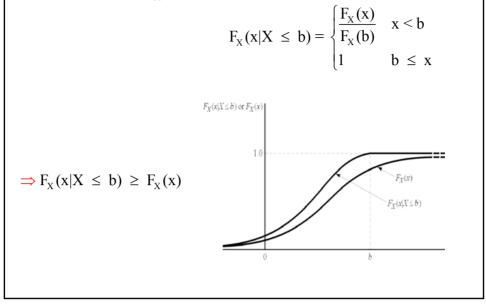
(2)
$$\int_{-\infty}^{\infty} f_X(x|B) \, dx = 1$$

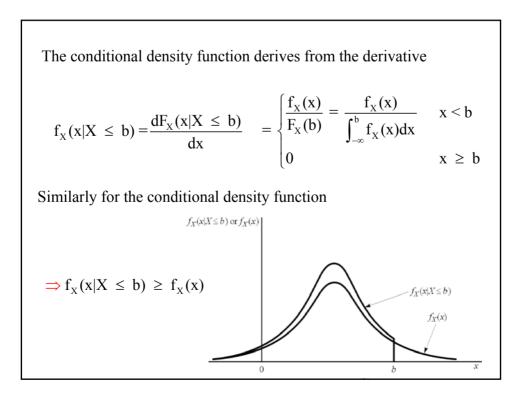
(3)
$$F_X(x|B) = \int_{-\infty}^{x} f_X(\xi|B) d\xi$$

(4)
$$P\{x_1 < X \le x_2 | B\} = \int_{x_1}^{x_2} f_X(x | B) dx$$

Next we define the event $B = \{X \le b\}$ were b is a real number $-\infty < b < \infty$ $\Rightarrow F_X(x|X \le b) = P\{X \le x|X \le b\} = \frac{P\{X \le x \cap X \le b\}}{P\{X \le b\}}$ $P\{X \le b\} \neq 0$ Case 1 $x \ge b$ $\Rightarrow \{X \le b\} \subset \{X \le x\}$ $\Rightarrow \{X \le b\} \subset \{X \le x\}$ $\Rightarrow \{X \le x\} \cap \{X \le b\} = \{X \le b\}$ $\Rightarrow F_X(x|X \le b) = \frac{P\{X \le x \cap X \le b\}}{P\{X \le b\}} = \frac{P\{X \le b\}}{P\{X \le b\}} = 1$

Case 2 x < b $\Rightarrow \{X \le x\} \subset \{X \le b\}$ $\Rightarrow \{X \le x\} \cap \{X \le b\} = \{X \le x\}$ $\Rightarrow \{X \le x\} \cap \{X \le b\} = \{X \le x\}$ $\Rightarrow F_x(x|X \le b) = \frac{P\{X \le x \cap X \le b\}}{P\{X \le b\}} = \frac{P\{X \le x\}}{P\{X \le b\}} = \frac{F_x(x)}{F_x(b)}$ By combining the two expressions we get $F_x(x|X \le b) = \begin{cases} \frac{F_x(x)}{F_x(b)} & x < b\\ 1 & b \le x \end{cases}$ then the conditional distribution $F_X(x|X \le b)$ is never smaller then the ordinary distribution $F_X(x)$





x _i		B1	B2	Totals
1	Red	5	80	85
2	Green	35	60	95
3	Blue	60	10	70
		100	150	250

Example 2.61-1 Two Boxes have Red, Green and Blue Balls

Assume P(B1)=2/10 and P(B2)=8/10

B1 and B2 are mutually exclusive Events

