KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS

ELECTRICAL ENGINEERING DEPARTMENT

EE 201_102
EXAM II
DATE: Saturday April 30, 2011
TIME: 7:00 PM-8:30 PM

SER\#	Tey Solution
ID\#	
Name	
Section\#	

Course Instructors:

- Dr. Jamil Bakhashwain
- Dr. Adil Balghonaim
- Dr. Zaki Al-Akhdhar
- Dr. Mohammad Sharawi
- Dr. Abdallah Al-Ahmari

	Maximum Score	Score
Q1	25	
Q2	25	
Q3	25	
Q4	25	
TOTAL	100	

Q1

a) Apply as many as possible of source transformations to reduce the circuit connected between terminal $a b$ to its equivalent Thevenin's.
b) Calculate the value of R_{L} that absorbs maximum power in the circuit when connected to terminals $a b$.
c) Calculate the power absorbed by R_{L} if it is selected to be 12Ω.

Solution:

a)

b) For maximum power transfer RL=18 Ω
c) From the circuit $I=120 /(18+12)=4 \mathrm{~A}$

$$
\mathrm{P}_{12 \Omega}=12(4)^{2}=192 \text { watts }
$$

120 V

Q2

For the circuit shown use the superposition principle to calculate the current \boldsymbol{I} and the voltage \boldsymbol{V}. (No points for using any other method)

Solution:
$I^{\prime}=4 / 4=1 \mathrm{~A}$
$\mathrm{V}^{\prime}=4-1(1)=3 \mathrm{~V}$

$\mathrm{I}^{\prime \prime}=-8(1) / 4=-2 \mathrm{~A}$
$\mathrm{Ix}=-8(3) / 4)=-6 \mathrm{~A}$ $\mathrm{V}^{\prime}=-6(1)=-6 \mathrm{~V}$

$\mathrm{I}^{\prime}{ }^{\prime \prime}=12(3) / 4=9 \mathrm{~A}$
Iy $=12(1) / 4=3 \mathrm{~A}$
$\mathrm{V}^{\prime \prime},=3(1)=3 \mathrm{~V}$

$\mathrm{I}=1-2+9=8 \mathrm{~A}$
$\mathrm{V}=3-6+3=0 \mathrm{~V}$

Q 3:

For the circuit shown below:
a) Derive the expression of the voltage V_{o} as a function of R_{s}.
b) If $R_{s}=5 \mathrm{k} \Omega$, find the value of V_{o} and the current i_{x}.
c) Find the range of Rs to avoid the saturation region.

Solution:

a) Assuming ideal op-amp and linear region

The current ip $=0$ \& in $=0 \mathrm{~A}$,
Also $\mathrm{Vp}-\mathrm{Vn}=0 \rightarrow \mathrm{Vn}=\mathrm{Vp}$
Apply VDR in the $8 \mathrm{k} \Omega$ resistor or apply KVL at the loop of $3 \mathrm{~V}, 4 \mathrm{k}$ Ohms, \& 8 KOhms to get: $\mathrm{Vp}=8 \mathrm{k} /(8 \mathrm{k}+4 \mathrm{k}) * 3=2 \mathrm{~V}$

Going back to our assumption $\mathrm{Vp}-\mathrm{Vn}=0 \rightarrow \mathrm{Vn}=2 \mathrm{~V}$.
Applying KCL at node n :

$$
\frac{V n}{R s}+\frac{V n-V o}{30 k}=0
$$

Multiply with 30k

$$
V o=V n\left(\frac{30 k}{R s}+1\right)=2\left(\frac{30 k}{R s}+1\right)=2+\frac{60 k}{R s}
$$

b) If $\mathrm{Rs}=5 \mathrm{k} \Omega$ then

$$
\begin{aligned}
& V o=2\left(\frac{30 k}{5 k}+1\right)=2(6+1)=14 \mathrm{~V} \\
& i x+\frac{V o}{10 k}+\frac{V o-V n}{30 k}=0 \\
& i x=-\left(\frac{V o}{10 k}+\frac{V o-V n}{30 k}\right)=-\left(\frac{14}{10 k}+\frac{14-2}{30 k}\right)=-1.8 \mathrm{~mA}
\end{aligned}
$$

c) The range of Rs to avoid saturation region

$$
\begin{aligned}
& -20 \leq V o \leq 20 \\
& -20 \leq\left(\frac{60 k}{R s}+2\right) \leq 20 \\
& -22 \leq\left(\frac{60 k}{R s}\right) \leq 18 \\
& R s \geq \frac{60 k}{18}=\frac{10}{3} \mathrm{k} \Omega
\end{aligned}
$$

Q 4:

For the circuit shown below it is given that, $i_{1}(0)=5 \mathrm{~A}, i_{2}(0)=15 \mathrm{~A}$, and $v(t)=200 e^{-500 t} \mathrm{~V}$, for $t>0$.
a) Find the current $i(t)$ for $t \geq 0$.
b) Sketch the current $i(t)$ for $t \geq 0$.

Solution:

a) First of all we combine the three inductors into one inductor in two steps:

Step 1: $(4 \mathrm{mH} / / 12 \mathrm{mH})=3 \mathrm{mH}$
Step 2: $\mathrm{L}_{\mathrm{eq}}=17 \mathrm{mH}+3 \mathrm{mH}=20 \mathrm{mH}$.
We also use KCL to find $\mathrm{i}(0)=\mathrm{i}_{1}(0)+\mathrm{i}_{2}(0)=5 \mathrm{~A}+15 \mathrm{~A}=20 \mathrm{~A}$.

Then we have:

$$
\begin{aligned}
& i(t)=i(0)+\frac{1}{L_{e q}} \int_{0}^{t}\{-v(x)\} d x \\
& i(t)=20+\frac{1}{20 m} \int_{0}^{t}\left\{-200 e^{-500 x}\right\} d x \\
& i(t)=20+\frac{200}{(20 m)(500)}\left[e^{-500 x}\right]_{0}^{t} \\
& i(t)=20 e^{-500 t}, \text { for } t \geq 0
\end{aligned}
$$

b) Sketching of $\mathrm{i}(\mathrm{t})$ for $t \geq 0$:

