

1.2
(a) $\mathrm{x} 1=-\mathrm{u}(\mathrm{t}+2)+2 \mathrm{u}(\mathrm{t})-\mathrm{u}(\mathrm{t}-2)$
(b) The triangle in $[0,2]$ is $\mathrm{x}(\mathrm{t})=\mathrm{r}(\mathrm{t})-\mathrm{r}(\mathrm{t}-2)-2 \mathrm{u}(\mathrm{t}-2)$;
1.3

$$
\begin{aligned}
& x_{e}(-t)=\frac{x(-t)+x(-(-t))}{2}=\frac{x(-t)+x(t)}{2}=x_{e}(t), \text { so } \mathrm{x}_{\mathrm{e}}(\mathrm{t}) \text { is even; } \\
& x_{0}(-t)=\frac{x(-t)-x(-(-t))}{2}=-\frac{x(t)-x(-t)}{2}=-x_{0}(t), \text { so } \mathrm{x}_{0}(\mathrm{t}) \text { is odd. }
\end{aligned}
$$

1.4

a. $\int_{0}^{9}[\cos \pi \tau] \delta(\tau-3) d \tau=\cos 3 \pi=-1$
b. $\int_{5}^{9}[\cos \pi \tau] \delta(\tau-3) d \tau=0$
c. $\int_{-\infty}^{\infty}[\cos (t-\tau)] \delta(\tau+3) d \tau=\cos (t+3)$
d. $\int_{0}^{\infty}[\cos (t-\tau)] \delta(\tau+3) d \tau=0$
e. $\int_{-\infty}^{\infty}\left(1+t^{2}\right) \dot{\delta}(t-1.5) d t=-\left.\frac{d}{d t}\left(1+t^{2}\right)\right|_{t=1.5}=-3$
1.5
a) Nonlinear
b) noncausal
c) Dynamic
e) Fixed
1.6
(a) $E=\int_{-\infty}^{\infty}|x(t)|^{2} d t=\int_{0}^{\infty} e^{-2 a t} d t=\frac{1}{2 a}<\infty$

Thus, $x(t)$ is an energy signal.
(b) $\mathrm{x}(\mathrm{t})$ is periodic \rightarrow it has average power given by

$$
\begin{aligned}
P & =\frac{1}{T_{0}} \int_{0}^{T_{0}}[x(t)]^{2} d t=\frac{\omega_{0}}{2 \pi} \int_{0}^{2 \pi / \omega_{0}} A^{2} \cos ^{2}\left(\omega_{0} t+\theta\right) d t \\
& =\frac{A^{2} \omega_{0}}{2 \pi} \int_{0}^{2 \pi / \omega_{0}} \frac{1}{2}\left[1+\cos \left(2 \omega_{0} t+2 \theta\right)\right] d t=\frac{A^{2}}{2}<\infty
\end{aligned}
$$

\rightarrow it is a power signal
1.7
(a) Periodic, period $=\pi$
(b) Periodic, period $=\pi$
(c) Nonperiodic
(d) Periodic, period $=2$
1.8

See that for $t<0, x(\tau)$ and $h(t-\tau)$ overlap from $\tau=-\infty$ to $\tau=t$,
while for $t>0$, from $\tau=-\infty$ to $\tau=0$. Hence, for $t<0$, we have

$$
y(t)=\int_{-\infty}^{t} e^{\alpha \tau} e^{-\alpha(t-\tau)} d \tau=e^{-\alpha t} \int_{-\infty}^{t} e^{2 \alpha \tau} d \tau=\frac{1}{2 \alpha} e^{\alpha t}
$$

For $t>0$, we have

$$
y(t)=\int_{-\infty}^{0} e^{\alpha \tau} e^{-\alpha(t-\tau)} d \tau=e^{-\alpha t} \int_{-\infty}^{0} e^{2 \alpha \tau} d \tau=\frac{1}{2 \alpha} e^{-\alpha t}
$$

