Problem 1.1: Consider the signal $\mathrm{x}_{1}(\mathrm{t})$ shown in the following figure. Plot
a) $x_{1}(t-1)$
b) $x 1(-t+2)$
c) $\mathrm{x}_{1}(\mathrm{t}-1)+\mathrm{x}_{1}(-\mathrm{t}+2)$
d) $x_{1}(t-1)-x_{1}(-t+2)$, and
e) $x_{1}(t-1) x_{1}(-t+2)$.

Problem 1.2: Express the signals in the following figures in terms of step and ramp functions.

Problem 1.3: Consider a signal $\mathrm{x}(\mathrm{t})$. Define

$$
x_{e}(t)=\frac{x(t)+x(-t)}{2} \text { and } x_{o}(t)=\frac{x(t)-x(-t)}{2}
$$

Show that $\mathrm{x}_{\mathrm{e}}(\mathrm{t})$ is even and $\mathrm{x}_{0}(\mathrm{t})$ is odd.
Note: a signal $x(t)$ is even if $x(t)=x(-t)$ and is odd if $x(t)=-x(-t)$.
Problem.1.4: Evaluate the following integrals
a. $\int_{0}^{9}[\cos \pi \tau] \delta(\tau-3) d \tau$
b. $\int_{5}^{9}[\cos \pi \tau] \delta(\tau-3) d \tau$
c. $\int_{-\infty}^{\infty}[\cos (t-\tau)] \delta(\tau+3) d \tau$
d. $\int_{0}^{\infty}[\cos (t-\tau)] \delta(\tau+3) d \tau$
e. $\int_{-\infty}^{\infty}\left(1+t^{2}\right) \dot{\delta}(t-1.5) d t$

Problem 1.5: A system is defined by input $\mathrm{x}(\mathrm{t})$ and output $\mathrm{y}(\mathrm{t})$ such that $y(t)=6 x(t+2)+7$. Is this system:
a) Linear?
b) Causal?
c) Dynamic?
d) Fixed?

Problem 1.6:
Determine whether the following signals are energy signals, power signals, or neither.
(a) $x(t)=e^{-a t} u(t), \quad a>0$
(b) $x(t)=A \cos \left(\omega_{0} t+\theta\right)$

Problem 1.7: Determine whether or not each of the following signals is periodic. If a signal is periodic, determine its fundamental period.
(a) $x(t)=\cos \left(2 t+\frac{\pi}{4}\right)$
(b) $x(t)=\cos ^{2} t$
(c) $x(t)=(\cos 2 \pi t) u(t)$
(d) $x(t)=e^{j \pi t}$

Problem 1.8:
Compute the output $y(t)$ for a continuous-time LTI system whose impulse response $h(t)$ and the input $x(t)$ are given by

$$
h(t)=e^{-\alpha t} u(t) \quad x(t)=e^{\alpha t} u(-t) \quad \alpha>0
$$

