### **Trigonometric Fourier Series**

Let g(t) be one of the following:

- 1. a periodic signal with period  $T_0$ ,
- 2. any signal in which we are interested in the time interval of  $t_1 \le t \le t_1 + T_0$ ,

The signal g(t) in the interval  $t_1 \le t \le t_1 + T_0$  can be represented by the trigonometric Fourier series in terms of a sum of the following sinusoids:

{1, 
$$\cos(\omega_0 t)$$
,  $\cos(2\omega_0 t)$ ,  $\cos(3\omega_0 t)$ , .....,  $\sin(\omega_0 t)$ ,  $\sin(2\omega_0 t)$ ,  $\sin(3\omega_0 t)$ , .....},

or the **compact Fourier series** sinusoids:

$$\{1, \cos(\omega_0 t + \theta_1), \cos(2\omega_0 t + \theta_2), \cos(3\omega_0 t + \theta_3), \dots\},$$
(1)

where the frequency  $\omega_0$  and  $T_0$  are related by  $T_0 = 2\pi / \omega_0$ .

The basis for this representation is that the different sinusoids shown above are "orthogonal". Two signals a(t) and b(t) are orthogonal over a period T of time if

$$\int_T a(t) \cdot b(t) dt = 0.$$

This is true for all of the sinusoids given above in (1) over a period  $T_0 = 2\pi / \omega_0$ .

The representation of g(t) is given by

$$g(t) = a_0 + a_1 \cos(\omega_0 t) + a_2 \cos(2\omega_0 t) + a_3 \cos(3\omega_0 t) + \dots + b_1 \sin(\omega_0 t) + b_2 \sin(2\omega_0 t) + b_3 \sin(3\omega_0 t) + \dots$$
  $t_1 \le t \le t_1 + T_0$ 

which can be written as

$$g(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)$$
 
$$t_1 \le t \le t_1 + T_0$$

or using the compact sinusoids as

$$g(t) = C_0 + \sum_{n=1}^{\infty} C_n \cos(n\omega_0 t + \theta_n)$$

$$t_1 \le t \le t_1 + T_0$$

The coefficients  $a_0$ ,  $a_n$ , and  $b_n$  shown above can be evaluated using

$$a_0 = \frac{1}{T_0} \int_{t_1}^{t_1 + T_0} g(t) dt ,$$

The coefficient  $a_0$  represents the average (or the DC value) of the function. So, for functions that have zero DC, the coefficient  $a_0$  will be zero.

$$a_n = \frac{2}{T_0} \int_{t_1}^{t_1+T_0} g(t) \cos(n\omega_0 t) dt \qquad n = 1, 2, 3, \dots$$

Ch. II: Intro. to Signals

$$b_n = \frac{2}{T_0} \int_{t_1}^{t_1 + T_0} g(t) \sin(n\omega_0 t) dt \qquad n = 1, 2, 3, \dots$$

A trigonometric identity in the form of

$$a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) = C_n \cos(n\omega_0 t + \theta_n),$$

exits, where the relation between the coefficients  $a_n$  and  $b_n$  and the coefficients  $C_n$  and  $\theta_n$ is given by

$$C_n = \sqrt{a_n^2 + b_n^2} ,$$

and

$$\theta_n = \tan^{-1} \left( \frac{-b_n}{a_n} \right)$$

such that  $C_0 = a_0$ .

### **Comments:**

- 1. All cosine functions  $\cos(n\omega_0 t)$  are even functions (they are symmetric about the y-axis). Since an odd function can never be represented in terms of even functions,  $a_n$  of the Fourier series for an odd function are always zero for all values of n.
- 2. All sine functions  $\sin(n\omega_0 t)$  are odd functions (they are anti-symmetric about the y-axis or symmetric about the origin). Since an even function can never be represented in terms of odd functions,  $b_n$  of the Fourier series for an even function are always zero for all values of n.
- 3. For a periodic function that is not even and not odd, at least some of the coefficients  $a_n$  and some of the coefficients  $b_n$  will be non zero.
- The frequency  $\omega_0$  is called the fundamental frequency of the periodic 4. signal f(t) and the multiple of this frequency  $n\omega_0$  is called the  $n^{th}$ harmonic of this fundamental frequency. The fundamental frequency represents the lowest frequency component contained in f(t). Two signals: a sine wave with frequency  $\omega_0$  and a square wave with frequency  $\omega_0$  will sound similar when played using a speaker except that the square wave will also contain higher harmonics.

5. The Fourier series of part of a non-periodic signals is similar to the Fourier series of a periodic signal that is obtained by repeating that part of non-periodic signal to the right and to the left.

# **Exponential Fourier Series**

We also can represent the function g(t) in terms of complex exponentials as

$$g(t) = \sum_{n=-\infty}^{\infty} D_n e^{jn\omega_0 t} = D_0 + \sum_{\substack{n=-\infty\\(n\neq 0)}}^{\infty} D_n e^{jn\omega_0 t}$$

where

$$D_n = \frac{1}{T_0} \int_{T_0} g(t) e^{-jn\omega_0 t} dt.$$

Therefore,  $D_n$  is related to  $C_n$  and  $\theta_n$  as

$$\mid D_{\scriptscriptstyle n}\mid = \mid D_{\scriptscriptstyle -n}\mid = \frac{1}{2}\,C_{\scriptscriptstyle n}\,, \qquad \angle\,D_{\scriptscriptstyle n} = -\angle\,D_{\scriptscriptstyle -n} = \theta_{\scriptscriptstyle n}\,.$$

Examples:

1. Find the Fourier series coefficients  $a_n$  and  $b_n$  for

a) the aperiodic signal 
$$g(t) = |t|$$
,  $-0.5 \le t \le 1.5$ ,

Solution:

Although this signal is non–periodic, we can still find its Fourier series expansion between the two points t = -0.5 to 1.5 as follows.

We will consider  $T_0$  to be  $T_0 = 1.5 - (-0.5) = 2 \sec \rightarrow \omega_0 = 2\pi/T_0 = \pi$  rad/s

$$a_0 = \frac{1}{2} \int_{-0.5}^{1.5} |t| dt$$

$$= \frac{1}{2} \int_{-0.5}^{0} -t \cdot dt + \frac{1}{2} \int_{0}^{1.5} t \cdot dt$$

$$= -\frac{1}{4} t^2 \Big|_{-0.5}^{0} + \frac{1}{4} t^2 \Big|_{0}^{1.5}$$

$$= -\frac{1}{4} (0 - 0.25) + \frac{1}{4} (2.25 - 0)$$

$$= 0.625$$

$$a_{n} = \frac{1}{2} \int_{-0.5}^{1.5} |t| \cos(n\omega_{0}t) dt$$

$$= \frac{1}{2} \int_{-0.5}^{0} -t \cdot \cos(n\omega_{0}t) dt + \frac{1}{2} \int_{0}^{1.5} t \cdot \cos(n\omega_{0}t) dt$$

Now we will have to integrate using the integration by parts method. That is

$$\int_{T} u dv = uv \Big|_{T} - \int_{T} v du$$

So, if we let u = t and  $dv = \cos(n\omega_0 t) \cdot dt$ , we will get, du = dt and  $v = (1/n\omega_0) \sin(n\omega_0 t)$ 

$$a_n = -\frac{1}{2} \left[ \left[ \frac{t}{n\pi} \sin(n\pi t) \right]_{-0.5}^{0} - \int_{-0.5}^{0} \frac{1}{n\pi} \sin(n\pi t) dt \right] + \frac{1}{2} \left[ \left[ \frac{t}{n\pi} \sin(n\pi t) \right]_{0}^{1.5} - \int_{0}^{1.5} \frac{1}{n\pi} \sin(n\pi t) dt \right]$$

Now completing the remaining integrations and evaluating the coefficients  $a_n$  becomes straight forward. Computing the coefficients  $a_n$  is performed in exactly the same manner.

## b) the periodic signal f(t) shown below



### c) the periodic signal h(t) shown below

