

Chapter 17

SOLUBILITY EQUILIBRIA

(Part II)

Dr. Al-Saad

17.4

Solubility Equilibria

- The concept of chemical equilibrium helps to predict how much of a specific ionic compound (salt) will dissolve in water.
- Ionic compounds can be either:
 - soluble in water. (We do not need to study the solubility of this type)
 - nonsoluble or <u>very slightly</u> soluble in water.
 Different ionic compounds have different degrees of solubility in water. (Exploring the solubility of this type of compounds is useful)
- One useful principle used to study the extent of solubility of ionic compounds is the *solubility* product constant (K_{sp}).

Dr. Al-Saadi

17.4

Solubility Product Constant

- Consider an ionic compound MX, which is slightly soluble in water.
 - o Most of the compound will not be very soluble in water.
 - o A very small amount of the compound will dissolve:

$$MX_n(s) \iff M^{n+}(aq) + nX^{-}(aq)$$

The equilibrium expression for the above solubility process is:

An example is the dissolution of silver chloride in water

$$AgCl(s) \iff Ag^+(aq) + Cl^-(aq)$$

The equilibrium expression is:

$$K_{\rm sp} = [{\rm Ag}^+][{\rm CI}^-] = 1.6 \times 10^{-10}$$

Dr. Al-Saadi

17.4 $PhCl_2(s) \Longrightarrow Ph^{2+}(aq) + 2Cl^{-}(aq)$ 1.8×10^{-11} $Al(OH)_3(s) \longrightarrow Al^{1+}(aq) + 3OH^{-}(aq)$ Lead(II) chromate $\operatorname{PbCrO}_{\delta}(s) \Longleftrightarrow \operatorname{Pb}^{2+}(aq) + \operatorname{CrO}_{\delta}^{2-}(aq)$ 2.0×10^{-14} $BaCO_2(s) \rightleftharpoons Ba^{2+}(aq) + CO_2^2(aq)$ 8.1×10^{-9} Barium carbonate $PbF_2(s) \Longrightarrow Pb^{2+}(aq) + 2F^{-}(aq)$ Lead(II) fluoride 4.0×10^{-8} $BaF_2(s) = Ba^{2+}(aq) + 2F^{-}(aq)$ 1.7×10^{-6} $PbI_2(s) \Longrightarrow Pb^{2+}(aq) + 21^{-}(aq)$ 1.4×10^{-8} Lead(II) iodide $\mathsf{BaSO}_4(s) \Longleftrightarrow \mathsf{Ba}^{2+}(aq) + \mathsf{SO}_4^{2-}(aq)$ $PbS(s) \longrightarrow Pb^{2+}(aq) + S^{2-}(aq)$ 1.6×10^{-72} Bismuth sulfide $Bi_2S_3(s) \implies 2Bi^{3+}(aq) + 3S^{2-}(aq)$ Magnesium carbonate Magnesium hydroxide $MgCO_3(s) \longrightarrow Mg^{2+}(aq) + CO_3^{2-}(aq)$ 4.0×10^{-5} 8.0×10^{-28} $CdS(s) \rightleftharpoons Cd^{2+}(ag) + S^{2-}(ag)$ Cadmium sulfide 1.2×10^{-11} $Mg(OH)_{H}(s) \longrightarrow Mg^{2+}(aq) + 2OH^{-}(aq)$ $CaCO_3(s) \Longrightarrow Ca^{2+}(aq) + CO_3^{2-}(aq)$ Manganese(II) sulfide $MnS(s) \rightleftharpoons Mn^{2+}(aq) + S^{2-}(aq)$ Calcium fluoride $\operatorname{CaF}_2(s) \Longrightarrow \operatorname{Ca}^{2+}(aq) + 2\operatorname{F}^-(aq)$ 4.0×10^{-11} Mercury(I) chloride $Hg_2Cl_2(s) \longrightarrow Hg_2^{2+}(aq) + 2Cl^{-}(aq)$ 3.5×10^{-11} Calcium hydroxide $Ca(OH)_2(s) \rightleftharpoons Ca^{2+}(aq) + 2OH^{-}(aq)$ 8.0×10^{-6} $HgS(s) \Longrightarrow Hg^{2+}(aq) + S^{2-}(aq)$ 4.0×10^{-5} Mercury(II) sulfide 1.2×10^{-26} $Ca_3(PO_4)_7(s) \implies 3Ca^{2+}(aq) + 2PO_4^{3-}(aq)$ Calcium phosphate Nickel(II) sulfide $NiS(s) \Longrightarrow Ni^{2+}(aq) + S^{2-}(aq)$ mium(III) hydroxide $Cr(OH)_3(s) = Cr^{3+}(aq) + 3OH^-(aq)$ Silver bromide $AgBr(s) \Longrightarrow Ag^{+}(aq) + Br^{-}(aq)$ 7.7×10^{-13} Cobalt(II) sulfide $CoS(s) \longrightarrow Co^{2+}(aq) + S^{2-}(aq)$ 4.0×10^{-21} $Ag_2CO_3(s) \Longrightarrow 2Ag^{\dagger}(aq) + CO_3^{\dagger}(aq)$ 8.1×10^{-12} Silver carbonate $CuBr(s) = Cu^{2}(ag) + Br^{2}(ag)$ 4.2×10^{-8} $AgCl(s) \longrightarrow Ag^{+}(aq) + Cl^{-}(aq)$ Copper(1) bromide $Cul(s) \longrightarrow Cu^{+}(aq) + \Gamma^{-}(aq)$ 5.1×10^{-12} Copper(1) iodide Silver iodide $Agl(s) \longrightarrow Ag^+(aq) + I^-(aq)$ 8.3×10^{-17} $Cu(OH)_2(s) \Longrightarrow Cu^{2+}(aq) + 2OH^-(aq)$ $Ag_sS(s) \longrightarrow 2Ag^+(aq) + S^{2-}(aq)$ Silver sulfide 6.0×10^{-5} Copper(II) sulfide $CuS(s) \longrightarrow Cu^{2+}(ag) + S^{2-}(ag)$ 6.0×10^{-37} Strontium carbonate $Fe(OH)_2(s) \Longrightarrow Fe^{2+}(aq) + 2OH^-(aq)$ 1.6×10^{-14} Iron(II) hydroxide Strontium sulfate $SrSO_4(s) \Longrightarrow Sr^{2+}(aq) + SO_4^{2-}(aq)$ 3.8×10^{-7} Iron(III) hydroxide $F_C(OH)_2(s) \Longrightarrow F_C^{2+}(aq) + 3OH^-(aq)$ 1.1×10^{-36} 1.0×10^{-26} $SnS(s) = Sn^{2+}(aa) + S^{2-}(aa)$ Tim(II) sulfide $\mathsf{FeS}(\mathfrak{s}) \Longrightarrow \mathsf{Fe}^{2+}(nq) + \mathsf{S}^{2-}(nq)$ $Z\alpha S(s) \rightleftharpoons Z\alpha^{2+}(\alpha q) + S^{2-}(\alpha q)$ Lead(II) carbonate $PbCO_7(s) \Longrightarrow Pb^{2+}(aq) + CO_7^{2-}(aq)$ 3.3×10^{-14}

- All above compounds are very slightly soluble in water. None of them are soluble in water.
- The smaller the K_{sp} value, the less soluble the compound. This is valid for compounds of similar formulas, such as comparing AgCl with CuBr, and CaF₂ with Fe(OH)₂.

Dr. Al-Saadi

Solubility Calculations

- Molar solubility is the number of moles of solute in 1 L of a saturated solution (mol/L) usually at 25°C.
- Solubility is the number of grams of solute in 1 L of a saturated solution (g/L) usually at 25°C.
- K_{sp} can be used to determine molar solubility (as well as solubility). It is handled as an equilibrium problem, and equilibrium tables are used.
- Also, molar solubility can be used to determine the value of the K_{sp}.

Saturated Ag₂S solution

 $K_{\rm sp}$ for Ag₂S is 6.3 x 10⁻⁵⁰

Dr. Al-Saad

5

Solubility Calculations

Exercise:

Calculate the solubility of SnS in g/L at 25°C. $K_{\rm sp}$ for SnS is 1.0×10^{-26} .

SnS (s)
$$\iff$$
 Sn²⁺ (aq) + S²⁻ (aq)

(M)	SnS	Sn ²⁺	S ²⁻
Initial conc.		0	0
Change in conc.		+ \$	+ 5
Equilibrium conc.		S	s

$$K_{\rm sp} = [{\rm Sn}^{2+}][{\rm S}^{2-}] = (s)(s) = s^2 = 1.0 \times 10^{-26}$$

 $s = 1.0 \times 10^{-13} M$

This means a maximum of 1.0×10^{-13} mol of Sn^{2^+} ions and 1.0×10^{-13} mol of S^{2^-} ions can be dissolved in 1 L water.

Molar solubility of SnS is then $1.0\times10^{\text{-}13}~\text{mol/L}$

Solubility =
$$\frac{1.0 \times 10^{-13} \text{ mol}}{1 \text{ L}} \times \frac{150.77 \text{ g}}{1 \text{ mol}} = 1.5 \times 10^{-11} \text{ g/L}$$

Predicting Precipitation Reactions

- To predict whether a precipitation will form or not, we calculate the reaction quotient (Q) for the possible precipitation for the initial state of mixing two solutions.
 - ∘ If $Q < K_{sp}$, no precipitation is going to form.
 - ∘ If $Q > K_{sp}$, precipitation is going to form.
 - If $Q = K_{sp}$, the solution is saturated.
- At the first stage, you should be able to determine which compound is soluble in water and which is very slightly soluble in water. You calculate Q for the latter compound and then compare it with the listed K_{sp} values.

 $Q = [Ag^+]_i[CI^-]_i$

Dr. Al-Saad

7

Predicting Precipitation Reactions

Exercise:

If 2.00 mL of 0.200 M NaOH solution is added to 1.00 L of 0.100 M CaCl $_2$ solution, will a precipitate form? $K_{\rm sp}$ of Ca(OH) $_2$ is 8 \times 10⁻⁶.

The slightly soluble compound that may precipitate is Ca(OH)₂.

$$Q = [Ca^{2+}]_i [OH^-]_i^2$$

$$[\text{Ca}^{2^{+}}]_{i}$$
 = $(1.00 \times 10^{-3} \text{ L CaCl}_{2}) \times \frac{0.100 \text{ mol CaCl}_{2}}{1 \text{ L CaCl}_{2}} \times \frac{1 \text{ mol Ca}^{2^{+}}}{1 \text{ mol CaCl}_{2}}$

$$= 1.00 \times 10^{-4} \text{ mol Ca}^{2+}$$

$$[\mathrm{OH^-]_{\it i}} = (2.00 \times 10^{-3} \ \mathrm{L\ NaOH}) \times \ \frac{0.200 \ \mathrm{mol\ NaOH}}{1 \ \mathrm{L\ NaOH}} \ \times \ \frac{1 \ \mathrm{mol\ OH^-}}{1 \ \mathrm{mol\ NaOH}}$$

$$= 4.00 \times 10^{-4} \text{ mol OH}^-$$

$$Q = [Ca^{2+}]_i [OH^-]_i^2 = (1.00 \times 10^{-4})(4.00 \times 10^{-4})^2 = 1.6 \times 10^{-11}$$

 $K_{\rm sp}$ of Ca(OH) $_2$ is 8×10^{-6} . Thus $K_{\rm sp}>Q$, and no precipitate will form.

Dr. Al-Saadi

Factors Affecting Solubility

- There are some factors that affect solubility. We will be discussing:
 - o The common ion effect.
 - o The pH.
 - o Complex ion formation.

Dr. Al-Saad

9

Factors Affecting Solubility

■ The common ion effect.

Consider dissolving AgCl salt in pure water to get a saturated aqueous solution of AgCl.

The solubility of AgCl in water at 25°C is 1.3×10^{-5} M.

The solubility of AgCl in water can be calculated from its solubility product constant $(K_{50} = 1.6 \times 10^{-10})$

So how about if we dissolve AgCl in solution other than water?

Dr. Al-Saad

■ The common ion effect.

0.10 M AgNO₃ solution

Consider now the addition of AgCl salt to a solution already containing Ag⁺ ions.

Before addition s mol of AgCl

$$[Ag^+] = 0.10 M$$
 dissolves to $[Ag^+]_e$ $[Cl^-] = 0 M$ $[Cl^-]_{eq}$

$$\frac{After \ addition}{[Ag^+]_{eq} = 0.10 \ M + s}$$
$$[Cl^-]_{eq} = s$$

17.5

$$K_{\rm sp} = 1.6 \times 10^{-10} = {\rm [Ag^+]}_{\rm eq} {\rm [Cl^-]}_{\rm eq} = (0.10 + s)(s)$$

 $1.6 \times 10^{-10} \approx (0.10)(s)$
 $s = 1.6 \times 10^{-9} M$

AgCl becomes significantly less soluble (from 10^{-5} to 10^{-9} M) due the presence of common ions (Ag⁺ ions) in the solution.

Dr. Al-Saadi

Factors Affecting Solubility

■ The common ion effect.

The common ion effect is an example of Le Châtelier's principle. The presence of a second salt (normally very soluble in water) that produces an ion common to a solubility equilibrium will reduce solubility.

 $\Lambda = CL(a) \qquad \Rightarrow \qquad \Lambda = {}^{+}(aa) + CL^{-}(aa)$

 $AgCl(s) \longleftrightarrow Ag^{+}(aq) + Cl^{-}(aq)$

Dr. Al-Saadi

17.5

Factors Affecting Solubility

Example:

Calculate the molar solubility of BaSO₄ in 0.0010 M Na₂SO₄. BaSO₄ (s) \iff Ba²⁺ (aq) + SO₄²⁻ (aq) $K_{sp} = 1.1 \times 10^{-10}$

(M)	BaSO ₄ (s)	Ba ²⁺ (<i>aq</i>)	SO ₄ ²⁻ (aq)
Initial conc.		0	1 × 10 ⁻³
Change in conc.		+ \$	+ 5
Equilibrium cons			1 × 10-3 + 6

For comparison, the solubility in pure water is: $s = (1.1 \times 10^{-10})^{1/2}$ = $1.0 \times 10^{-5} M$

$$K_{sp} = 1.1 \times 10^{-11} = [Ba^{2+}][SO_4^{2-}] = (s)(1 \times 10^{-3} + s)$$

 $1.1 \times 10^{-11} \approx (s)(1 \times 10^{-3})$
 $s = 1 \times 10^{-7} M$

Dr Al-Saadi

13

17.5

Factors Affecting Solubility

■ The pH.

It is another example of applying Le Chatelier's principle in solubility reactions.

 Dissolution of ionic compounds containing OH⁻ions are directly affected by the pH of the solution they are dissolved in.

$$Mg(OH)_2(s) \rightleftharpoons Mg^{2+}(aq) + 2OH^{-}(aq)$$

- ➤ Increasing the pH by adding OH⁻ ions shifts the equilibrium to the left and, as a result, decreases the solubility of the salt.
- decreasing the pH by adding H⁺ ions or removing OH⁻ ions shifts the equilibrium to the right and, as a result, increases the solubility of the salt.

Dr. Al-Saadi

17.5

Factors Affecting Solubility

■ The pH.

It is another example of applying Le Chatelier's principle in solubility reactions.

 Reactions involving basic anions are affected through the hydrolysis reaction of that anion.

$$BaF_2(s) \Longrightarrow Ba^{2+}(aq) + 2F^{-}(aq)$$

➤ Lowering the pH "higher [H⁺]" consumes more of the basic anion.

$$HF(aq) \rightleftharpoons H^{+}(aq) + F^{-}(aq)$$

causing the first reaction to shift to the right and, thus, the solubility of the salt increases.

➤ Salts that don't hydrolyze (basic anions of strong bases) such as Cl⁻, NO₃⁻ or Br⁻ ions are not affected by the pH.

Dr. Al-Saadi

1 -

17 5

Factors Affecting Solubility

Example:

Calculate the solution pH above which the solubility of $Ca(OH)_2$ will decrease.

$$Ca(OH)_2(s) \iff Ca^{2+}(aq) + 2OH^-(aq) \qquad K_{sp} = 8.0 \times 10^{-6}$$

$$K_{\rm sp} = 8.0 \times 10^{-6} = [{\rm Ca^{2+}}][{\rm OH^-}]^2 = (s)(2s)^2$$

$$s = 1.3 \times 10^{-2} M$$

$$[OH^{-}] = 2(1.3 \times 10^{-2} M) = 2.6 \times 10^{-2} M$$

pOH= -
$$\log (2.6 \times 10^{-2}) = 1.59$$

pH =
$$14.00 - 1.59 = 12.41 - \frac{\text{Ca(OH)}_2 \text{ solubility decreases}}{14.00 - 1.59} = \frac{12.41 - \frac{\text{Ca(OH)}_2 \text{ solubility}}{14.00}}{14.00} = \frac{14.00 - 1.59}{14.00} = \frac{14.00}{14.00} = \frac{14.0$$

Ca(OH)₂ solubility increases

0 _______ 16

Dr. Al-Saadi

Factors Affecting Solubility

Complex Ion Formation.

A *Complex ion* is an ion that involves a central metal cation (mostly are transition metal ions) bonded to one or more ions or molecules.

Tetraamminecopper(II) cation, $Cu(NH_3)_4^{2+}$, is one example of complex ions.

Complex ions exhibit beautiful colors when transition metal ions are contained at the central position.

Dr. Al-Saad

Dr. Al-Saadi

Co(H₂O)₆²⁺ CoCl₄²⁻

17.5

Factors Affecting Solubility

■ Complex Ion Formation.

We measure the tendency of a metal ion to form a complex ion using the *formation constant*, K_f , (or *stability constant*).

Complex Ion	Equilibrium Expression	Formation Constant (Kf
$Ag(NH_3)_2^+$	$Ag^+ + 2NH_3 \longrightarrow Ag(NH_3)_2^+$	1.5×10^{7}
Ag(CN) ₂	$Ag^+ + 2CN^- \longrightarrow Ag(CN)_2^-$	1.0×10^{21}
$Cu(CN)_4^{2-}$	$Cu^{2+} + 4CN^{-} \longrightarrow Cu(CN)_4^{2-}$	1.0×10^{25}
Cu(NH ₃) ₄ ²⁺	$Cu^{2+} + 4NH_3 \rightleftharpoons Cu(NH_3)_4^{2+}$	5.0×10^{13}
Cd(CN) ₄ ²⁻	$Cd^{2+} + 4CN^{-} \rightleftharpoons Cd(CN)_4^{2-}$	7.1×10^{16}
CdI ₄ ²⁻	$Cd^{2+} + 4I^{-} \rightleftharpoons CdI_4^{2-}$	2.0×10^{6}
HgCl ₄ ²⁻	$Hg^{2+} + 4Cl^{-} \Longrightarrow HgCl_4^{2-}$	1.7×10^{16}
HgI ₄ ²⁻	$Hg^{2+} + 4I^{-} \rightleftharpoons HgI_4^{2-}$	2.0×10^{30}
Hg(CN) ₄ ²⁻	$Hg^{2+} + 4CN^{-} \rightleftharpoons Hg(CN)_4^{2-}$	2.5×10^{41}
Co(NH ₃) ₆ ³⁺	$Co^{3+} + 6NH_3 \rightleftharpoons Co(NH_3)_6^{3+}$	5.0×10^{31}
$Zn(NH_3)_4^{2+}$	$Zn^{2+} + 4NH_3 \rightleftharpoons Zn(NH_3)_4^{2+}$	2.9×10^{9}

Factors Affecting Solubility

■ Complex Ion Formation.

$$Ag^+ + 2NH_3 \Longrightarrow Ag(NH_3)_2^+ \qquad K_f = 1.5 \times 10^7$$

$$K_{\rm f} = \frac{[{\sf Ag}({\sf NH}_3)_2^+]}{[{\sf Ag}^+][{\sf NH}_3]^2} = 1.5 \times 10^7$$

Consider adding aqueous ammonia to a saturated AgCl solution.

Factors Affecting Solubility

■ Complex Ion Formation.

Let's write equilibrium equations for the previous experiment.

AgCl (s)
$$\Longrightarrow$$
 Ag⁺(aq) + Cl⁻(aq) $K_{sp} = 1.6 \times 10^{-10}$
Ag⁺(aq) + 2NH₃(aq) \Longrightarrow Ag(NH₃)₂⁺(aq) $K_f = 1.5 \times 10^7$

$$AgCl(s) + 2NH_3(aq) \iff Ag(NH_3)_2^+(aq) + Cl^-(aq)$$
 $K'' = ?$

$$K'' = K_{sp} \times K_f = 1.6 \times 10^{-10} \times 1.5 \times 10^7 = 2.4 \times 10^{-3}$$

 $K'' >> K_{sp}$

In general, the formation of complex ions *increases* the solubility of a substance.

Dr. Al-Saadi

Exercises on Solubility Equilibria

■ Calculate the $K_{\rm sp}$ value for bismuth sulfuide (Bi₂S₃), which has a solubility of 1.0×10^{-15} mol/L at 25° C.

Precipitation of bismuth sulfide

Answer: 1.1 × 10⁻⁷³

Dr. Al-Saad

Exercises on Solubility Equilibria

■ Calculate the molar solubility of CaF₂ salt ($K_{\rm sp}$ = 4.0 × 10⁻¹¹) in a 0.025 M NaF solution.

Answer: $6.4 \times 10^{-8} \text{ mol/L}$

Dr. Al-Saadi

Exercises on Solubility Equilibria

■ A solution is prepared by adding 750.0 mL of $4.00 \times 10^{-3} M$ Ce(NO₃)₃ to 300.0 mL of $2.00 \times 10^{-3} M$ KIO₃. Will Ce(IO₃)₃ solid ($K_{sp} = 1.9 \times 10^{-10}$) form from this solution?

Answer: $Q > K_{sp}$. Yes, it will

Dr. Al-Saad

22

Exercises on Solubility Equilibria

■ Calculate the equilibrium concentrations of Pb²⁺ and I⁻ ions in a solution formed by mixing 100.0 mL of 0.0500 M Pb(NO₃)₂ and 200.0 mL of 0.100 M NaI solutions. The $K_{\rm sp}$ for PbI₂ is 1.4×10^{-8} .

Dr. Al-Saadi

Answer: $[Pb^{2+}] = 1.3 \times 10^{-5} M$

 $[I^-] = 3.3 \times 10^{-2} M$

Exercises on Solubility Equilibria

■ Calculate the concentrations of Cd^{2+} , $Cd(CN)_4^{2-}$, and CN^{-1} ions at equilibrium when 0.50 g of $Cd(NO_3)_2$ dissolves in 5.0×10^2 mL of 0.50 M NaCN. The K_f of formation for $Cd(CN)_4^{2-}$ ions is 7.1×10^{16} .

Answer : $[Cd^{2+}]$ = 1.1 × 10⁻¹⁸ M $[Cd(CN)_4^{2-}]$ = 4.2 × 10⁻³ M $[CN^-]$ = 0.48 M

Dr. Al-Saad