

Chapter 16

ACIDS AND BASES

(Part I)

Dr. Al-Saac

16.1

Brønsted Acids and Bases

A Brønsted acid is a species that donates a proton.
 (a proton donor).

$$HCI(aq) + H_2O(I) \iff H_3O^+(aq) + CI^-(aq)$$
acid
$$hydronium ton base$$

A *Conjugate base* is what remains of the acid after the donation of a proton.

A Brønsted base is a species that accepts a proton.
 (a proton acceptor).

$$NH_3(aq) + H_2O(I) \iff NH_4^+(aq) + OH^-(aq)$$
base

conjugate
acid

A *Conjugate acid* is a newly formed protonated species.

Dr. Al-Saaa

Brønsted Acids and Bases

Exercise:

Identify acids, conjugate acids, bases and conjugate bases in the reactions below:

```
(a) H_2SO_4(aq) + H_2O(I) \iff HSO_4^-(aq) + H_3O^+(aq)
acid base conjugate base conjugate acid

(b) NH_4^+(aq) + H_2O(I) \iff H_3O^+(aq) + NH_3(aq)
acid base conjugate acid conjugate base
```

Exercise:

```
What is the conjugate base of H_2PO_4^-?

H_2PO_4^-(aq) + H_2O(I) \iff HPO_4^{2-}(aq) + H_3O^+(aq)
conjugate base
```

Dr. Al-Saaa

16.2

The Acid-Base Properties of Water

 Water is a very weak electrolyte. It undergoes ionization to a very small extent.

$$H_2O(I) \iff H^+(aq) + OH^-(aq)$$
 $2H_2O(I) \iff H_3O^+(aq) + OH^-(aq)$
 $+ \iff \begin{bmatrix} O_1 & O_2 & O_1 & O_2 & O_2 & O_3 & O_4 & O_4$

The equilibrium expression of water autoionization is:

$$K_{w} = [H^{+}] [OH^{-}]$$
 or $K_{w} = [H_{3}O^{+}] [OH^{-}]$

Dr. Al-Saadi

Equilibrium Constant of Water Autoionization Reaction

 $K_{w} = [H^{+}][OH^{-}]$ or $K_{w} = [H_{3}O^{+}][OH^{-}]$

■ At 25°C for pure water:

 $[H_3O^+] = [OH^-] = 1.0 \times 10^{-7} M.$ $K_w = (1.0 \times 10^{-7})(1.0 \times 10^{-7}) = 1.0 \times 10^{-14}$

- One can influence the concentrations of [H₃O⁺] or [OH⁻] by adding an acid or base to pure water. However, at 25°C, the product of the hydronium ion and hydroxide ion concentrations is always constant.
- For example, if you add an acid to pure water, [H₃O⁺] increases and [OH⁻] decreases (a new equilibrium position), yet K_w remains constant.

Dr Al-Saadi

7

Equilibrium Constant in Aqueous Solutions

For any aqueous solution:

 $K_{\rm w} = [{\rm H_3O^+}] [{\rm OH^-}] = 1.0 \times 10^{-14}$ at 25°C

• Remember that K_{w} is always constant at a given temperature.

However, there can be infinite possibilities of the equilibrium positions for aqueous solution.

- When $[H_3O^+] = [OH^-]$; the solution is *neutral*.
- When $[H_3O^+] > [OH^-]$; the solution is *acidic*.
- o When $[H_3O^+]$ < $[OH^-]$; the solution is *basic*.

Dr. Al-Saadi

Equilibrium Constant in Aqueous Solutions

Exercise:

Calculate $[OH^-]$ in a solution in which the concentration of protons is 0.0012 M at 25°C. Is the solution acidic, basic or neutral?

At 25°C, $K_{\rm w}$ is always equal to 1 × 10⁻¹⁴ .

$$K_{\rm w} = [H_3O^+] [OH^-]$$

$$1 \times 10^{-14} = (0.0012) [OH^{-}]$$

 $[OH^{-}] = 1 \times 10^{-14} / 0.0012 = 8.3 \times 10^{-12} M$

The solution is acidic.

r. Al-Saadi

Equilibrium Constant in Aqueous Solutions

Exercise:

At 60°C, the value of K_w is 1×10^{-13} .

(a) Predict whether the reaction: $2H_2O(I) \iff H_3O^+(aq) + OH^-(aq)$ the reaction must

is exothermic or endothermic.

Since K_w increases with temperature, be endothermic.

(b) Calculate [H⁺] and [OH⁻] in a neutral solution at 60°C.

At 60°C,
$$K_{\rm w}$$
 = [H⁺][OH⁻] = 1 × 10⁻¹³ ; and [H⁺] = [OH⁻]
1 × 10⁻¹³ = [H⁺] [H⁺]
[H⁺] = (1 × 10⁻¹³)^{1/2} = 3 × 10⁻⁷

The pH Scale

The pH scale is a convenient way to express the acidity and basicity of a solution (the concentration of H₃O+ ions). The pH of a solution is defined as:

$$pH = -log [H_3O^+] or pH = -log [H^+]$$

Example:

Two solutions with hydronium ion concentrations of 1.0 × 10^{-4} M and 5.0×10^{-9} M. Find their pH values.

 $pH = -log(1.0 \times 10^{-4}) = 4.00$ The first solution;

 $pH = -log (5.0 \times 10^{-9}) = 8.30$ The second solution;

> The number of sig. fig in the log is equal to the number of decimal places in the answer

Dr. Al-Saadi

The pH Meter

- A pH meter is commonly used in laboratories to determine the pH of solutions.
- The pH meter is an electrical device with a probe that measures the proton concentration in a solution and displays the pH value.

Dr. Al-Saad

15

16.3

The pH Scale

TABLE 16.4	pH Values of Some Con	nmon Fluids	
Fluid	рН	Fluid	рН
Stomach acid	1.0	Saliva	6.4 - 6.9
Lemon juice	2.0	Milk	6.5
Vinegar	3.0	Pure water	7.0
Grapefruit juice	3.2	Blood	7.35-7.45
Orange juice	3.5	Tears	7.4
Urine	4.8-7.5	Milk of magnesia	10.6
Rainwater (in cle	ean air) 5.5	Household ammonia	11.5

Since $pH = -log [H_3O^+]$ then

 $[H_3O^+] = 10^{-pH}$

A measured pH is a convenient way to determine the concentration of hydronium ions in solutions

Dr. Al-Saadi

The pH Scale

Exercise:

What is the pH of a solution that has a hydronium ion concentration of $6.5 \times 10^{-5} M$?

Exercise:

What is the hydronium ion concentration of a solution with pH 3.65?

Dr Al-Saad

17

16.3

The pOH Scale

• A *pOH scale* is analogous to the pH scale. It is defined as:

$$pOH = - log [OH^-]$$

Also,

 $[OH^{-}] = 10^{-pOH}$

[OH ⁻] (<i>M</i>)	рОН	
0.10	1.00	A
1×10^{-3}	3.00	
1×10^{-5}	5.00	Basic
1×10^{-7}	7.00	Neutral
1×10^{-9}	9.00	Acidic
1×10^{-11}	11.00	The state of the s
1×10^{-13}	13.00	+

Dr. Al-Saadi

The pOH Scale

Exercise:

What is the pOH of a solution that has a hydroxide ion concentration of $4.3 \times 10^{-2} M$?

Exercise:

What is the hydroxide ion concentration of a solution with pOH 8.35?

Dr. Al-Saadi

20

16.3

The pH and pOH Scale

Exercise:

What is the hydroxide ion concentration and the pOH of a solution that has pH 9.45 at 25°C?

Dr. Al-Saadi

Strong Acids and Bases

 Strong acids and strong bases are completely ionized when dissolved in water.

TABLE 4.1 The Strong A	
Acid	Ionization Equation
Hydrochloric acid	$HCl(aq) \longrightarrow H^{+}(aq) + Cl^{-}(aq)$
Hydrobromic acid	$HBr(aq) \longrightarrow H^{+}(aq) + Br^{-}(aq)$
Hydroiodic acid	$HI(aq) \longrightarrow H^{+}(aq) + I^{-}(aq)$
Nitric acid	$HNO_3(aq) \longrightarrow H^+(aq) + NO_3^-(aq)$
Chloric acid	$HClO_3(aq) \longrightarrow H^+(aq) + ClO_3^-(aq)$
Perchloric acid	$HClO_4(aq) \longrightarrow H^+(aq) + ClO_4^-(aq)$
Sulfuric acid*	$H_2SO_4(aq) \longrightarrow H^+(aq) + HSO_4^-(aq)$

Note that although each sulfuric acid molecule has two ionizable hydrogen atoms, it only undergoes the first ionization completely, effectively producing one H^ ion and one HSO_4^- ion per H_2SO_4 molecule. The second ionization happens only to a very small extent.

Dr. Al-Saadi

16.3

Strong Acids

 Because strong acids are completely ionized in aqueous solutions, it is easy to determine the pH of that solution.

$$[H_3O^+]_{eq} = [strong acid]_{initial}$$

Exercise:

Calculate the concentration of HNO_3 and the pH of an aqueous solution that is $6.7 \times 10^{-5} M$ in HNO_3 at $25^{\circ}C$.

Dr. Al-Saadi

Strong Bases

- Strong bases are also *completely* ionized in aqueous solutions. They are:
- o the hydroxides of the alkaline metals (Li, Na, K, Rb and Group 1A Cs), and LiOH $(aq) \longrightarrow Li^{+}(aq) + OH^{-}(aq)$
- o the hydroxides of the heaviest earth alkaline metals Group 2A (Ca, Sr and Ba). $Ca(OH)_2(aq) \longrightarrow Ca^{2+}(aq) + 2OH^{-}(aq)$

 $[OH^{-}]_{eq} = [strong base]_{initial}$

 The pH of solutions containing a strong base can be easily calculated.

Dr. Al-Saadi

16.4

pH of Strong Bases

Exercise:

A 10.00-L solution contains 0.72 mol of NaOH at 25°C. Find its pH?

Dr. Al-Saad

pH of Strong Bases

Exercise:

At 25°C, what is the pH of a solution that is 0.034 M in $Ca(OH)_2$?

 $Ca(OH)_2$ completely ionizes, and the $[OH^-]$ is equal to twice the initial concentration of $Ca(OH)_2$.

Ca(OH)₂ (aq)
$$\longrightarrow$$
 Ca²⁺(aq) + 2OH⁻(aq)
[OH⁻] = 0.034 M Ca(OH)₂ × $\frac{2 \text{ mol OH}^-}{1 \text{ mol Ca(OH)}_2}$ = 0.068 M
pOH = -log (0.068) = 1.17
At 25°C; pH + pOH = 14.00
pH = 14.00 - 1.17 = 12.83

16.5

The Acid Ionization Constant

■ For a weak *monoprotic* acid HA:

$$HA(aq) + H_2O(I) \iff H_3O^+(aq) + A^-(aq)$$
 or:

$$HA(aq) \longrightarrow H^+(aq) + A^-(aq)$$

the equilibrium expression is:

$$K_{a} = \frac{[H_{3}O^{+}][A^{-}]}{[HA]}$$
 or $K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$

- K_a is called the acid ionization constant. Its magnitude indicates how strong a weak acid is.
 - Large K_a values indicates a stronger acid.
 - \circ Smaller K_a values indicates a weaker acid.

Dr. Al-Saadi

Calculating pH from K_a

Exercise:

Calculate the pH at 25°C of a 0.18 M solution of a weak acid that has $K_a = 9.2 \times 10^{-6}$.

$$K_{\rm a} = \frac{[{\rm H}^+] [{\rm A}^-]}{[{\rm HA}]} = 9.2 \times 10^{-6}$$

We use the same method we studied in the previous chapter.

 $HA(aq) \xrightarrow{\bullet \bullet \bullet} H^{+}(aq) + A^{-}(aq)$ $0.18 \quad 0 \quad 0$

Initial concentration (*M*): Change in concentration (*M*):

ion (M):

Equilibrium concentration (M):

Continue on the next slide ->

$$K_a = \frac{[H^+][A^-]}{[HA]} = 9.2 \times 10^{-6} = \frac{(x)(x)}{0.18 - x} = \frac{x^2}{0.18 - x}$$

Since K_a is very small compared to the initial acid concentration, we can make use of a useful approximation instead of solving the problem using a quadratic equation.

The 5% rule

$$\frac{x^2}{0.18 - x} \approx \frac{x^2}{0.18} = 9.2 \times 10^{-6}$$

Solving for *x*:

$$x = 1.3 \times 10^{-3} M$$

The above approximation is valid only when x is significantly smaller than the [HA]_{initial}.

(x must be less than 5% of [HA]_{initial} in order for the above approximation to be valid).

pH = -log [H⁺]
= -log (1.3 x
$$10^{-3}$$
)
= 2.89

Check the validity => $\frac{1.3 \times 10^{-3}}{0.18} \times 100\% = 0.72\% < 5\%$

Calculating pH from K_a

Exercise:

Try the previous example again with a 0.018 M solution at 25°C.

Dr. Al-Saadi

16.5

Calculating K_a from pH

Exercise:

An aqueous solution that is 0.25 M in a monoprotic weak acid has a pH of 3.47 at 25°C. Find its K_a .

$$[HA]_{initial} = 0.25 M$$

 $[H^+]_{eq} = 10^{-3.47} = 3.39 \times 10^{-4} M$

$$HA(aq) \longrightarrow H^{+}(aq) + A^{-}(aq)$$

Initial concentration (*M*): 0.25 0 0

Change in concentration (*M*): $-3.39 \times 10^{-4} + 3.39 \times 10^{-4} + 3.39 \times 10^{-4}$ Equilibrium concentration (*M*): 0.2497 3.39 $\times 10^{-4}$ 3.39 $\times 10^{-4}$

$$K_{\rm a} = \frac{[{\rm H}^+] [{\rm A}^-]}{[{\rm HA}]} = \frac{(3.39 \times 10^{-4})^2}{0.2497} = 4.6 \times 10^{-7}$$

Dr Al-Saadi

16.6

Weak Bases

Most of the bases are weak bases. Weak bases are not ionized completely when dissolved in water.

$$B(aq) + H_2O(l) \Longrightarrow HB^+(aq) + OH^-(aq)$$

weak base conjugate acid conjugate base

The equilibrium expression for the ionization of a weak base is: [HR+1][OH-1]

 $K_{b} = \frac{[HB^{+}][OH^{-}]}{[B]}$

- K_b is called the *base ionization constant*. Its magnitude indicates how strong a weak base is.
 - \circ Large K_b values indicates a stronger base.
 - \circ Smaller K_b values indicates a weaker base.

Dr. Al-Saadi

Solving Problems Involving Weak Bases

 Solving problems involving weak bases requires the same approach used for weak acids.

Make sure you notice that solving for *x* in a weak-base problem gives the hydroxide ion concentration rather than the hydronium ion concentration.

Dr. Al-Saad

37

Solving Problems Involving Weak Bases

Exercise:

Determine the K_b of a weak base if a 0.50 M solution of the base has a pH of 9.59 at 25°C.

pOH =
$$14.00 - pH = 14.00 - 9.59 = 4.41$$

[OH⁻] = $10^{-4.41} = 3.89 \times 10^{-5} M$.

 $B(aq) + H_2O(l) \Longrightarrow BH^+(aq) + OH^-(aq)$

Initial concentration (*M*): 0.50 0 0

Change in concentration (*M*): -3.89×10^{-5} $+3.89 \times 10^{-5}$ $+3.89 \times 10^{-5}$ $+3.89 \times 10^{-5}$ Equilibrium concentration (*M*): 0.49996 3.89×10^{-5} 3.89×10^{-5}

Dr. Al-Saadi

next slide \longrightarrow 3

Solving Problems Involving Weak Bases

■ Exercise (Continue):

Determine the $K_{\rm b}$ of a weak base if a 0.50 M solution of the base has a pH of 9.59 at 25°C.

$$K_b = \frac{[BH^+][OH^-]}{[B]} = \frac{(3.89 \times 10^{-5})^2}{0.49996}$$

$$K_{\rm b} = 3.0 \times 10^{-9}$$

Al-Saadi