Acids and Bases

- 1. Write balanced equations that describe the following reactions:
 - a. the dissociation of perchloric acid in water.
 - b. the dissociation of propanoic acid (CH₃CH₂CO₂H) in water.
 - c. the dissociation of ammonium ion in water.
- 2. For each of the following aqueous reactions, identify the acid, the base, the conjugate base, and the conjugate acid.
 - a. $AI(H_2O)_6^{3+} + H_2O$ \longleftrightarrow $H_3O^+ + HCO_3^-$
 - b. $C_5H_5NH^+ + H_2O \iff C_5H_5N + H_3O^+$
 - c. $HCO_3^- + C_5H_5NH^+ \iff H_2CO_3 + C_5H_5N$
- 3. Calculate $[H^+]$ and $[OH^-]$ for each solution at 25°C. Identify each solution as neutral, acid, or basic.
 - a. pH = 7.40 (the normal pH of blood)
 - b. pH = 15.3
 - c. pH = -1.0
 - d. pH = 3.20
 - e. pOH = 5.0
 - f. pOH = 9.60
- 4. Calculate the pH of each of the following:
 - a. A solution containing 0.10 M HCl and 0.10 M HOCl.
 - b. A solution containing 0.05 M HC₂H₃O₂ and 0.05 M HNO₃.
- 5. A 0.15 M solution of a weak acid is 3.0% dissociated. Calculate K_a .
- 6. Calculate the pH of a 0.20 M C₂H₅NH₂ solution ($K_b = 5.6 \times 10^{-4}$).
- 7. Calculate the pH of a 0.050 M Al(NO₃)₃ solution. The K_a for Al(H₂O)₆³⁺ is 1.4 x 10⁻⁵.