Acid-Base Equilibria and Solubility Equilibria

- 1. Calculate the pH at the equivalence point of formic acid (HCOOH) titration with NaOH, assuming both titrant and analyte concentrations are 0.10 *M*. The pK_a value for formic acid is 3.75.
- 2. Calculate the pH at the equivalence point in the titration of 30.0 mL of 0.25 M CH₃COOH with 0.25 M KOH. The K_a value of CH₃COOH is 1.8×10^{-5} .
- 3. Calculate the pH when of 30.0 mL of 0.25 M CH₃COOH is titrated with 10.0 mL 0.25 M KOH. The K_a value of CH₃COOH is 1.8×10^{-5} .
- 4. Calculate the K_{sp} value for bismuth sulfuide (Bi₂S₃), which has a solubility of 1.0×10^{-15} mol/L at 25° C.
- 5. Calculate the molar solubility of CaF₂ salt ($K_{sp} = 4.0 \times 10^{-11}$) in a 0.025 M NaF solution.
- 6. A solution is prepared by adding 750.0 mL of 4.00×10^{-3} M Ce(NO₃)₃ to 300.0 mL of 2.00×10^{-3} M KIO₃. Will Ce(IO₃)₃ solid ($K_{sp} = 1.9 \times 10^{-10}$) form from this solution?
- 7. Calculate the equilibrium concentrations of Pb²⁺ and I⁻ ions in a solution formed by mixing 100.0 mL of 0.0500 M Pb(NO₃)₂ and 200.0 mL of 0.100 M Nal solutions. The K_{sp} for PbI₂ is 1.4×10^{-8} .
- 8. Calculate the concentrations of Cd^{2+} , $Cd(CN)_4^{2-}$, and CN^- ions at equilibrium when 0.50 g of $Cd(NO_3)_2$ dissolves in 5.0×10^2 mL of 0.50 M NaCN. The K_f of formation for $Cd(CN)_4^{2-}$ ions is 7.1×10^{16} .