Name: _____ Date: ____

- 1. The radioacitive ⁶⁰Co isotope is used to treat certain types of cancer. Calculate the wavelength (nm) of an emitted gamma particle having the energy 1.29 x 10¹¹ J/mol.
 - A) 9.28×10^{-4}
 - B) 1.10 x 10⁻³
 - C) 2.12×10^5
 - D) 2.4×10^3
 - E) 3.21×10^{-5}
- 2. Calculate the frequency (Hz) of the emitted photon when an electron drops from a level of n = 4 to n = 3 level in a hydrogen tom.
 - A) 1.60×10^{14}
 - B) 1.29×10^{15}
 - C) 4.32×10^{15}
 - D) 1.0×10^{14}
 - E) 9.78×10^{13}
- 3. The correct number of unpaired electrons in each of the following atoms: Cd, I and Se are respectively:
 - A) 0, 1, 2
 - B) 2, 1, 0
 - C) 0, 2, 1
 - D) 1, 2, 0
 - E) 1, 0, 3
- 4. What is the maximum number of electrons in an atom that can have the following set of quantum numbers? n = 4; l = 3; $m_s = +1/2$
 - A) 7
 - B) 1
 - C) 14
 - D) 5
 - E) 10

- 5. What is the de Broglie wavelength (in cm) associated with a 24.8 g object travelling at 65.0 m/s? (1J = 1kg·m²/s²)
 - A) 4.11×10^{-32}
 - B) 4.11×10^{-34}
 - C) 2.43×10^{22}
 - D) 2.43×10^{-22}
 - E) 2.43×10^{-34}
- 6. Arrange the following elements in order of increasing atomic radii: N, P, O, Na
 - A) $\widetilde{O} < N < P < Na$
 - B) Na < N < P < O
 - C) N < O < P < Na
 - O < N < Na < P
 - $E) \quad P < N < Na < O$
- 7. Which one of the following elements has the largest second ionization energy (IE₂)?
 - A) Na
 - B) Mg
 - C) Cl
 - D) Si
 - E) Al
- 8. If a phosphorus atom gained three additional electrons, the resulting species would be,
 - A) negatively charged and isoelectronic with argon.
 - B) negatively charged and isoelectronic with neon.
 - C) smaller in size than a neutral sulfur atom
 - D) as big as a neutral phosphorous atom.
 - E) smaller in size than a neutral phosphorus atom.
- 9. The electron configuration of cobalt (III) ion is
 - A) [Ar]3d⁶
 - B) [Ar]3d⁵
 - C) $[Ar]4s^13d^5$
 - D) $[Ar]4s^23d^4$
 - E) $[Ar]4s^23d^9$

10.	Which statement is false?
	A) The

- A) There are 10 *d* orbitals when n = 3.
- B) A set of p orbitals can accommodate a maximum of 6 electrons.
- C) None of the p orbitals has spherical symmetry.
- The third shell (or major energy level) with n = 3 has no f orbitals. D)
- E) The energy level with n = 5 has a set of f orbitals.
- 11. How many electrons with angular momentum quantum number l = 0 does an Arsenic A) 8

 - B) 6
 - C) 4
 - D) 2
 - E) 0
- 12. The bond enthalpies of N_2 and F_2 are 941 and 154 kJ/mol, respectively. The standard enthalpy of formation of NF₃(g) is given by the following reaction:

$$1/2 \text{ N}_2(g) + 3/2 \text{ F}_2(g) \rightarrow \text{NF}_3(g)$$
 $\Delta H^\circ = -103 \text{ kJ/mol}$

Calculate the N-F bond energy.

- A) 268 kJ/mol
- B) 113 kJ/mol
- C) 317 kJ/mol
- D) 805 kJ/mol
- E) 155 kJ/mol
- 13. When drawing the Lewis structure for ICl₄, how many lone pairs of electrons are around the central iodine atom? A) 2

 - B) 1
 - C) 0
 - D) 3
 - E) 4

14. Calculate the lattice energy (LE) of magnesium sulfide from the following informations: $Mg(s) \rightarrow Mg(g) \Delta H^{\circ} = 148 \text{ kJ/mol}$

 $Mg(g) \to Mg^{2+}(g) + 2e^{-}\Delta H^{\circ} = 2186 \text{ kJ/mol}$

 $S_8(s) \rightarrow 8S(g) \Delta H^{\circ} = 2232 \text{ kJ/mol}$

 $S(g) + 2e^- \rightarrow S^{2-}(g) \Delta H^{\circ} = 450 \text{ kJ/mol}$

 $8Mg(s) + S_8(s) \rightarrow 8MgS(s) \Delta H^{\circ}_{f} = -2744 \text{ kJ/mol}$

 $Mg^{2+}(g) + S^{2-}(g) \rightarrow MgS(s) \Delta H^{\circ}_{MgS} = LE ?$

- A) -3406 kJ/mol
- B) -2722 kJ/mol
- C) 2272 kJ/mol
- D) 3406 kJ/mol
- E) -686 kJ/mol
- 15. Arrange the following bonds by the increase of their ionic character.

K-F, Br-Br, N-O, C-F, Ca-O

- A) Br-Br < N-O < C-F < Ca-O < K-F
- B) K-F < Ca-O < C-F < N-O < Br-Br
- C) C-F < N-O < Br-Br < K-F < Ca-O
- D) Br-Br < Ca-O < K-F < N-O < C-F
- E) K-F < Br-Br < N-O < C-F < Ca-O
- 16. Which of the following molecule(s) will exhibit resonance structure(s)? I. NO_3^- II. Br_3^- III. O_3

 - A) I and III
 - B) I only
 - C) II only
 - D) III only
 - E) All of them
- 17. Valence bond theory predicts that carbon will use _____ hybrid orbitals in the carbonate
 - A) sp^2
 - B) sp
 - C) sp^3
 - D) sp^3d
 - E) sp^3d^2

18. Identify the nonpolar molecules in the following group: $I. SO_2$ II.NH₃

III. XeCl₂

IV. CO₂

- A) III and IV
- B) I, III and IV
- C) II, III
- D) IV only
- E) I only
- 19. What is the molecular shape of the IBr₃ molecule?
 - A) T-shaped
 - B) tetrahedral
 - C) bent
 - D) trigonal planar
 - E) distorted tetrahedral (see-saw)
- 20. Complete this sentence:

The PCl₅ molecule has

- A) polar bonds, but it is a nonpolar molecule.
- B) sp^3d^2 hybridization for the P atom.
- C) a distorted tetrahedral (or see-saw) structure.
- D) two lone pairs of electrons on each Cl atom.
- E) one lone pair of electrons on the central atom (P).

Answer Key

- 1. A
- 2. A
- 3. A
- 4. A
- 5. A
- 6. A
- 7. A
- 8. A
- 9. A
- 10. A
- 11. A
- 12. A
- 13. A
- 14. A
- 15. A
- 16. A
- 17. A
- 18. A
- 19. A
- 20. A