
CHAPTER 7

Environmental Modeling
and Simulation

Models and modeling

The activity of modeling and the creation of mod-
els are neither new nor necessarily complex. Since
the very early days of our existence, humankind
has been urged to interact with our environment
to fulfill essential needs. Through this interaction
we developed ideas and concepts as to how our
environment worked and how we could navigate
our world to recover the resources we required to
ensure our survival. Over time, these “models” of
interaction have become more varied and sophis-
ticated to define more “mature” forms of interac-
tion with the “real world” (Spriet & Vansteenkiste,
1982). Within the realm of science, the interaction
between humans and our environments can be
approached using either formal or abstract repre-
sentations. Such representations define models.
However, models are only useful if they capture
the essential features of the objects, events, or enti-
ties they have been designed to represent.

As a device for aiding human insight and com-
prehension, modeling describes a process that
consists of two basic steps: (1) model-building 
and formalization and (2) model analysis and ap-
plication. A simple representation of this relation-
ship is given in Fig. 7.1. As suggested by Fig. 7.1, 
all models begin with the real world. This real
world is then simplified to form a representation
of key processes that influence the behavior of
something we wish to learn more about (climate,
land-use change, population growth, ecosystem

The use of models in planning has enjoyed a long
tradition dating back well over four decades. 
Interest in the use of models is based largely on
two familiar planning themes: (1) the need to 
consider the implications and consequences of 
decisions before actions are taken, and (2) the 
requirement to incorporate a large number of in-
teracting variables into a process view of the plan-
ning area. Added to these general rationales for
using models in planning is the recognition 
that environmental and regional planning have
undergone significant changes that have had a
profound impact on the value models enjoy as 
decision-support aids (Klosterman, 1998). One
noteworthy change has been the widespread
adoption of low-cost tools and data, such as geo-
graphic information systems. However, as these
systems became more accessible, it soon became
evident that an information system alone cannot
meet all the needs of the planner (Harris & Batty,
1993). This realization has renewed interest in the
art and science of computer modeling and has
stimulated development of integrated tools to
support planning and environmental decision-
making (Holmberg, 1994; Lein, 1997). In this chap-
ter the fundamental principles of modeling and
simulation are introduced, and the role of models
in environmental planning is examined with 
emphasis given to the issues of model design and
application.

Integrated Environmental Planning
James K. Lein

Copyright © 2003 by Blackwell Publishing



ENVIRONMENTAL MODELING 141

functioning). Our representation may take sever-
al forms, yet regardless of form, a model is pro-
duced that stands as a formal characterization of
something we are keenly interested in learning
more about. This characterization is then exam-
ined with reference to the real-world system on
which it is based and, if accepted, the model can
be used to help understand how that real-world
system behaves. The model produced through
this process is simply an abstraction of the object, 
system, or idea in some form other than that of the
entity itself, and has value because it can help us
to explain, understand, or improve some facet of
the real system it represents.

When placed into the context of environmen-
tal planning, a model may explain an exact replica
of the object (system) at a reduced scale, or it may
represent an abstraction of the object’s salient
properties. In either case models serve several 
important functions. For the planner perhaps 
the most useful are prediction and comparison, 
although there are many other equally relevant
functions models fulfill:

• An aid to thought
• An aid to communication
• An aid to experimentation
• An aid to training and instruction.
Model-building, therefore, provides a system-

atic, explicit, and efficient way for experts and 

decision-makers to focus their judgment and intu-
ition in a highly structured way. Because a model
is a simplification of reality, it may be the only way
to understand systems whose geographic scale or
complexity might otherwise place them beyond
our physical or mental grasp (Hardisty, Taylor, &
Metcalfe, 1993). For example, if we wanted to un-
derstand an air pollution problem it would be in-
feasible and unpopular to burn large quantities of
coal to see how air quality would change. Thus
when we are confronted with a complex relation-
ship, the model may be the only solution. Of
course the model is a simplification. Therefore, to
be credible the model must retain the significant
features of the process in question so its behavior
closely approximates what we might find in the
real system. Using our air pollution analogy from
above, this means that our model should incorpo-
rate as many of the properties of the atmosphere,
its chemistry, and flow characteristics as possible,
so that a change in emission levels can be traced
through the model to an outcome that can be eval-
uated. This point has significant implications for
those who use and develop models. Since models
are approximations, there is a highly selective and
subjective aspect to their design, structure, and
purpose.

Several classification schemes have been de-
vised to help understand the types of models that

Model representation

Process interactions
& transfers

Output
response
variables

Driving input
parameters
& variables

Observed
process of

interest

Hypothesized functional form

Abstraction & simplification

Real-world system

Model
predicted
behavior

Fig. 7.1 Modeling the “real” world.



142 CHAPTER 7

have been developed and the nature of the sys-
tems they represent. A very simple division sepa-
rates models into two general groups: descriptive
and normative. A descriptive model offers a 
stylized portrayal of reality with either an empha-
sis on equilibrium structural features (Static), or
on changes in processes or functions over time
(Dynamic). Normative models employ the use of
analogues. Models may also be conceptual, theo-
retical, symbolic, mathematical, or statistical.
Generally, three basic types of models can be iden-
tified (Table 7.1). Regardless of structure, it is the
complexity of environmental systems that com-
pels the development and use of models. Further-
more, because environmental planning problems
are multivariate and dynamic, relying exclusively
on professional judgment does not provide
enough support for decision-making. As shown
by Vlek and Wagenaar (1979), within any decision
problem there is typically a discrepancy between
the existing state and the desired state of a given
system. While reducing this discrepancy is the
goal, there is often more than one possible course
of action. Such decision problems are common in
planning, particularly when one is considering
the environmental consequences of a decision, 
the pattern of change a decision may induce, or 
the irreversible commitment of resources that
may follow from a decision. In each of these exam-
ples the potential number of variables involved 
is likely to be large, the interrelationships com-
plex, and the uncertainty surrounding the prob-
lem high, and the role of models becomes obvious.
We would like to explore a “future” before it 
arrives.

Certain features of a planning problem will
point to the appropriateness of a model-based so-
lution. These conditions include:

• A large number of decision, exogenous, and
state variables.

• Alarge number of components.
• Complex and nonlinear functional relation-

ships.
• High degrees of risk and uncertainty.
• Ahierarchical structure.
• Multiple and often conflicting objectives.
• Multiple decision-makers.
Applying models in environmental planning,

however, is not without its limitations. Critics 

of model-based approaches to problem-solving
focus on the argument that models are often 
overly simplistic representations of very complex
real systems. Due to their simplicity they are
prone to inaccuracies and tend to distort decisions
involving important planning resources (Gordon,
1985). Compounding the issue of accuracy is the
general observation that far too often the wrong
model is selected or the selected model is applied
inappropriately. When this happens the results
obtained via the model can lead to intractable er-
rors in analysis or inaccurate conclusions. The ap-
propriate use of models in planning depends on
whether the model simulates the consequence of
realistic decisions, has been validated as an accu-
rate representation of the real world, is reliable,
and expresses reliability according to its defined
limitations. If these conditions are met, then the
model can provide valuable support in making a
decision.

When considering the use or development of a
model, application typically begins with a prob-
lem that involves prediction or comparison as part
of the answer. Although there are no formal rules
to direct the design of a model, the approach to
successful implementation follows the general
principle of elaboration and enrichment. Accord-
ing to this simple strategy the model evolves from
a simple representation of the processes involved
toward a more detailed representation that re-

Table 7.1 Basic types of models.

Type Description

Hardware model Models that take the form of scaled
analogue representations of some
physical system

Conceptual model Models that take the form of charts,
pictures and diagrams depicting
system arrangement and flow

Mathematical model Models that take the form of
numerical expressions that represent
critical aspects of process, physical
laws, and measured values and
relationships

Digital model Models that describe mathematical
models that have been translated
into a computer language and
encoded for machine execution
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flects the complexities of the process more clearly
(Lein, 1997; Shannon, 1975). Therefore, modeling
involves constant interaction and feedback be-
tween the real-world system and its representa-
tion. As this model evolves, it is tested, refined,
and validated until a useful approximation of the
system of interest emerges.

The iterative nature of model development
suggests that regardless of sophistication all 
models are approximations that contain critical 
assumptions pertaining to the system they repre-
sent, the pattern of cause and effect used to 
capture how the system behaves, and the func-
tional relationships depicted by the elements 
contained in the model. As an analytic procedure,
modeling consists of four key activities (Shannon,
1975): the ability to (1) analyze a problem, (2) 
abstract from the problem its essential features, 
(3) select and modify basic assumptions, and (4)
enrich and elaborate the initial design. At the 
completion of these phases, the resulting model
can be applied to simulate a real system, 
and through simulation insight can be gained 
that helps us understand how the real system 
responds to change.

The simulation process

An integral feature of the modeling process is the
representation of some aspect of the real world
using the constructs of systems theory and the
placement of the resulting model into an experi-
mental design targeted toward an understanding
of that system’s future state. These two qualities of
modeling connect us back to the systems view of
planning introduced in Chapter 1, and move us
forward into the realm of computer simulation.
Thinking back to Chapter 1, the attraction of sys-
tems thinking was its facility for structuring and
understanding the behavior of complex interrela-
tionships. When applied to a problem, systems
thinking led to the design of a systems model
where the variables to include in the system were
specified, the hypothetical relationships among
variables comprising the system were explained,
the structure of the system was described, and the
design of a functional form was tested and refined.
Using the representation’s tools of systems analy-

sis, this initial design can be translated into a
“working” model that can be applied toward the
solution of a problem.

Designing a model of a real system and con-
ducting experiments using this model describes
the general process of simulation. As an experi-
mental and applied methodology, simulation
modeling seeks to: (1) describe the behavior of 
systems, (2) construct theories or hypotheses that
account for an observed behavior, (3) use these
theories to predict future behavior. Because this is
an applied methodology, simulation involves
both the construction of the model and the ana-
lytical use of the model for studying a problem.
Analysis and experimentation are central themes
in this process as the problem, filtered through the
model, is examined in a controlled and systematic
way to reveal new insights and test present as-
sumptions (Fig. 7.2). These central concepts also
connect simulation to the goals of planning by
providing an analytic device that can test alterna-
tives, evaluate allocation strategies, and examine
critical trends within the planning area.

To successfully apply computer simulation
methods in environmental planning, three inter-
related activities must be understood:

1 Model Design – the initial stage in the simu-
lation process that includes a detailed for-
mulation of the problem, a clear definition of
the system, and the specification and testing
of a model.

2 Model Application – the second stage in the
process that includes calibrating the model,
selecting the scenario to examine, and exe-
cuting the model.

3 Analysis and Implementation – the final
stage in the simulation process that concerns
the interpretation of the results obtained
from the model and the implementation of
those results

Given the methodology imposed by these activ-
ities, a simulation experiment can be looked at as a
procedure for acquiring information. This means
that through the experimental run of the model, it
will produce results that can provide insight into
the problem, and these results can be data in 
the form of numerical approximations of some
change in a variable, or it can be a graphic repre-
sentation of how something may look given the



inputs that were selected to drive the model. Mak-
ing certain that this information is useful and its
limitations understood introduces several impor-
tant considerations that guide the simulation 
experiment:

• Validation and Verification – describes a se-
ries of tests applied to the model in order to
establish a level of confidence in the model
and the inferences drawn from the simula-
tion. Because a model is essentially a theory
describing the structure and interrelation-
ships of an observable phenomenon, vali-
dation is not concerned with whether the
model is a “true” representation of the actual
system, but rather whether the insights
gained from the simulation experiment are
reasonable. Through validation it is possible
to explain the operational utility of the
model. This may involve several specific
tests to build confidence, such as face valid-
ity to determine if the model results appear
correct and assumption testing to ascertain
whether critical assumptions in the model
can be supported.

• Sensitivity Analysis – because a model re-
ceives input data and processes that data to
generate an output, how the model responds
to the variables and parameters used in 
a simulation greatly influences its useful 
application. As a test, sensitivity analysis

consists of systematically varying the values
of the parameters and input variables over a
range of known extreme cases. The analyst
can then observe the effect of these extreme
values on the model performance and the re-
sults it provides. Through sensitivity testing:
(1) limitations in the model due to the values
used to parameterize and conduct a simula-
tion can be identified; (2) effects produced by
extreme conditions on the stability of the
model can be noted; and (3) clues to guide 
future enhancements and modifications of
the model can be located.

• Experimental Design and Execution – run-
ning a simulation experiment is the process
of applying the model to observe and ana-
lyze the information it provides. The experi-
mental design selects a specific approach for
gathering the information needed to enable
the environmental planner to draw valid 
inferences. Three essential steps direct this
process (Shannon, 1975):
1 Determination of the experimental design

criteria.
2 Synthesis of the experimental model.
3 Comparison of the model to standard 

experimental designs to select the appro-
priate methodology.

Typically, the simulation experiment concerns 
resolving an answer to the question, “How does a
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change in x affect y?” In an environmental plan-
ning context we may ask how a change in land use
might affect surface run-off, or how an increase in
vehicle trips will affect air quality. Thus, the final
design of the simulation tends to be strongly influ-
enced by the criteria deemed pertinent to that
question. Among the criteria to consider when 
finalizing the design are:

1 The number of factors to be varied.
2 The number of values or levels to use for each

factor.
3 Whether the various levels are quantitative

or qualitative.
4 Whether the levels of the various factors are

constant of random.
5 Whether nonlinear effects will be measured.
6 The number of measurements that will be

taken for the response variable.
7 How interactions between factors will be

measured.
8 What level of precision is required for an 

effective analysis?
These eight points remind us that a simulation ex-
periment is only as sound as the techniques used
in its construction. This suggests that the validity
of the results gained through simulation can be 
affected by the techniques used in data collection
and the methods employed when summarizing
the data. Therefore, to be useful, simulation must
fit within the context of a clearly defined problem.
The problem focus takes the form of a forecast,
where the planner seeks insight into the future
state of the planning area and the forces of change
that will drive the planning area toward this new
state. Expressing the problem in the form of a fore-
cast directs attention to the question of prediction
and its connection to the modeling and simulation
process.

Prediction and 
scenario projection

Modeling and simulation facilitate one of the
main goals of planning, that of prediction. Be-
cause a plan is essentially an attempt to explain
how the landscape will evolve through the imple-
mentation of specific goals and policies, the ability

to predict what might happen if a clearly defined
policy choice is selected serves an essential ana-
lytical need. Prediction, of course, does not neces-
sarily imply that future conditions will be forecast
exactly. Rather, prediction implies that certain as-
sumptions about the future can be explored and
evaluated. Modeling and simulation support this
type of evaluation by creating an environment
where a range of alternatives can be examined and
a range of potential future arrangements of the
built environment can be explored.

According to Rescher (1998), any prediction
worth considering must rest on an evidential
basis. This suggests that some rational substantia-
tion must exist, because serious cognitive interest
attaches to rational prediction, and for those that
are credible there is good reason to accept them as
correct. When predicting, there must be an actual
commitment to a future-oriented claim. Conse-
quently, the predictive character of those future-
oriented declarations depends on the user of those
declarations. However, not every future-oriented
thesis represents a prediction. Thus, for a claim to
constitute an actual prediction, there must be
someone who makes or accepts it. Consequently,
prediction differs in its objectives and purpose
from scenario projection.

Based on these observations, the concept of a
scenario can be defined in several different ways.
Koplik et al. (1982) define a scenario as a possible
sequence of processes and events that are describ-
able by equations involving specified physical 
parameters. Other, less technical definitions 
characterize the concept as

• A hypothetical sequence of events con-
structed for the purpose of focusing atten-
tion on causal processes and decision points.

• An exploration of an alternative future.
• An outline of one conceivable sequence of

events and states given certain assumptions.
A scenario, therefore, is a tool for ordering one’s
perceptions about alternative future environ-
ments in which today’s decisions might play out.
In practice, scenarios resemble a set of stories,
written or spoken, built around carefully con-
structed plots. Stories are an old way of organizing
knowledge, and when used as planning tools,
they defy denial by encouraging – in fact, requir-



ing – the willing suspension of disbelief. Stories
can express multiple perspectives on complex
events, and scenarios give meaning to these
events. Yet, despite its story-like qualities, sce-
nario planning follows systematic and recogniz-
able phases. The process is highly interactive,
intense, and imaginative. It begins by isolating 
the decision to be made, rigorously challenging
the mental maps that shape one’s perceptions, 
and hunting and gathering information, often
from unorthodox sources. The next steps are 
more analytical: identifying the driving forces 
(social, technological, environmental, economic,
and political); the predetermined elements (i.e.,
what is inevitable, like many demographic factors 
that are already in the pipeline); and the critical
uncertainties (i.e., what is unpredictable or a 
matter of choice, such as public opinion). These
factors are then prioritized according to impor-
tance and uncertainty. These exercises culminate
in a small set of carefully constructed scenario
“plots” (Schwartz, 1991; Mason, 1994; Wack,
1984).

If scenarios are to function as learning tools, the
lessons they teach must be based on issues critical
to the success of the decision. Since only a few sce-
narios can be fully developed and remembered,
each should represent a plausible alternative fu-
ture, not a best-case, worst-case, and “most likely”
continuum. Once the scenarios have been fleshed
out and woven into a narrative, the planner identi-
fies their implications and the leading indicators
to be monitored on an ongoing basis. A scenario,
therefore, has several distinguishing characteris-
tics that guide its creation and application in 
modeling. First, and perhaps most importantly,
scenarios are hypothetical simply because the fu-
ture is unknowable. The best one can hope for is to
explore alternative possible futures. Therefore a
scenario will never materialize exactly as de-
scribed due to the impact of unforeseen events
and responses (Fowles, 1978). Secondly, a scenario
professes to be only an outline of a possible future.
For that reason, a scenario only seeks to identify
the key branching points of a possible future to
highlight the major determinants that might cause
the future to evolve from one branch rather than
another. Thus, the scenario serves to sketch in the

primary consequences of a causal chain of events
in a highly selective manner (Fowles, 1978). 
Finally, a scenario should be multifaceted and
holistic in its approach to the future.

The test of a good scenario is not whether it por-
trays the future accurately but whether it enables
an organization to learn and adapt. When applied
to problems in environmental planning, scenarios
are a means to integrate individual analyses of
trends and potential events into a holistic picture
of a possible future. In this context, scenarios be-
come powerful planning tools precisely because
the future is unpredictable. Hence, unlike tradi-
tional forecasting methods, scenarios present al-
ternative images instead of extrapolating current
trends from the present. Scenarios also embrace
qualitative perspectives and the potential for
sharp discontinuities that econometric models ex-
clude. Consequently, creating scenarios requires
planners to question their broadest assumptions
about the way the world works so they can antici-
pate decisions that might be missed or denied.
Thus, the planner creates a scenario to describe the
interaction of trends and events and to explore the
possible course of alternative decisions on the fu-
ture state of the planning area. To be effective, a
prerequisite for scenario use in planning must be 
a sensing of incipient societal change, whether
those changes are demographic, environmental,
economic, technological, or some combination of
the above. Given this, the scenario serves as a 
synoptic view of the total future environmental
possibilities and is designed to meet five analytic
objectives (Wilson, 1978):

1 To combine alternative environmental de-
velopment into a framework that is consis-
tent and relevant to the planning area.

2 To identify “branching points,” potential
discontinuities and contingencies that can
serve as valuable early warnings.

3 To formulate strategies that can translate 
alternative environmental developments
into policy recommendations.

4 To provide a basis for analyzing the range of
possible outcomes.

5 To test the outcomes of various planning
strategies under alternative environmental
conditions.
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An important consideration when applying
scenarios in planning is the fact that there is no in-
evitability to the future. For this reason, it is critical
to present as many varying views of the future as
practical in order to define

• Trends that are probable but “shapeable.”
• Trends that are probable but not amenable to

policy influences.
• Trends that are possible and “shapeable.”
• Trends that are possible but not amenable to

policy influences.
While there is no single best method to follow
when developing a scenario, a prototypical pat-
tern can be offered. In general, developing a sce-
nario requires compiling a detailed listing of all
phenomena potentially relevant to the problem.
Added to this list are the processes and events that
influence change. Armed with this basic informa-
tion, specific effects and consequences can be
identified. Next, the scenario can be explained in
written form and reviewed to assess the credibili-
ty of the pathways and connections that shape 
alternative futures. Once expressed in this form, 
a reasonable number of possible futures can be 
selected for further analysis.

Because more than one description of the fu-
ture is possible, a major issue in the use of scenar-
ios in planning relates to the problem of selection.
Several methods have been introduced to guide
scenario selection: simulation, event-tree analy-
sis, and expert judgment. The relative merits of
each have been summarized by Ross (1989). Al-

though specifics differ, selection methods address
two distinct functions: (1) ensuring completeness
of the list mechanisms that are considered, and (2)
screening out irrelevant and incredible mecha-
nisms to produce a list of reasonable scenarios. 
Of the selection methods introduced, the most
useful to the environmental planner is the event
tree. An event tree is a scenario constructed in the
form of a diagram (Fig. 7.3). These diagrams 
describe events and processes that explain specific
chains of cause–effect–effect–consequence rela-
tionships. Using an event tree the logical sequence
of cause and effect leading to a specific outcome
can be traced. This feature has the advantage of 
allowing scenario developers to follow the causal
sequence and critically review the plausibility of
each step, examine the logic and assumptions 
inherent to an event chain, and evaluate in pro-
babilistic terms the likelihood of the relationship
depicted.

Although scenarios are useful tools in plan-
ning, they are not without limitations (Godet &
Roubelat, 1996). Discussing the use and misuse of
scenarios in long range planning, Godet and
Roubelat (1996) remind us that a scenario is not a
future reality, but a way of foreseeing the future. In
a scenario we are using the present to suggest all
possible or desirable futures. The future is not
being predicted, which implies that our scenarios
are only useful if they are relevant, coherent, 
likely, and transparent. This places tremendous
responsibility on the planner, who must ask the
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Fig. 7.3 A stylized event tree
diagram.



right questions and clearly formulate the hy-
potheses that are the keys to the future.

Computer modeling methods

Developing scenarios can be a valuable way to
gain insight regarding the causal processes that in-
fluence the future state of the planning area. How-
ever, to make a scenario useful as a predictive
device, the facts, decision points, and causal
mechanisms must be operationalized to permit
the consequence of outcomes to emerge for a set of
selected endpoints. Operationalizing a scenario
means putting it into motion, letting it run, and ob-
serving what its products might look like. Placing
a scenario in motion requires developing a simu-
lation experiment to model critical features of the
hypothetical sequence of events and using simu-
lation as a means of exploring the output generat-
ed by the model. There are various approaches
available to model the causal processes implied by
a scenario, and numerous methodologies used to
capture and characterize causality. Thus, when
the focus in planning shifts to the question of mod-
eling, the issue of which method best explains the
process of interest must be resolved.

Causal relationships can be defined in either of
two contrasting ways: (1) continuous versus dis-
crete processes or (2) stochastic versus determinis-
tic processes. When used to explain process, the
terms “continuous” and “discrete” refer to the na-
ture or behavior of the system as evidenced by a
change in its state with respect to time. A system
(process) whose changes occur continuously over
time are termed continuous, whereas systems
whose changes in state occur in finite quanta or
jumps are referred to as discrete. The terms “sto-
chastic” and “deterministic” refine the nature of
how those changes occur. A deterministic process
is one in which each new state is completely deter-
mined by its previous state of defining conditions.
Thus, a deterministic system evolves in a com-
pletely fixed and conclusive way from one state to
another in response to a given stimulus (Lein,
1997). Stochastic processes contain an element of
randomness that influences the transition from
state to state. Stochastic systems suggest a behav-

ior that may be probabilistic in nature and ex-
plained in terms of a probability function. Based
on an understanding of the problem and the causal
mechanisms involved, the decision must be made
regarding which of the above definitions can be
used to represent process in a model. This decision
must also take into consideration the geographic
scale and the level of spatial resolution needed to
adequately represent the process of interest as an
active feature of the landscape. Finally, the con-
trolling variables and parameters that drive the
system need to be identified, and values for these
entities must be obtained and evaluated.

The range of modeling methodologies and
their technical specifications are well beyond the
scope of this chapter. Excellent treatments of 
modeling with reference to planning and environ-
mental management can be found in Gordon
(1985), Klosterman et al. (1993), and Hardisty et al.
(1993). In place of an exhaustive review of model-
ing methods, this section will examine a selection
of modeling “recipes” that can be employed when
theorizing about causality and developing the
kernel of a simulation study. The selected recipes
define fundamental representational schemes for
expressing causal processes and approximating 
the behavior of a system, and include the methods
of:

1 Monte Carlo sampling
2 Markov processes
3 Optimization
4 Systems dynamics
5 Cellular automata.

Before embarking on this review, it is helpful to 
explain the basic process of converting knowl-
edge of a system into a numerical model and to 
describe how these techniques fit into that
process. For the purposes of our discussion, a
model is constructed in four phases, each with a
specific objective.

1 Specifying the purpose of the model –
every model is designed to meet a specific
need for information. Whether calculating
river flow, population changes, or the spatial
interaction between land-use zones, execu-
tion of the model will give valuable insight
into the behavior of the process under 
investigation.
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2 Specifying the components to be included
in the model – because a model is an abstrac-
tion or simplification of reality, the elements
that drive the behavior of the system must be
identified. These components determine the
functional form of the model and explain key
interactions that describe process.

3 Specifying the parameters and variables
associated with the components – the de-
scriptive elements that are used to explain
the system must be measurable qualities and
quantities for numerical simulation to work.
Thus, each element has to be expressed in
terms of a value that reflects its present status
as well as its dynamic nature.

4 Specifying the functional relationships
among components, parameters, and vari-
ables – this final phase concerns the explicit
treatment of process and how the model will
capture the behavior of the system. The func-
tional relationships defined here establish
flows of information, matter, or energy as 
directed by the rules used to govern model
behavior. The basic functional forms can 
include any of the following:
a. Deterministic relationships – explain-

ing the conditions where behavior is
completely determined by the state 
equations used in the model to calculate
the state of selected components.

b. Probabilistic relationships – defining
the condition where underlying process-
es expressed in the model can be repre-
sented by governing rules of probability.

c. Stochastic relationships – characterizing
behavior or processes where uncertainty
is high and random elements of chance
influence behavior. Such relationships
are not rigidly controlled by probability,
but rather follow a more heuristic pattern
with greater potential variability.

The problems encountered in environmental
planning typically involve some aspect of all three
relationships expressed above. In many situations
selecting the correct modeling strategy is not easy
and may be influenced by data availability, lack of
underlying theory, and the degree of uncertainty
inherent to the problem.

To understand how process can be represented
and to decipher the “black-box” view of models as
analytical tools, their underlying structure and
mathematical foundations can be examined. Be-
cause many models used in environmental plan-
ning share these fundamentals, the techniques
demonstrated reveal the elegance and simplicity
of the modeling process and illustrate how root
ideas can be easily adapted to new situations and
problems.

Monte Carlo sampling

Monte Carlo sampling is rooted in the concept of
simulating systems containing stochastic or prob-
abilistic elements (Shannon, 1975; Evans & Olson,
1998). Simulation models based in this technique
trace their origins to the work of von Neumann
and Ulan during the development of the atomic
bomb. Although the technique had been known
for many years prior to that period, its success at
Los Alamos quickly encouraged its application to
problems in a range of disciplines. Although the
primary use of Monte Carlo sampling is its utility
for simulating probabilistic situations, it can also
be applied to completely deterministic problems
that cannot be solved analytically.

Using the analogy of a Roulette wheel on a
gaming table, Monte Carlo sampling employs 
artificial experience or data generated by the use
of a random number generator and the cumula-
tive probability distribution of interest to produce
a pattern of numbers that represents the behavior
of “real-world” objects, events, or entities. The
procedures used to generate random numbers
rest at the core of this modeling technique. Typi-
cally, random numbers can be acquired from a
computer program or subroutine that can provide
uniformly random digits. However, in most simu-
lation models we often wish to generate random
numbers whose distributions are other than uni-
form. In these instances the uniformly distributed
pseudorandom numbers generated by our pro-
gram are used to “draw” or sample values from 
a known frequency (probability) distribution
(Harbaugh & Bonham-Carter, 1981). The proba-
bility distribution to be sampled can originate
from a variety of sources, including:



• Empirical data derived from past records of
the event or process (i.e., stream flow, traffic
counts, wind speeds).

• A recent experiment or field test that gener-
ated measurement values of the event or
process.

• Aknown theoretical probability distribution
(i.e., Gausian, gamma, poison).

The random numbers generated based on one of
the above methods are used to produce a random-
ized stream of variates that will duplicate the ex-
pected experience (behavior) as a function of the
probability distribution being sampled.

Monte Carlo sampling is relatively simple in
concept. Shannon (1975) provides an excellent
discussion of the major steps involved by means
of an example that can be worked by hand (Table
7.2). To draw an artificial sample at random from a
population that can be summarized by a probabil-
ity function, let’s consider a hypothetical simula-
tion model dealing with the deposition of solid
waste in a municipal landfill. The model in our ex-
ample is constructed so that the quantity of solid
waste deposited per increment of time (years) is
an exogenous input to the model. The quantity of
solid waste can be defined as the volume (thick-
ness) deposited uniformly over the area of the
landfill per increment of time. In designing the
model an initial step would be to gather actual
data about the frequency distribution of solid

waste quantities at a sample of existing landfills.
In practice this might prove to be difficult, but we
might have volume data of annual deposition for
500 landfills throughout the United States. The
data can be displayed as a series of discrete inter-
vals in a histogram based on the frequency with
which measurements fall into each class of the his-
togram. This empirical distribution can be con-
verted to a cumulative distribution to enable the
draw of random variates. Using this cumulative
distribution, artificial experience for our landfill
can be generated to characterize its life expectan-
cy. Thus to simulate solid waste deposition in a
computer model we can sample the cumulative
frequency distribution represented by the his-
togram through the use of a random number 
generator. This can be accomplished in either of
two ways:

1 Random samples can be drawn from the 
observed empirical distribution itself.

2 If the frequency distribution can be approxi-
mated by known theoretical distributions,
samples can be drawn from that distribution
provided that we can write its function 
and estimate its parameters (such as the
mean, and standard deviation for a normal 
distribution).

For the present example, let’s assume we have
drawn our samples from the cumulative distribu-
tion. With these samples we would like to evaluate
the life expectancy of a candidate landfill site over
a 50-year time horizon. Using a random number
generator a series of variates can be drawn to rep-
resent annual solid waste deposited at the site. If
the numbers 09, 57, 43, 61, 20 are drawn for the first
five years of operation, then resulting patterns of
solid waste can be derived as shown in Table 7.3.
Running this hypothetical model for all 50 years in
our example, a synthetic process can be generated
to simulate landfill performance. The values rep-
resenting the 50-year sequence can then be used to
evaluate landfill capacity. If the random numbers
used are in fact uniformly distributed and ran-
dom, then each number from the data of interest
will occur with the same relative frequency as we
might expect in the “real world.” In this example
the artificial experience is typical of what we have
been experiencing with the real system.
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Table 7.2 Basic steps in Monte Carlo sampling.

Step 1 Plot or tabulate the data of interest as a cumulative
probability distribution function with the values of
the variate on the x-axis and the probabilities from
0.0 to 1.0 plotted on the y-axis.

Step 2 Choose a random decimal number between 0.0 and
1.0 by means of a random number generator.

Step 3 Project horizontally the point on the y-axis
corresponding to the random number until the
projection line intersects the cumulative curve.

Step 4 Project down from this point of intersection on the
curve to the x-axis.

Step 5 Write down the value of x corresponding to the
point of intersection. This value is then taken as the
sample value.

Based on Shannon (1975).
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When one is creating a model that defines sto-
chastic or probabilistic elements, an important
consideration in the application of the Monte
Carlo method relates to the issue of whether to use
empirical data or a theoretical distribution. This
question is significant for three reasons (Shannon,
1975). First, the use of empirical data carries the
implication that the model is simply simulating
the past. Therefore historic data replicates the per-
formance of the system based on patterns that
have already occurred. Assuming that the basic
form of the distribution will not change over time
does not presuppose that the patterns evidenced
over a given time period will be repeated. Second-
ly, it is generally considered more computational-
ly efficient to use a theoretical distribution. Lastly,
it is much easier to change the defining parame-
ters of a random number generator based on a 
theoretical distribution, perform sensitivity tests,
and ask “what if” questions. Therefore, a more
useful model can be produced using theoretical
distributions (Shannon, 1975).

Markov processes

It has been observed that many environmental
processes that are random in their occurrence also
exhibit an effect in which previous events influ-
ence, but do not rigidly control, subsequent
events. Such processes are referred to as Markov
processes. In simple terms, a Markov process char-
acterizes the condition in which the probability of
the process under investigation being in a given
state at a particular time can be deduced from
knowledge of the immediately preceding state
(Harbaugh & Bonham-Carter, 1981). This general
characteristic of system behavior is referred to as a
Markov chain. AMarkov chain can be conceptual-
ized as a sequence or chain of discrete states in time
or space where the probability of the transition

from one state to a given state in the sequence de-
pends on the previous state. Thus, the general
form of a Markov chain explains a series of transi-
tions between different states or conditions of a
system such that the probabilities associated with
each transition depend only on the immediately
preceding state, and not on how the process ar-
rived at that state (Harbaugh & Bonham-Carter,
1981). Based on this premise, a Markov chain will
typically contain a finite number of states and the
probabilities associated with the transitions be-
tween states do not change with time. Conse-
quently, a Markov chain in its general form defines
a short “memory” of process that extends only for
a single step at a time and stops after that single
step. A chain that exhibits this characteristic is
termed a first-order Markov chain. This funda-
mental definition can be extended to describe the
condition where the probabilities associated with
each transition are based on earlier events of multi-
ple dependence relationships. Perhaps the most
important characteristic of Markov chains is that
they exhibit a dependence on the probabilities as-
sociated with each transition of the immediately
preceding state. This quality is called the Markov
property, and to apply this modeling technique 
effectively, the phenomena under investigation
should exhibit this fundamental behavior. Fortu-
nately many processes encountered in environ-
mental planning share this trait. Therefore, the
planner can make effective use of Markov chains
as components in probabilistic dynamic models.

To illustrate how Markov models can be ap-
plied in environmental planning we can explore
the problem of land-use change and use the
Markov property to help forecast the likelihood of
future land-use transitions. As demonstrated in
previous work, land use and land cover change
can be characterized as stochastic (Lein, 1990).
This assumption is based on the observation that
the physical use of land, while often described
using an economic rationale, is ultimately deter-
mined by the locational decisions of governments,
corporations, and private individuals. Such loca-
tional decisions introduce behavioral influences
into the land development process, creating the
situation where the use of a parcel of land becomes
a function of policy decisions, the physical suit-

Table 7.3 Simulated landfill deposition in millions of tons.

Random number Simulated range

0.09 0.0–1.00
0.57 4.0–5.0
0.45 2.0–3.0
0.61 4.0–5.0
0.20 1.0–2.0



ability of land, and an intangible set of personal
motivations that may or may not be guided by
economic incentives. The consequence of this
complex series of operations is a pattern of land
occupance that when viewed collectively repre-
sents a series of random elements acting in space.
Thus in a stylized way the pattern of land-use
change can be explained as stochastic where past
trends can influence the future state of the system
(Bourne, 1971; Bell, 1974).

With the process of land-use change now char-
acterized as Markovian, a parcel of land (L) will
define a specific condition or form of use. That
condition describes a particular state (s1) at that in-
stant in time (t). Associated with that parcel (L) is a
set of probabilities (p1, p2, . . . , pn) that express the
likelihood of parcel (L) occupying the same or a
different state (s1, s2, . . . , sn) at time (t + 1). In this
example there is a given set of states, each repre-
senting a category of land use, and the implicit re-
quirement that parcel (L) can be in one and only
one state at time (t). However, based on the proba-
bility of change, parcel (L) can move successively
from one state to another. Consequently, the pro-
bability of change projects parcel (L)’s position 
in the system and defines the condition it may 
assume.

According to the Markov chain model, the set
of probabilities characterizing the land-cover sys-
tem is expressed in the form of a transition proba-
bility matrix [Z]. This matrix describes the basic
behavior evidenced by the system as expressed by
the Markov chain and defines the principal pat-
tern of movement as elements in the system
change from state to state. Each element in the ma-
trix, therefore, reflects the probability of a transi-
tion from a particular state (that state pertaining 
to a given row in the matrix) to the next state 
(that state pertaining to the particular column)
(Harbaugh & Bonham-Carter, 1981).

For a simple three-state system the transition
probability matrix may be written as:
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where each element in the matrix explains the
probability of movement from one state to 
another. In our land-use example, that might look
something like this hypothetical case:

In this simple example, the matrix suggest that if
the land cover system is in state s1 (urban) its most
probable next state is urban (s1). However, if the
system is in state s2 (agriculture), a transition to
urban is probable, as is the transition to forest (0.1).
Finally, if the land-use system is in state s3 (forest),
a transition to either urban or agriculture is equal-
ly probable. Here we can see that the simulation 
of process involves use of the transition probabili-
ty matrix to select the state of the system. In this 
example, to simulate change in the land-cover 
system the matrix of transition probabilities must
be computed and the resulting values used to 
produce a representation of the system at time 
(t + 1).

Transition probabilities are derived from the
frequency distribution of the objects that comprise
the various states of the system. Producing this
distribution of state transitions involves nothing
more than the tabulation of the number of transi-
tions (moves) from each state to every other state
in the system. Computationally the process in-
volves filling a tally matrix, counting the move-
ment of objects from state to state, then converting
that matrix to transition probabilities by dividing
by the sum of the rows. The calculation of a transi-
tion probability matrix, however, explains only a
single step in a Markov chain. For a multiple-step
transition defining the transition over more than
one time step, the series of probabilities is deter-
mined by “powering” the transition probability
matrix [Z]. The term “powering” simple means to
raise the matrix [Z] to some power. The product of
powering the matrix reflects the transition to the
next time step in the simulation. The general form
of the succession of matrix powering can be writ-
ten as:

Z Zn n( ) −( )= ⋅1 Z.
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In the present example we can use a one-step
process to produce a distribution of lands uses for
(t + 1) from the patterns that explain the system at
time (t) (the present state of the land-use system)
and time (t- 1) (the land-use pattern one step back
in time). As used in our example, the condition 
explained above assumes that the process of 
land-use change is a discrete-time phenomenon.
Therefore, while the surface is dynamic, change is
observed by using discrete slices of time.

We can extend this idea to long time sequences.
For instance, if we chose to examine the case
where the system beginning in state (i) would be
in state ( j) after n steps, the Markov chain could be
expressed as:

The solution to this problem is easily derived by
use of matrix algebra. The matrix notation demon-
strating the solution to our problem is shown in
Table 7.4.

Optimization

Optimization is one of several methodologies that
fall within the general subject matter of operations
research. Operations research is a name given to
the procedures used to study and analyze prob-
lems concerned with the control or operation of
systems. Within this broad definition, operations
research explains the systematic application of
quantitative methods, techniques, and tools with
the goal of evaluating probable consequences of
decision choices. The decisions considered using
optimization typically involve the allocation of re-
sources with the objective to improve the effec-
tiveness of the system. Therefore, most operations
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research problems center around the optimization
of a specific feature or flow in the system, such as
goods, information, technical properties, capaci-
ties, or any tangible characteristics that lends
themselves to strategies where “costs” are to be
minimized and benefits maximized given a set of
constraints.

The essential characteristics of operations re-
search include:

• Examining function relationships in a 
system.

• Adopting a planned approach to problem-
solving.

• Uncovering new problems for study.
With respect to the problems encountered in envi-
ronmental planning, operations research can be
thought of as a form of applied decision theory
where the collection of mathematical techniques
and tools is used in conjunction with a systems
perspective to address decision problems. Certain
attributes of a problem may lend themselves to
treatment using optimization, particularly those
involving complex relationships that can be ab-
stracted into the form of mathematical or statisti-
cal models.

Any operation research application draws on
five common phases of analysis:

1 Formulating the problem.
2 Constructing a mathematical model to rep-

resent the operation under consideration.
3 Deriving a solution to the model.
4 Testing the model and evaluating the 

solution.
5 Implementing and maintaining the solution.

Because environmental planning is concerned
with the problem of maintaining an optimal bal-
ance between social needs and environmental
process, methods that can provide insight regard-
ing the “optimal” allocation of resources can
greatly assist the decision process. Viewing opti-
mization at its most fundamental level, most
methods are applied to human-designed or con-
trolled systems where some optimal situation is
the goal. Although determination of what precise-
ly defines the “optimal” relies exclusively on
human judgment, the majority of techniques di-
rect efforts toward the maximization of benefits.
Analytical optimization techniques, therefore, are

Table 7.4 Markov analysis matrix notation.

1. Initial step:
Z

2. Raising to the second power:
Z(2) = Z ¥ Z

3. Raising to the third power:
Z(3) = Z(2) ¥ Z



applied in a problem-solving context where the
need exists to either maximize or minimize a clear
and narrowly defined objective (the objective
function).

Satisfying this objective function recognizes
that any system encountered by the planner 
operates with constraints that limit options. 
Such constraints may identify design limitations, 
carrying-capacity measures, safety considera-
tions, or criteria that influence biological func-
tioning. For example, a planner may desire a
subdivision plan that utilizes land as efficiently as
possible at the lowest environmental cost. Here,
cost can be expressed in relation to habitat frag-
mentation and “efficiency” becomes the objective
function given the constraint that the plan cannot
increase fragmentation beyond a threshold. From
this simple example it can be seen that the theory
of optimization shares several similarities to the
concepts embedded in the idea of system control.
However, there are significant differences that
should be understood. Perhaps the most impor-
tant distinction is that system control is primarily
concerned with the response of a system under
conditions of fluctuating inputs. Optimization
considers the definition and properties of an ob-
jective function that may be applied as the criteri-
on for control. While subtle, this distinction
suggest that optimization methods are applied in
a more prescriptive manner.

A wide array of optimization methods are
available to select from, and most are variations of
the mathematical programming model. Mathe-
matical programming is rich in its facility for re-
solving objective functions. In our discussion here
we will limit our scope to those programming
methods that are linear in nature. The methods of
linear programming form two broad categories:
(1) direct search and (2) indirect search. Each of
these classes can be further divided into more spe-
cific algorithms. Regardless of the algorithm ap-
plied, the focus remains fixed on the concept of an
objective function. This term defines a dependent
variable (Y) whose value depends on one or more
independent variables (x1, x2 . . . , xn). The goal of
optimization is to either maximize or minimize
the objective function by finding the values of the
independent variables such that:

Y(max) = f (X1, X2, . . . , Xn).

Or

Y(min)= f (X1, X2, . . . , Xn).

For optimization problems where the objective
function is a linear combination of the decision 
(independent) variables and subject to linear 
inequality constraints, its solution can be by 
obtaining values of (x1, x2, . . . , xn), so that the lin-
ear function

Z= c1x1 + c2x2 + . . . + cnxn

is either maximized or minimized subject to the
constraints:

a11X1 + a12X2 + . . . + a1nXn<= b1

a21X1 = a22X2 + . . . + a2nXn< = b2

.

.

.

am1X1 + am2X2 + . . . + amnXn<= bm

where:

x1 >= 0, x2 >= 0, . . . , xn >= 0

and aij, bi are given as constants.
One widely used approach for solving linear

programming problems is the application of the
Simplex method (Hillier & Lieberman, 1967). An
excellent example illustrating the basic principles
of the Simplex method can be found in Harbaugh
and Bonham-Carter (1981). According to this tech-
nique, given two decision variables, a relation can
be expressed where

Z = 4x1 + 3x2 = 24,

and the variable Z is to be maximized subject to the
constraints that

x1 £ 5, and x2 £ 4

and

4x1 + 3x2 £ 24: x1 ≥ f; x2 ≥ f.

Representing the problem graphically, the con-
straints x1 plotted against x2 for an area that de-
fines the feasible solution space (the area shaded
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on Fig. 7.4). By plotting the values of the objective
function across the solution space the optimum
solution can be defined as the point (x1, x2) at
which Z is maximized and falls within the area of
the feasible solution. Careful interpretation of the
figure identifies the point as the apex of the shaded
region where x1 = 3 and x2 = 4.

Systems dynamics

Systems dynamics, or its more recent incarnation
as dynamic modeling, refers to a family of models
and an integrated modeling environment de-
signed to approach the general problem of repre-
senting continuous systems and processes. Based
on the ground-breaking work of Forester (1966)
and the contributions of Richardson and Pugh
(1983) and Hannon and Ruth (1994), systems 
dynamics is a methodology for understanding
problems that are (1) dynamic in that they involve
quantities that change over time, and (2) charac-
terized by active feedback effects. Thus, this 
modeling approach to problem-solving applies 
to dynamic (continuous) problems that develop
within systems characterized by feedback: a 
quality that has been shown to apply to both
human systems and a broad spectrum of environ-
mental processes (Hannon & Ruth, 1994; Ford,
1999).

Successful application of dynamic modeling
hinges on an understanding of feedback concepts
and their role in defining dynamic systems. Per-
haps the most basic definition of feedback ex-
plains the concept as the transmission and return
of information to a system. This simple definition
is central to developing the causal thinking need-
ed in order to organize ideas in a system dynamics
study (Roberts et al., 1983). Using feedback as a
structuring concept, causal thinking requires the
model builder to isolate key factors that direct the
processes involved and explain their relationship
to the system of interest. Through this type of
mental experimentation the logic and connections
that explain some observed behavior could be 
diagnosed. Illustrating these elements and con-
nections in a simple systems diagram helps to re-
veal the causal influences that form the system
and the possible feedback effects that may be at
work (Fig. 7.5).

To demonstrate the general approach to dy-
namic modeling we can explore the farmland con-
version process as an example. In this simple
model we are interested in understanding the
mechanisms that contribute to the change in land
use from farmland to urban. At the rural–urban
fringe of our hypothetical planning area, land
market forces and the personal motivations of 
private landholders coupled with local govern-
ment growth strategies have contributed to the
gradual but steady conversion of land from agri-
cultural uses to urban. While this example cannot 
approach the level of sophistication needed to 

Fig. 7.4 Defining decision regions using the simplex
method.
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Fig. 7.5 Causal loop diagram of the urban development
process.



explain the process completely, we can create a
model that allows us to explore a set of plausible
relationships that can be used to draft a more 
comprehensive farmland preservation program.
Given the observed pattern indicative of the de-
cline in farms in the region, we can create a sce-
nario that can be evaluated by the model.

1 Unmarried young adults migrate to region-
al centers for better job opportunities.

2 Population decreases and births fall below
replacement.

3 Reduction in business services due to de-
clining demand.

4 Reduction in key social services.
5 Loss of services induces out-migration of

young families and ensures in-migration is
minimal.

6 Aging population contributes to disinte-
gration of balance in the community.

7 Farmholdings passing to next generation
are offered for sale instead.

8 Farmland parcels are purchased by land
speculators and held out of production.

9 Land costs within the urban center encour-
age decentralization of population and
commercial activities.

10 Land held in speculation is sold for 
development.

11 Development increases market value of ex-
isting agricultural lands.

12 Increasing prices and taxes encourage mar-
ginal producers to sell land.

In this example, 12 causal forces were identified
that contributed to the general process of rural to
urban land conversion and the decline of farm-
land. Each of the relationships expressed can be
reviewed to determine how well they explain the
observed behavior. Once a reasonable sequence of
cause and effect is achieved, the relationship can
be specified and diagrammed. Diagramming
causal relationships enables the chains and loops
that connect elements of the process to be visual-
ized. In addition, diagramming facilitates devel-
opment of the model’s initial structure and assists
with the representation of feedback effects. The
causal-loop diagram representing the farmland
conversion process is shown in Fig. 7.6. Following
the looping arrows illustrated in the figure gives
the impression of causality, suggests how this sys-
tem may behave over time, and defines the nature
of feedback in the system. While this form of open-
loop thinking is a central feature of dynamic 
modeling, understanding the behavior of feed-
back is the ultimate goal of the systems dynamic
approach.

Feedback can assume several forms in a dy-
namic system, including:

• Single-loop positive feedback
• Single-loop negative feedback
• Multiple-loop feedback.
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With a focus on these feedback processes, dynam-
ic modeling proceeds on the assumption that feed-
back structures are responsible for the changes a
system undergoes over time, the premise here
being that dynamic behavior is a consequence of
system structure. Therefore, as both a cause and
consequence of feedback, dynamic modeling
looks within the system for the sources respon-
sible for its behavior.

As suggested by Richardson and Pugh (1983),
any problem viewed from this perspective is like-
ly to be seen initially as a graph of one or more
variables changing over time. Such graphs assist
the modeling processes by

1 Focusing attention on the problem.
2 Helping to identify key variables in the 

system.
3 Helping to define the problem dynamically.

Graphing important variables and inferring
graphs of other significantly related variables pro-
duces the problem focus of undertaking this type
of study. In essence, displaying graphs over time is
the reference mode of behavior for the model and
gives limited indication of the patterns that will
develop and that should be incorporated into the
modeling effort.

The dynamic model takes form as the variables
defined by the causal loop diagrams are translated
into the structural components that will become
the formal model. Translation requires represent-
ing each component of the system according to the
role it plays in the process. According to the lan-
guage of dynamic modeling there are four critical
components used to construct a model:

• Stocks or levels – defining the value or accu-
mulated value of a variable.

• Flows or rates – explaining process equa-
tions that act on the stock or level.

• Connectors – describing links that transfer
information about the stock or level to 
control.

• Time step – defining the period of time over
which the values of stock should be updated
during a run of the model.

Typically, translation involves transferring the
model from its representation as a causal diagram
to a computer model using a special-purpose 
simulation language. Presently the commercially

available simulation program developed by High
Performance Systems called STELLA II typifies
the characteristic dynamic modeling environ-
ment. Programs such as STELLA II provide a
range of functionality for quickly prototyping
computer simulation models. The main advan-
tage of this type of modeling environment is that it
does not require the designer of the model to pos-
sess knowledge of a conventional programming
language such as C, Pascal, or Fortran. Modeling
tools like STELLA II are a type of graphical pro-
gramming language that employ graphic objects
which can be assembled on a “white board” to
construct a functioning system model. Placed into
this design construct the form of the model can be
easily understood and the processes acting on the
problems can be more quickly identified. Howev-
er, the greatest advantage of this approach is the
relative ease by which changes can be made to 
the values given to variables in the model. Since
the values assigned to variables and constants can
be modified, exploring contrasting scenarios, ad-
justing time horizons, and altering functional rela-
tionships can be done without altering the general
structure of the model. This feature greatly en-
hances the role of dynamic modeling as a decision
support tool.

Cellular automata

Cellular Automata were introduced in the late
1940s by John von Neumann (von Neumann,
1966; Toffoli, 1987) and popularized in the late
1960s with the development of the “Game of Life”
(Gardner, 1970; Dewdney, 1990). Cellular automa-
ta are often described as the counterpart to partial
differential equations, which have the capacity to
describe continuous dynamic systems. A cellular
automaton is essentially a model that can be used
to show how the elements of a system interact
with each other. The basic element of a cellular 
automaton is the cell. A cell is a type of memory 
element and stores states that represent character-
istics of the system under investigation. These
cells can be two-dimensional squares, three-
dimensional blocks, or they may take some other
geometric form such as a hexagon. Each element
comprising the system is assigned a cell and cells



are arranged in a configuration. For example, cells
joined together to form a single line comprise a
one-dimensional cellular automaton, whereas
cells arranged on a grid form a two-dimensional
cellular automaton. In either instance, cells
arranged according to a one-dimensional or two-
dimensional lattice represent a static state. To in-
troduce change (or dynamics) into the system,
rules must be added to the model. The purpose of
these rules is to define the state of the cells for the
next time step. In cellular automata, dynamics
occur within neighborhoods, and different 
definitions of neighborhoods are possible. For the
two-dimensional lattice four neighborhood defin-
itions are common: (1) the von Neumann neigh-
borhood, (2) the Moore neighborhood, (3) the
extended Moore neighborhood, and (4) the Mar-
golus neighborhood (Fig. 7.7).

In the initial configuration of the cellular au-
tomata, each cell is assigned a “starting” value
from the range of possible values typical of the
system under study. For instance, if the range of
possible values (states) were 0 to 1, then each cell
would be assigned a 0 or 1 in the initial configura-
tion. Atransition function and a transition rule are
also associated with each cell. Working in concert,
the transition rule and function take as input the
present states (values) of all the cells in a given
cell’s neighborhood and generate the next state of
the given cell. When applied to all of the cells indi-
vidually in a cellular automaton, the next state of
the whole cellular automaton is generated from
the present state. Then the next state of the cellular
automaton is copied to the present state and the

process is repeated for as many clock cycles as 
desired.

Cellular automata are rapidly gaining favor 
as a tool for modeling dynamic spatial systems
(Batty & Xie, 1994; Cecchini & Viola, 1992; Engelen
et al, 1996; White & Engelen, 1997). When com-
pared to traditional approaches based on differen-
tial or difference equations, cellular automata
have notable advantages: they are inherently spa-
tial with rule-based dynamics; computationally
efficient; can model systems with very high spatial
resolutions; and provide and intuitive link to 
geographic information systems data formats
(White & Engelen, 1997). For these reasons cellu-
lar automata show great promise as a basis for re-
gional and environmental modeling (Clarke et al.,
1994; White & Engelen, 1997). For example, in a 
recent study undertaken by Clarke, Hoppen, and 
Gaydos (1997), a cellular automaton simulation
model was developed to predict urban growth as
part of a project for estimating the regional impact
of urbanization on climate. In this study the rules
of the model were more complex than for the 
typical application, and allowed specific growth
scenarios to be performed by the model using 
historic land-use/land-cover data sets. A similar
study conducted by White and Engelen (1997), an
integrated model of regional spatial dynamics,
consisted of a cellular automaton-based model 
of land use linked to a geographic information 
system, to nonspatial regional economic and de-
mographic models, and to a simple model of envi-
ronmental change. Based on their initial testing 
of this integrated package, the cellular automata
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Fig. 7.7 Cellular neighborhoods.
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enabled detailed modeling and realistic pre-
diction of land-use patterns and provided a way 
to introduce environmental factors into the
simulation. Although the authors caution that it
may not be possible to predict the state of any
land-use system far into the future, reasonable
forecasts of land-use patterns over a period of 10 to
15 years can be made with measured confidence if
the growth rate of the region is known. What this
model does is support “what if” experiments, al-
lowing the user to explore various possible fu-
tures and develop insights that may be of use in
strategic planning.

Summary

As a future-oriented activity, environmental plan-
ning relies on the application and development of
models to explore “what if” situations and test 
the outcome of various policy decisions and alter-
natives. The issues related to the use of models in
environmental planning and the design of simula-
tion experiments were examined in this chapter.
Introduced in this discussion were the foundation
techniques that rest at the core of many of the mod-
els used in environmental planning. The tech-
niques selected for this discussion included
Monte Carlo sampling, Markov chain analysis,

dynamic modeling, and cellular automata. With a
solid understanding of these techniques the ad-
vantages and disadvantages of using models in
planning can be understood. In addition, the
methods of modeling outlined in this chapter help
the environmental planner decide what to model,
how to design a simulation experiment to acquire
information, and how to interpret the results of
modeling studies. Taken together these topics
support the intelligent use of models and stress
their value in the formulation of environmental
plans.

Focusing questions

What is a model and how do models contribute
to the simulation process?

Develop a simple scenario: outline the causal
chain of events that might unfold following a
decision to relocate and expand a highway
through a rural area.

Compare and contrast dynamic, probabilistic,
and stochastic models; how do these forms
influence the representation of a system?

What considerations guide the use of models in
general, and how do they influence the inter-
pretation of results obtained from a simula-
tion experiment?




