COE 205
Introduction to Computer Organization and Assembly Language
6Advanced Arithmetic

6Introduction

6ADD, SUB :

6Adding and Subtracting Integers:

7ADC, SBB

7Adding and Subtracting in Multiple Registers:

8Adding and Subtracting on 64 bit Operands:

9DAA and DAS Instructions

9DAA operation:

10MUL, IMUL

10Using Multiplication Instructions:

11DIV, IDIV

11Using Division Instructions:

13Divide Overflow and Sign Extension

13The CBW and CWD instructions:

13Divide Overflow:

13Preparing Dividend

13Conclusion

15Bit Manipulation Instructions

15LOGICAL INSTRUCTION

15Effects on Status Flag

15The Truth tables

16The Usage

17Changing a letter to its opposite case.

17Converting an ASCII digit to a Decimal digit and vice versa:

18Examining selected bits in the Destination Operand

18Determine whether a general-purpose register is equal to zero

18Clearing a general-purpose register operand or a memory operand to zero

18Shift Instructions

19EFFECT of SHIFT INSTRUCTIONS on FLAGS

19Logical Shift Instruction

19Left shift (SHL)

21Right Shift (SHR)

21Shift arithmetic Instructions

21Double Precision Shift Instructions

21Rotate Instructions

22General syntax format

22ROL (Rotate Left) Instruction

22ROR (Rotate Right) Instruction

22RCL (Rotate through Carry Left) Instruction

22RCR (Rotate through Carry right) Instruction

24Flow Control Instructions

24Introduction

25Conditional Jump Instructions

25High Level Conditional Structures

25Unconditional Jump Instruction: JMP

26Relative Address

27CMP Instruction

28Conditional Jump Instructions

29Addressing Modes

29Single-Flag Based Jump Instructions

30Unsigned Conditional Jump Instructions

31Signed Conditional Jump Instructions

32Loop Instructions

32LOOPZ/LOOPE and LOOPNZ/LOOPNE Instructions

33The JCXZ instruction

34IF-Then and IF-THEN-ELSE Structures

35IF Structure with Logical Operators

35CASE Statement

36WHILE Structure

37Repeat-Until Structure

37Indirect Jump Example

39Stack and Procedures

39Objectives

39The Stack

40Pentium Stack Instructions and Directives

40Stack Usage

40Pentium Advanced Stack Instructions

42Procedures

42How does a Procedure work?

43Assembler Directives for Procedures

43Defining Subroutine

44Preserving Registers

44Parameter Passing

45Using general purpose registers

45Using global (static) variables

46Stack Method: Passing Arguments on the Stack

46Naming Conventions

47The C Calling Convention

48

48The STDCALL Calling Conventions

48The Pascal Calling Convention

49Local Variables

50Macros and Conditional Assembly

50Macro Definition and Invocation

51Position of Macro Definition

51Macros versus Procedures

52Parameter passing

52Types of parameters

52Invocation mechanism

53When are macros better

54Labels in Macros

54Labels in Procedures

55Conflicts with Local Labels

55Macro Expansion in the .LST File

56List Control Directives

56Macro list control directives

56Comments in Macros

57Assembly errors during macro expansion

57Nested Macros

58Recursive Macros

58Macro Library

58Position of INCLUDE Statement

58Examples of Useful Macros

59Using a Macro Library

59Macro Operators

60Substitute Operator (&)

61Literal-Text String Operator (<>)

61Literal-Character Operator (!)

62Successive Single Quotes

62Expression Evaluate Operator (%)

62Repeat Block Directives

63REPT Macro Invocation

64WHILE Directive

64IRP Directive

65IRPC Directive

67Conditional Assembly

67Introduction

67IF and IFE Directives

69IFDEF and IFNDEF Directives

69IFB and IFNB Directives

70String MSG Declaration

71IFIDN and IFDIF Directives

71Directives Overhead

72String Handling Instructions

72Objectives:

72Introduction

73Move String Instructions

74The MOVSB instruction

74The MOVSW instruction

74The MOVSD instruction

75REP Prefix

76Compare String Instructions

77The CMPSB Instruction

77The CMPSW Instruction

77The CMPSD Instruction

78REPE/REPZ Prefix

78REPNE/REPNZ Prefix

79Scan String Instructions

80The SCASB Instruction

80The SCASW Instruction

80The SCASD Instruction

81Store String Instructions

82The STOSB instruction

82The STOSW instruction

82The STOSD instruction

83Load String Instructions

83The LODSB instruction

84The LODSW instruction

84The LODSD instruction

Advanced Arithmetic[image: image48.png]

Introduction[image: image49.png]

This unit deals with the arithmetic instructions used with the 8086 processor. These are as follows:

· ADD and ADC used for adding

· INC used for incrementing,

· SUB and SBB used for subtracting

· DEC used for decrementing

All these instructions operate on values in single registers, memory or constants. They can also be combined to handle larger values that require two registers for storage.
The 8086 family of processors uses different multiplication and division instructions for signed and unsigned integers.
· IMUL for signed multiplication

· IMUL for signed division

Multiplication and division instructions have also special requirements depending on the size of the operands and the processor the code runs on.

ADD, SUB :
Adding and Subtracting Integers:

The ADD, INC (Increment), SUB, and DEC (Decrement) instructions operate on 8 and 16-bit values on the 8086 & 80286 processors, and on 8-, 16-, and 32-bit values on the 80386/486 processors. They can be combined with the ADC and SBB instructions to work on 32-bit values on the 8086 and 64-bit values on the 80386/486 processors.
These instructions have two requirements:

1. If there are two operands, only one operand can be a memory operand.

2. If there are two operands, both must be the same size.

To meet the second requirement, the PTR operator can be used to force an operand to the size required.
For example, if Buffer is an array of bytes and BX points to an element of the array, you can add a word from Buffer with:

 add ax, WORD PTR Buffer[bx] ; Add word from byte array

The next examples shows 8-bit signed and unsigned addition and subtraction.

	8-bit signed and unsigned addition

	 .DATA

MEM8 BYTE 39

 .CODE

; ADDITION

 ; SIGNED UNSIGNED

 MOV AL, 26 ; START WITH REGISTER 26 26

 INC AL ; INCREMENT 1 1

 ADD AL, 76 ; ADD IMMEDIATE 76 + 76

 ; ---- ----

 ; 103 103

 ADD AL, MEM8 ; ADD MEMORY 39 + 39

 ; ---- ----

 MOV AH, AL ; COPY TO AH -114 142

 +OVERFLOW

 ADD AL, AH ; ADD REGISTER 142

 ; ----

 ; 28+CARRY

	8-bit signed and unsigned subtraction

	; SUBTRACTION

 ; SIGNED UNSIGNED

 MOV AL, 95 ; LOAD REGISTER 95 95

 DEC AL ; DECREMENT -1 -1

 SUB AL, 23 ; SUBTRACT IMMEDIATE -23 -23

 ; ---- ----

 ; 71 71

 SUB AL, MEM8 ; SUBTRACT MEMORY -122 -122

 ; ---- ----

 ; -51 205+SIGN

 MOV AH, 119 ; LOAD REGISTER 119

 SUB AL, AH ; AND SUBTRACT -51

 ; ----

 ; 86+OVERFLOW

ADC, SBB
Adding and Subtracting in Multiple Registers:

Numbers larger than the register size on your processor can be added and subtracted with the ADC (Add with Carry) and SBB (Subtract with Borrow) instructions. These instructions work as follows:

ADC Dest, Source
; Dest = Dest + Source + Carry Flag

SBB Dest, Source
; Dest = Dest - Source - Carry Flag

If the operations prior to an ADC or SBB instruction do not set the carry flag, these instructions are identical to ADD and SUB. While operating on large values in more than one register, ADD and SUB are used for the least significant part of the number and ADC or SBB for the most significant part.
The following example illustrates multiple-register addition and subtraction.

	Use of ADC and SBB Instructionson the 8086 Processor

	 .DATA

mem32 DWORD 316423

mem32a DWORD 316423

mem32b DWORD 156739

 .CODE

 .

 .

 .

; Addition

 mov ax, 43981 ; Load immediate 43981

 sub dx, dx ; into DX:AX

 add ax, WORD PTR mem32[0] ; Add to both + 316423

 adc dx, WORD PTR mem32[2] ; memory words ------

 ; Result in DX:AX 360404

; Subtraction

 mov ax, WORD PTR mem32a[0] ; Load mem32 316423

 mov dx, WORD PTR mem32a[2] ; into DX:AX

 sub ax, WORD PTR mem32b[0] ; Subtract low - 156739

 sbb dx, WORD PTR mem32b[2] ; then high ------

 ; Result in DX:AX 159684

Adding and Subtracting on 64 bit Operands:

This technique can also be used with 64-bit operands on the 80386/486 processors. For 32-bit registers on the 80386/486 processors, only two steps are necessary. If your program needs to be assembled for more than one processor, you can assemble the statements conditionally, as shown in this example:

	Use of ADC and SBB Instructionson 80386/486 processors

	 .DATA

mem32 DWORD 316423

mem32a DWORD 316423
mem32b DWORD 156739

p386 TEXTEQU (@Cpu AND 08h)

 .CODE

 .

 .

 .

; Addition

 IF p386

 mov eax, 43981 ; Load immediate

 add eax, mem32 ; Result in EAX

 ELSE

 .

 . ; do steps in previous example

 .

 ENDIF

; Subtraction

 IF p386

 mov eax, mem32a ; Load memory

 sub eax, mem32b ; Result in EAX

 ELSE

 .

 . ; do steps in previous example

 .

 ENDIF

Since the status of the carry flag affects the results of calculations with ADC and SBB, be sure to turn off the carry flag with the CLC (Clear Carry Flag) instruction or use ADD or SUB for the first calculation, when appropriate.

DAA and DAS Instructions [image: image50.png]

The DAA (Decimal Adjust after Addition) instruction allows addition of numbers represented in 8-bit packed BCD code. It is used immediately after normal addition instruction operating on BCD codes. This instruction assumes the AL register as the source and the destination, and hence it requires no operand.
The effect of DAS (Decimal Adjust after Subtraction) instruction is similar to that of DAA, except that it is used after a subtraction instruction. For example in the following program, that NUM1 and NUM2 are decimal numbers coded in BCD format, the result should be 61

	DAA Instructions

	.MODEL SMALL
.STACK 200
.DATA
 NUM1 DB 27H
 NUM2 DB 35H
.CODE
.STARTUP
 MOV AL, NUM1 ;load AX with number NUM1
 ADD AL, NUM2 ;AL = AL + NUM2 i.e. AL = 5CH = 92 in decimal
 ;The expected result is 62 in decimal
 DAA ; AL = 62
.EXIT
END

DAA operation:

For the processor there is no difference between a BCD and a hexadecimal number, all numbers are seen as hexadecimal numbers. After performing an addition and the result is saved in the AL register, conversion to decimal is carried out as follows:
· if the digit in the lower four nibbles of AL is greater than 10 (decimal),

· then subtract 10 and

· add 1 to the digit in the higher four nibbles of AL
Example:Suppose that the result obtained after adding 27 to 35, is 5CH. To convert this to the value that we would expect after a decimal addition, the DAA instruction is used.
· assume result = AL = 5CH

· digit in the low four nibbles of AL = C = 12

· then 12 - 10 = 2

· hence keep the 2 and

· add 1 to the digit in the higher four nibbles of AL 5 + 1 = 6
· The result is thus: 62
The DAS instruction works in a similar fashion after a SUB instruction.

MUL, IMUL
Using Multiplication Instructions:

The MUL instruction multiplies unsigned numbers. IMUL multiplies signed numbers. For both instructions, one factor must be in the accumulator register (AL for 8-bit numbers, AX for 16-bit numbers, EAX for 32-bit numbers). The other factor can be in any single register or memory operand. The result overwrites the contents of the accumulator register. Multiplying two 8-bit numbers produces a 16-bit result returned in AX. Multiplying two 16-bit operands yields a 32-bit result in DX:AX.
The 80386/486 processor handles 64-bit products in the same way in the EDX:EAX pair. \

The following examples illustrate multiplication of signed 8 and 16-bit integers.

	multiplication of unsigned 8-bit integers

	 .DATA
mem16 SWORD -30000
 .CODE
 .
 .
 .
; 8-bit unsigned multiply
 mov al, 23 ; Load AL 23
 mov bl, 24 ; Load BL * 24
 mul bl ; Multiply BL -----
 ; Product in AX 552
 ; overflow and carry set

	multiplication of unsigned 16-bit integers

	 .DATA
mem16 SWORD 30000
 .CODE
 .
 .
 .
; 16-bit signed multiply
 mov ax, 50 ; Load AX 50
 ; -30000
 imul mem16 ; Multiply memory -----
 ; Product in DX:AX -1500000
 ; overflow and carry set0

A nonzero number in the upper half of the result (AH for byte, DX or EDX for word) sets the overflow and carry flags. On the 80186â€“80486 processors, the IMUL instruction supports three additional operand combinations. The first syntax option allows for 16-bit multipliers producing a 16-bit product or 32-bit multipliers for 32-bit products on the 80386/486. The result overwrites the destination.
The syntax for this operation is:

IMUL register16, immediate
The second syntax option specifies three operands for IMUL. The first operand must be a 16-bit register operand, the second a 16-bit memory (or register) operand, and the third a 16-bit immediate operand. IMUL multiplies the memory (or register) and immediate operands and stores the product in the register operand with this syntax:

IMUL register16,{ memory16 | register16}, immediate
For the 80386/486 only, a third option for IMUL allows an additional operand for multiplication of a register value by a register or memory value.
The syntax is:

IMUL register,{register | memory}
The destination can be any 16-bit or 32-bit register. The source must be the same size as the destination.
In all of these options, products too large to fit in 16 or 32 bits set the overflow and carry flags. The following examples show these three options for IMUL.

	multiplication of signed 32-bit integers

	 imul dx, 456 ; Multiply DX times 456 on 80186-80486
 imul ax, [bx],6 ; Multiply the value pointed to by BX
 ; by 6 and put the result in AX
 imul dx, ax ; Multiply DX times AX on 80386
 imul ax, [bx] ; Multiply AX by the value pointed to
 ; by BX on 80386

The IMUL instruction with multiple operands can be used for either signed or unsigned multiplication, since the 16-bit product is the same in either case. To get a 32-bit result, you must use the single-operand version of MUL or IMUL.

	multiplication of signed 16-bit integers

	 .DATA
mem16 SWORD -30000
 .CODE
 .
 .
 .
; 16-bit signed multiply
 mov ax, 50 ; Load AX 50
 ; -30000
 imul mem16 ; Multiply memory -----
 ; Product in DX:AX -1500000
 ; overflow and carry set

DIV, IDIV
Using Division Instructions:

The DIV instruction divides unsigned numbers, and IDIV divides signed numbers. Both return a quotient and a remainder. Table below summarizes the division operations. The dividend is the number to be divided, and the divisor is the number to divide by. The quotient is the result. The divisor can be in any register or memory location except the registers where the quotient and remainder are returned. Unsigned division does not require careful attention to flags.

	Size of Operand
	Dividend Register
	Size of Divisor
	Quotient
	Remainder

	16 bits
	AX
	8 bits
	AL
	AH

	32 bits
	DX:AX
	16 bits
	AX
	DX

	64 bits (80386and 80486)
	EDX:EAX
	32 bits
	EAX
	EDX

The following examples illustrate signed division, which can be more complex.
	signed division

	 .DATA
mem16 SWORD -2000
mem32 SDWORD 500000
 .CODE
 .
 .
 .
; Divide 16-bit unsigned by 8-bit
 mov ax, 700 ; Load dividend 700
 mov bl, 36 ; Load divisor DIV 36
 div bl ; Divide BL ------
 ; Quotient in AL 19
 ; Remainder in AH 16
; Divide 32-bit signed by 16-bit
 mov ax, WORD PTR mem32[0] ; Load into DX:AX
 mov dx, WORD PTR mem32[2] ; 500000
 idiv mem16 ; DIV -2000
 ; Divide memory ------
 ; Quotient in AX -250
 ; Remainder in DX 0
; Divide 16-bit signed by 16-bit
 mov ax, WORD PTR mem16 ; Load into AX -2000
 cwd ; Extend to DX:AX
 mov bx,-421 ; DIV -421
 idiv bx ; Divide by BX -----
 ; Quotient in AX 4
 ; Remainder in DX -316

If the dividend and divisor are the same size, sign-extend or zero-extend the dividend so that it is the length expected by the division instruction. See “Extending Signed and Unsigned Integers,” earlier in this chapter.

Divide Overflow and Sign Extension [image: image51.png]

The CBW and CWD instructions:

CBW and CWD are two instructions used to facilitate division of 8 and 16 bit signed numbers. Since division requires a double-width dividend, CBW converts an 8-bit signed number (in AL) to a word. The MSB of the AL register is duplicated into AH register. Similarly, CWD converts a 16-bit signed number to a 32-bit signed number (DX,AX). Here the MSB of the AX register is duplicated into AX register.

Divide Overflow:

Overfow occurs when the result of a division does not fit in a byte if the dividend is a word, and in a word if the dividend is a double word. Such an overflow terminates the program with "Divide Overflow" message! This needs to be anticipated and hence can be avoided.
Overflow occurs if:
· Byte form: AH>=divisor
· Word form: DX>=divisor
Preparing Dividend
To avoid overflow, the dividend has to be prepared as follows. To divide a word in AX by a word, AX must be converted to a doubleword in DX:AX.
	If signed:

CWD (called sign-extension)
	If unsigned:

MOV DX,0

To divide a word in AL by a byte, AL must be converted to a word in AX.
	If signed:

CBW (these do not affect Flags)
	If unsigned:

MOV AH,0

Conclusion [image: image52.png]

The following tables summarize the arithmetic instructions used with the 8086 microprocessor. A brief example is given for each instruction, and the flags affected by the instruction. The â€œ*â€‌ in the table means that the corresponding flag may change as a result of executing the instruction. The â€œ-â€œ means that the corresponding flag is not affected by the instruction, whereas the â€œ?â€‌ means that the flag is undefined after executing the instruction.
	Addition Instructions
	Instruction
	Example
	Meaning
	OF
	SF
	ZF
	AF
	PF
	CF

	
	ADD
	ADD AX, 7BH
	AX = AX + 7B
	*
	*
	*
	*
	*
	*

	
	ADC
	ADC AX, 7BH
	AX = AX + 7B + CF
	*
	*
	*
	*
	*
	*

	
	INC
	INC [BX]
	[BX] = [BX] + 1
	*
	*
	*
	*
	*
	-

	
	DAA
	DAA
	Decimal Adjust after Add
	*
	*
	*
	*
	*
	*

	Subtraction Instructions
	Instruction
	Example
	Meaning
	OF
	SF
	ZF
	AF
	PF
	CF

	
	SUB
	SUB CL, AH
	CL = CL -AH
	*
	*
	*
	*
	*
	*

	
	SBB
	SBB CL, AH
	CL = CL -AH - CF
	*
	*
	*
	*
	*
	*

	
	DEC
	DEC DAT
	[DAT] = [DAT] -1
	*
	*
	*
	*
	*
	-

	
	DAS
	DAS
	Decimal Adjust after Sub
	*
	*
	*
	*
	*
	*

	
	NEG
	NEG CX
	CX = 0 - CX
	*
	*
	*
	*
	*
	*

	Multiplication Instructions
	Instruction
	Example
	Meaning
	OF
	SF
	ZF
	AF
	PF
	CF

	
	MUL
	MUL CL
	AX = AL * CL
	*
	?
	?
	?
	?
	*

	
	MUL
	MUL CX
	(DX,AX) = AX* CX
	*
	?
	?
	?
	?
	*

	
	IMUL
	IMUL BYTE PTR X
	AX = AL * [X]
	*
	?
	?
	?
	?
	*

	
	IMUL
	IMUL WORD PTR X
	(DX,AX) = AX*[X]
	*
	?
	?
	?
	?
	*

	Division Instructions
	Instruction
	Example
	Meaning
	OF
	SF
	ZF
	AF
	PF
	CF

	
	DIV
	DIV WORD PTR X
	AX = Q(([DX,AX])/[X])
	?
	?
	?
	?
	?
	?

	
	
	
	DX = R(([DX,AX])/[X])
	?
	?
	?
	?
	?
	?

	
	IDIV
	IDIV BH
	AL = Q(AX/BH)
	?
	?
	?
	?
	?
	?

	
	
	
	AH = R(AX/BH)
	?
	?
	?
	?
	?
	?

	Sign Extension
	Instruction
	Example
	Meaning
	OF
	SF
	ZF
	AF
	PF
	CF

	
	CBW
	CBW
	AH = MSB(AL)
	-
	-
	-
	-
	-
	-

	
	CWD
	CWD
	DX = MSB(AX)
	-
	-
	-
	-
	-
	-

Bit Manipulation Instructions [image: image53.png]

LOGICAL INSTRUCTION

Bitwise Logical instructions are the most primitive operations needed by every computer architecture. At a minimum, an architecture could provide a NAND operations, since all other logical functions can be derived from NAND operations. These logical operations are semantically different to what is known as in most of high level programming language. The difference lies down at the fact that bitwise logical operations are performed at bit-by-bit basis. Pentium provides five logical instructions.

AND destination, source
OR destination, source

XOR destination, source

TEST destination, source

NOT destination
All logical instructions need two operands except NOT instructions which is a unary. The result of the operation is stored in the Destination, which must be a general register or a memory location. The Source may be an immediate value, register, or memory location. The Destination and Source CANNOT both be memory locations. The Destination and Source must be of the same size (8-, 16-. 32-bit). All logic instructions, except TEST, modify the Destination operand. The TEST instruction does not modify any of its operands; however it affects the flags similar to the AND instruction. All logical instructions, except NOT, affect the status flags.
Effects on Status Flag

Since logical instructions operate on a bit-by-bit basis, no carry or overflow is generated.
· Except NOT, all logical instructions clear carry flag (CF) and overflow flag (OF).

· AF is undefined

· Remaining three flags record useful information: Zero flag (ZF), Sign flag (SF), Parity flag (PF).
	Carry Flag
	Overflow Flag
	Zero Flag
	Sign Flag
	Parity Flag
	Auxiliary Flag

	0
	0
	Modified
	Modified
	Modified
	Undefined

The Truth tables

	Bit1
	Bit2
	Bit1 AND Bit2
	Bit1 TEST Bit2
	Bit1 OR Bit2
	Bit1 XOR Bit2

	0
	0
	0
	0
	0
	0

	0
	1
	0
	0
	1
	1

	1
	0
	0
	0
	1
	1

	1
	1
	1
	1
	1
	0

Example: AND BL, 0F0h instruction

mov BL, 01010111b

and BL, 0F0h

Result in BL is: 01010000

The Usage

The main usage of bitwise logical instructions is:
· to set some selected bits in the Destination operand.

· to clear some selected bits in the Destination operand.

· to invert some selected bits in the Destination operand.

· to isolate some selected bits in the Destination operand.

To do this, a Source bit pattern known as a mask is constructed. The mask bits are chosen so that the selected bits are modified in the desired manner when an instruction of the form:
LOGIC_INSTRUCTION
Destination , Mask
is executed. The Mask bits are chosen based on the following properties of AND, OR, and XOR: If X represents a bit (either 0 or 1) then:

	AND
	OR
	XOR

	X AND 0 = 0
	X OR 0 = X
	X XOR 0 = X

	X AND 1 = X
	X OR 1 = 1
	X XOR 1 =
[image: image54.wmf]X

· The AND instruction can be used to CLEAR specific Destination bits while preserving the others. A zero mask bit clears the corresponding Destination bit; a one mask bit preserves the corresponding destination bit.
· The OR instruction can be used to SET specific destination bits while preserving the others. A one mask bit sets the corresponding destination bit; a zero mask bit preserves the corresponding destination bit.
· The XOR instruction can be used to INVERT specific Destination bits while preserving the others. A one mask bit inverts the corresponding Destination bit; a zero mask bit preserves the corresponding Destination bit.
Example: Clearing bit 2, 4, 6 and 7 of destination using AND operation
	Destination
	a(7)
	a(6)
	a(5)
	a(4)
	a(3)
	a(2)
	a(1)
	a(0)

	Mask
	0
	0
	1
	0
	1
	0
	1
	1

	AND
	0
	0
	a(5)
	0
	a(3)
	0
	a(1)
	a(0)

Example: Setting bit 7, 6, 5, 3 and 0 of destination using OR operation
	Destination
	a(7)
	a(6)
	a(5)
	A(4)
	a(3)
	a(2)
	a(1)
	a(0)

	Mask
	1
	1
	1
	0
	1
	0
	0
	1

	OR
	1
	1
	1
	A(4)
	1
	a(2)
	A(1)
	1

Example: Toggling bit 7, 2, and 0 of destination using OR operation

	Destination
	a(7)
	a(6)
	a(5)
	A(4)
	a(3)
	a(2)
	a(1)
	a(0)

	Mask
	1
	0
	0
	0
	0
	1
	0
	1

	XOR
	~a(7)
	a(6)
	a(5)
	A(4)
	a(3)
	~a(2)
	a(1)
	~a(0)

Example

	AND BL, 11110000B
	To clear the 4 low-order bits of BL while leaving the 4 high-order bits unchanged

	OR AX, 1100000000000000B
	To Set bits 15 and 14 of AX while leaving other bits unchanged

	XOR CL, 00001010B
	To Inverts bits 1 and 3 of CL while preserving the others

	XOR CL, 00001010b
	To make the high 3 bits of CL equal to the high 3 bits of AL and the low 5 bits of CL equal to the low 5 bits of BL

Changing a letter to its opposite case.
For any alphabetic letter, bit 5 of its ASCII code is 1; but for the corresponding uppercase letter bit 5 is 0. The remaining bits are similar:

	Letter
	ASCII code
	Letter
	ASCII code

	'a'
	0

1

1

0

0

0

0

1

	'A'
	0

1

0

0

0

0

0

1

	'b'
	0

1

1

0

0

0

1

0

	'B'
	0

1

0

0

0

0

1

0

	'c'
	0

1

1

0

0

0

1

1

	'C'
	0

1

0

0

0

0

1

1

	...
	0

1

1

X

X

X

X

X

	...
	0

1

0

X

X

X

X

X

	'z'
	0

1

1

1

1

0

1

0

	'Z'
	0

1

0

1

1

0

1

0

Thus a lowercase alphabetic letter can also be converted to uppercase by clearing bit 5 of its ASCII code. This can be done by using an AND instruction with the mask 11011111B or 0DFh.
Mov DL , 'j'

And DL , 11011111B
An uppercase alphabetic letter can also be converted to lowercase by setting bit 5 of its ASCII code. This can be done by using an OR instruction with the mask 00100000B or 20H.
Mov AL , 'M'

Or AL , 20h
To convert a lowercase or uppercase letter to its opposite case we need only invert bit 5 of its ASCII code. This can be done by using an XOR instruction with the mask 00100000B.

Converting an ASCII digit to a Decimal digit and vice versa:
For any ASCII digits, bit 4 and 5 of its ASCII code are 11; but for the corresponding decimal digit bit 4 and 5 are 00. The remaining bits are similar:

	ASCII digit
	ASCII code
	Decimal digit
	Binary code

	'0'
	0

0

1

1

0

0

0

0

	0
	0

0

0

0

0

0

0

0

	'1'
	0

0

1

1

0

0

0

1

	1
	0

0

0

0

0

0

0

1

	'2'
	0

0

1

1

0

0

1

0

	2
	0

0

0

0

0

0

1

0

	X
	0

0

1

1

x

x

x

x

	x
	0

0

0

0

x

x

x

x

	'9'
	0

0

1

1

1

0

0

1

	9
	0

0

0

0

1

0

0

1

Thus another way of converting an ASCII digit to the corresponding Decimal digit is to use the AND instruction with the mask 00001111B (0FH) or with the mask 11001111B (i.e. 0CFH) to clear bits 5 and 6 of the ASCII digit.
Mov BH , '3'

And BH , 0CFh
Similarly, another way of converting a Decimal digit to the corresponding ASCII digit is to use the OR instruction with the mask 00110000B (i.e. 30H) to set bits 5 and 6 of the Decimal digit.\

Mov BH , 6

And BH , 30h
Examining selected bits in the Destination Operand

The Logic Instructions can be used to examine the status of selected bits in the destination operand.

	Example: To check whether bit 2 of AL is set or clear:

	 Test AL,00000100b
 Jz IS_CLEAR
 . . . ; action if bit 2 is set
 Jmp DONE
IS_CLEAR: . . . ; action if bit 2 is clear
 . . .
 DONE:

	Example: To check whether bits 0, 2, 4 and 5 of DL are all clear:

	 Test DL, 00110101B
 Jz BITS_CLEAR
 . . . ; action if any of bits 0, 2, 4, and 5 is set
 Jmp DONE
 BITS_CLEAR: ... ; action if each of bits 0, 2, 4, and 5 is clear
 DONE:

	Example: To check if ANY of bits 0, 2, 4 and 5 of DL is clear:

	 Push DX
 Or DL, 11001010B
 Cmp DL, 11111111B
 Pop DX
 Jne ATLEASTONE_CLEAR
 . .
 Jmp DONE
ATLEASTONE_CLEAR: . . .
DONE:

Determine whether a general-purpose register is equal to zero
The followings are ways to examine whether or not any general-purpose register is equal to zero.

Or AL, AL

and EDX, EDX

test ESI, ESI
Clearing a general-purpose register operand or a memory operand to zero

A register operand can be cleared to zero using any of the instructions: MOV, SUB, AND, and XOR. The followings are ways to clear any general-purpose register to zero.
mov BL, 0

sub AX, AX

and CL, 0

xor DH, DH

A memory operand can be cleared to zero using either the MOV or AND instruction. The followings are ways to clear any memory location to zero.

mov VAR1, 0
and ARRAY[2], 0
Shift Instructions [image: image55.png]

There are three types of shift instructions
	Logical shift instructions
	work on unsigned binary numbers
	SHL
SHR

	Arithmetic shift instructions
	work on signed binary numbers
	SAL
SAR

	Double Precision Shift instructions
	Works in words
	SHLD
SHRD

There are two different formats for logical and arithmetic shift instructions:
SHL/SHR/SAL/SAR r/m, count
SHL/SHR/SAL/SAR r/m, CL
count is an immediate value between 0 and 31. If a greater value is specified, Pentium takes only the least significant 5 bits as the count value (MODULUS 32).Second format specifies count indirectly through CL
· Only CL register can be used.

· CL contents are not changed.

· Useful if count value is known only at the run time as opposed at assembly time.

EFFECT of SHIFT INSTRUCTIONS on FLAGS

All shift instructions affect some flags like other instructions.
· Auxiliary flag (AF): undefined.

· Zero flag (ZF), Sign flag (SF) and parity flag (PF)are updated to reflect the result.

· Carry flag (CF): Contains the last bit shifted out

· Overflow flag (OF)

· For multibit shifts : Undefined

· For single bit shifts: OF is set if the leftmost bit has changed as a result of the shift, otherwise cleared.

Logical Shift Instruction
Left shift (SHL)

SHL shifts the leftmost bit into the Carry Flag (CF) and overwrites the current value of the Carry Flag. Each of the remaining bits is shifted leftwise and 0 is shifted into the rightmost bit.
	Example: Shifting AL=3 leftwise by 1 bit

mov AL, 3
Shl AL, 1
; shift left AL 1 place

	S O L U T I O N

Initially AL = 3 = 0000 0011

Finally AL = 6 = 0000 0110

CF = 0

SF = 0

ZF = 0 because the result is not equal to 0.

PF = 1 because there are 2 bits 1 in AL.

OF = 0 Why?

Shifting left a Destination operand by N bits multiplies it by 2N. (Signed and unsigned)
	Example: Shifting BL=3Fh leftwise by 3 bits

mov BL, 3Fh
shl BL, 3
;shift left BL by 3 bit

	S O L U T I O N

BL = F8h=248 = 1111 1000

CF = 1

SF = 1
ZF = 0 because the result is not equal to 0.

PF = 0 because there are odd numbers of bit 1 in BL.

OF is undefined

	Example: Shifting leftwise AL by CL bit

 mov AX, 8F23h ; now AX=36643 (unsigned) or -28893 (signed)

 mov CX, 1

 shl AX, CL ; shift left AX 1 place

	S O L U T I O N

AX = 1E46h= 7750

CF = 1

SF = 1

ZF = 0

PF = 0 because there are 3 bits 1 in AL.

OF = 1 because the leftmost bit of AX has changed from 1 to 0.

Unsigned Multiplication by a non-multiple of 2 can be achieved by a combination of SHL, MOV, ADD, or SUB instructions. Such multiplications are usually more efficient than multiplications using the MUL (Multiplication) instruction.
Example: Multiply AX by 19

 ; 19 = 16 + 2 + 1

 Push BX

 Mov BX , AX

 Shl BX , 1 ; BX := AX*2

 Add BX , AX ; BX := AX * 3

 Shl AX , 4 ; AX := AX * 16

 Add AX , BX ; AX := AX * 19

 Pop BX
Example: Multiply AX by 15

 ; 15 = 16 - 1

 Push BX

 Mov BX , AX

 Shl AX , 4 ; AX := AX*16

 Sub AX , BX ; AX := 16*AX - AX

 Pop BX
Due to the possibility of having discarded bits that may yield incorrect result, however, the usage of shift instructions for unsigned multiplication must be examined carefully.

Example: Multiply AX by 15 Accurately

 ; The trick is to use 32-bit register

 Push EBX

 Movzx EAX , AX ; extend AX into EAX

 Mov EBX , EAX

 Shl EAX , 4 ; EAX := EAX*16

 Sub EAX , EBX ; EAX := 16*EAX - EAX

 Pop EBX

For multibit left-shifts the Carry Flag (CF) may not accurately reflect whether or not an unsigned out-of-range condition has occurred.
Mov BL , 80H ; BL := 10000000b

Shl BL , 2
The result 00000000B in BL is incorrect although the Carry Flag (CF) is cleared.

Right Shift (SHR)

SHR shifts the rightmost bit of operand into the Carry Flag; the current value of the Carry Flag is lost. Each of the remaining bits is shifted rightwise and 0 is shifted into the leftmost bit of operand. SHR does not preserve the sign of a negative operand. Thus, SHR cannot be used to perform division on negative numbers.
· Shifting right a Destination operand by N bits divides it by 2N (only unsigned).

· If the value of the Destination is odd, the division is approximate
Mov BL , 00000101B ; BL := 5
Shr BL , 1 ; BL := 2
Shift arithmetic Instructions
The left arithmetic shift (SHL) is equivalent to left logical shift SAL. On the other hand, the Shift arithmetic Right (SAR) shifts the rightmost bit of operand into the Carry Flag; the current value of the Carry Flag is lost. Each of the remaining bits is shifted rightwise and, in addition, the leftmost bit is shifted into itself.
Double Precision Shift Instructions

The format of Double Shift instructions
SHLD/SHRD r/m16, r16, imm8

SHLD/SHRD r/m32, r32, imm8

SHLD/SHRD r/m16, r16, CL

SHLD/SHRD r/m32, r32, CL
All double precision shift instructions DO NOT MODIFY the second operand. The second operand only feeds their bits to the first operand.
Rotate Instructions

Rotate instructions are unparalleled instructions compared to any high level languages. A rotate operation shifts the bits within a cell without discarding. For example, a rotate right shifts bits to the right. Instead of throwing away the rightmost bit (LSB), it is placed in the leftmost position of the rotated cell.

There are two types of rotate instructions:
· Rotate Without Carry instructions
· ROL (ROtate Left)

· ROR (ROtate Right)
· Rotate through carry instructions
· RCL (Rotate through Carry Left)
· RCR (Rotate through Carry Right)

General syntax format

There are two different formats:

ROL/ROR/RCL/RCR r/m, count

ROL/ROR/RCL/RCR r/m, CL

First format directly specifies the count value

· Count is an immediate expression between 0 and 31.

· If a greater value is specified, Pentium takes only the least significant 5 bits as the count value (MODULUS 32).

Second format specifies count indirectly through CL

· Only CL register can be used.

· CL contents are not changed.

· Useful if count value is known only at the run time as opposed at assembly time.

ROL (Rotate Left) Instruction

A rotate left shifts bits to the left. Instead of throwing away the leftmost bit, it is placed in the righmost position of the rotated cell. In addition, at the same time the leftmost bit is copied into the carry flag.
ROR (Rotate Right) Instruction

A rotate right shifts bits to the right. Instead of throwing away the rightmost bit, it is placed in the leftmost position of the rotated cell. In addition, at the same time the rightmost bit is copied into the carry flag.
RCL (Rotate through Carry Left) Instruction

The rotates through carry are just like the other rotates except that a rotate through carry to the left copies the original contents of the Carry Flag into the rightmost bit of the operand.
RCR (Rotate through Carry right) Instruction

A rotate through carry to the right copies the original contents of the Carry Flag into the rightmost bit of the operand.
Rotates through carry instructions are frequently used in applications that call for moving a field of bits from one operand to another. Accomplishing this feat is simply a matter of repeatedly shifting a bit from the first operand into the Carry flag and rotating that bit out of the carry Flag and into the second operand.

Example: Shifting 64-bit number in EDX:EAX

 mov CX, N ;N bit shift

@1: shl EAX, 1 ;moves leftmost bit of EAX to CF

 rcl EDX, 1 ;CF goes to rightmost bit of EDX

 loop @1

; The above can be done using SHLD instruction

 shld EDX, EAX, N

 shl EAX, N
Example: Code fragment to reverse the contents of AL

The main idea is to shift left the bits of AL, once at a time, and put them in BL such that we end up with:
AL = 0 0 0 0 0 0 0 0
BL = a0 a1 a2 a3 a4 a5 a6 a7

We then copy BL to AL

 Push BX

 push CX

 mov CX, 8

@1: shl AL, 1

 Rcr BL, 1

 loop @1

 pop CX

 pop BX

Exercise: 1

Initially, the contents of AL is as folows:
a7 a6 a5 a4 a3 a2 a1 a0
Write a code fragment to set the contents of AL as
a0 a1 a2 a3 a7 a6 a5 a4
Exercise 2
Suppose the initial content of AX is

 0 0 0 0 0 0 0 0 a7 a6 a5 a4 a3 a2 a1 a0
Write a code fragment to insert 3 bit 0s into AX such that the content of AX is

0 0 0 0 0 a7 a6 0 0 0 a5 a4 a3 a2 a1 a0

Exercise: 2

Initially, the contents of AL is as follows

a7 a6 a5 a4 a3 a2 a1 a0
Write a code fragment to set the contents of AL as

a0 a1 a2 a3 a7 a6 a5 a4

Flow Control Instructions [image: image56.png]

The objectives of this unit are to cover the following topics:

· CMP instruction

· Unconditional jump instruction

· Short, near and far jumps.

· Direct and indirect jumps.

· Conditional jump instructions

· Single Flag based jump instructions

· Signed conditional jump

· Unsigned conditional jump

·
Loop instructions

· Loop

· LoopE and LoopZ

· LoopNE and LoopNZ

Introduction[image: image57.png]

· Flow control instructions are used to control the flow of a program.

· Flow control instructions can be of two types: unconditional and conditional.

· The JMP instruction is the only unconditional flow control instruction.

The conditional flow control instructions come in three types:

· Jump instructions that test a single flag

· Jump instructions after Unsigned Comparisons

· Jump instructions after Signed Comparisons

Such Jump instructions are usually used after a compare (CMP) instruction, arithmetic, logic, or shift operations. Another type of flow control instruction is the LOOP instruction that is usually used to get the same effect as a FOR loop in high level languages. This unit covers the following topics:

· CMP instruction

· Unconditional jump instructions

· Short, near and far jumps.

· Direct and indirect jumps.

· Conditional jump instructions

· Loop instructions

· High level decision structures

Conditional Jump Instructions

· Single Flag based jump instructions

· Unsigned conditional jump

· Signed conditional jump

High Level Conditional Structures

· IF-then-else

· Case

· Branches with compound conditions

· For loop

· While loop

· Repeat Until loop
Unconditional Jump Instruction: JMP [image: image58.png]

· The JMP instruction is the only unconditional flow control instruction

· It unconditionally transfers control to another point in the program

· The location to be transferred to is known as the target address

· The jump can be direct or indirect

· If the jump is indirect, the target address can be either a memory operand or a general purpose register

The JMP statement can take any one of the following forms:

	Format of Unconditional JMP Instruction

	JMP label ;Direct jump
JMP reg ;Register Indirect
JMP mem
 ;Memory Indirect

In its simplest form, the JMP statement is similar to the GOTO statement in high level languages.
GOTO statement
=
JMP statement
It has the following syntax:

JMP [operator] destination
where operator can be:

· SHORT: the target address is encoded with one byte and it is in the same segment

· NEAR PTR: the target address is encoded with two bytes and it is in the same segment

· FAR PTR: the target address is encoded with four bytes and it is in a different segment

Relative Address

A jump is called a forward jump if the target address is larger than the address of the jump instruction. However, it is called a backward jump if the target address is less than or equal the address of the jump instruction. The next example illustrates both types of jumps.

	Example: Forward and backward jump instructions.

	 . . .
 MOV CX, 10
 JMP initdone ;Forward jump
 initCX20: MOV CX,20
 initdone: MOV AX,CX
 repeat1: DEC CX
 . . .
 JMP repeat1
;Backward jump
 . . .

In 16-bit addressing, 16-bits are required to store the offset address i.e. 2 bytes. However, analyzing most of the jumps occurring in a program, it can be observed that they are within a close distance to the jump instruction. Thus, to reduce the code size of the jump instruction we can encode the target address with one byte instead of two bytes. This can be achieved by storing the difference target - IP in the instruction instead of storing the actual target address. The difference can fit in a byte if it is within the range -128 to +127. When the CPU executes the jump instruction, it will get the difference target-IP from the instruction and will add to it IP, i.e., target-IP+IP=target, and will obtain the required target address. Jump instructions with the difference target-IP fitting in one byte are called short jumps.
A jump is called a near jump if the target address is in the same code segment at any location ranging from -32,768 to +32,767 bytes from the IP. When the jump address is within the same segment, the jump is called intra-â€ژsegment jump. If the jump address is outside the current segment, the jump is referred to â€ژas inter-segment jump.
The jump is a far jump if the target address is in a different code segment. In this case, the assembler stores the code segment and the offset of the target address within that segment in the instruction.
The table below summarizes all the addressing modes used with the unconditional jump instruction.

	Label Pointer
	Range
	Addressing Mode
	Size
	Encoded as
	Directive

	Short
	+127 -127Byte
	Immediate
	Word
	Relative
	SHORT

	Near
	Intra-segment
	Immediate
	Word
	Relative
	Near Ptr

	Near
	Intra-segment
	Register
	Word
	Absolute address
	Near Ptr

	Near
	Intra-segment
	Memory
	Word
	Absolute address
	Near Ptr

	Far
	Inter-segment
	Immediate
	Double Word
	Absolute address
	Far Ptr

	Far
	Inter-segment
	Memory
	Double Word
	Absolute address
	Far Ptr

The assembler can automatically select the SHORT jump and allocate one byte, if appropriate. So, we do not need to explicitly specify SHORT or NEAR PTR for addresses in the same segment as the assembler will select the appropriate type. The next example demonstrates the encodings of short, near, and far jumps.

	Example: Encodings of short, near, and far jumps.

	 0005 33 C0
 XOR AX, AX
 0007 40
Back: INC AX
 0008 EB 10
 JMP Forward
 000A B9 000A
 MOV CX, 10
 000D E9 000A
 JMP Near PTR Forward
 0010 B9 0014
 MOV cx, 20
 0013 EA ---- 001A R
 JMP Far PTR Forward
 0018 8B C1
 MOV AX, CX
 001A 03 C0
Forward: ADD AX, AX
 001C EB E9
 JMP Back

As can be seen from the example, for both forward and backward jumps that can be encoded as short will be allocated one byte by the assembler. For example, the address of the label Forward is 001A. The IP address after the instruction JMP Forward has the value 000A. Thus, the difference 001A-000A=0010. Since the difference can fit in a byte, 10 is what is stored in the instruction.
However, for the instruction JMP Near PTR Forward, the IP has a value 0010. So, the difference is 001A-0010=000A. Although the difference can fit in one byte, two bytes are allocated since we explicitly specified that the target is Near.
For the instruction JMP FAR PTR Forward, four bytes are allocated, two for the segment and two for the offset. Here, the absolute address is stored not the relative address. So, the offset 001A is stored. The two bytes for the segment will be assigned once the program is loaded and the segment is determined.
For the instruction, JMP Back, the address of the label Back is 0007 and the value of IP is 001E. So, the difference is 0007-001E=0007+FFE2=FFE9. Since the difference can fit in a byte, one byte is allocated and the value E9 is stored.
CMP Instruction [image: image59.png]

· The compare instruction (CMP) can be used to compare two numbers or test conditions

· When comparing numbers, at most one of these numbers can reside in memory

· The CMP instruction updates the arithmetic flags by performing: destination - source

· Unlike the SUB instruction the destination operand is not affected

· The values of the status flags are set according to the result of the subtraction

· The flags can be tested by a subsequent conditional jump instruction

The CMP instruction has the following format:

CMP destination, source
Observing the following rules:

· The destination can be a register or memory operand

· The source can be a register, memory operand, or an immediate operand

· At most one of the operands may reside in memory.

A conditional jump instruction is usually used after a CMP instruction This gives the ability to split the program flow into one of two paths depending upon some logical condition. As an example, the following code increments the AX register if BX is equal to CX.

	CMP instruction

	 CMP BX, CX ;Compare BX to CX
 JNE SkipStmt ;If BX â‰ CX skip
 INC AX ;AX = AX + 1
SkipStmt :

Conditional Jump Instructions
· Conditional jump instructions are the basic tools for creating selective structures like the IF..ENDIF statement and repetitive structures like loops.

· A conditional jump tests one or more flags in the flags register

· If the flag settings match the instruction, control transfers to the target location

· If the match fails, the CPU ignores the conditional jump and execution continues with the next instruction.

· Most of the time, a conditional jump is executed after a CMP instruction.

· The CMP instruction sets the flags so that test can be carried out for less than, greater than, equality, etc.

Conditional jump instructions take the following form:

Jcc label;
The “cc” in Jcc indicates that some character sequence, specifying the type of condition to be tested, must be substituted. For example, JS stands for jump if the sign flag is set and JC stands for jump if the carry flag is set.
Conditional jumps test the sign (S), zero (Z), carry (C), parity (P), and overflow (O) flags.
When comparing two numbers it is necessary to know whether these numbers are representing signed or unsigned numbers in order to establish a relationship between them. For example, suppose that AL=FF and BL=01. If we execute the instruction CMP AL, BL, the result of the comparison will be different depending on whether the registers represent signed or unsigned numbers. If unsigned numbers are represented, then AL=255 and BL=1 and hence AL is greater than BL. However, if signed numbers are represented, then AL=-1 and BL=1 and hence BL is greater than AL. Thus, we need conditional jump instructions for unsigned number comparison and conditional jump instructions for signed number comparison.
Conditional jump instructions are divided into three main types:

· Single Flag Based Jump Instructions

· Unsigned Conditional Jump Instructions

· Signed Conditional Jump Instructions

Addressing Modes

· Unlike the unconditional JMP instruction, the conditional jump does not provide an indirect form.

· The only form they allow is a branch to a statement label in your program.

· Conditional jump instructions are only of type SHORT.

Since unconditional jump instructions can be only of type SHORT, if the target address is not within a range of -128 to +127 from the IP, then a remedy is needed. The following example shows two implementations of a program one when the target address is within a SHORT range and the other when it is in a Near range.

	Example: Target address is SHORT.

	 CMP AX, BX ; compare ax to bx to set flags
 JE THERE ; if equal, then skip next statement
 ADD AX, 0002H ; correction statement
THERE: MOV CL, 07H ; load count

	Example: Target address is Near.

	 CMP AX, BX ; compare AX to BX to set flags
 JNE FIX ; if not equal, then goto label FIX
 JMP THERE ; otherwise, unconditional jump to there
FIX: ADD AX, 0002H ; correction statement
THERE: MOV CL, 07H ; load count

Single-Flag Based Jump Instructions
The Pentium instruction set provides two types of jump instructions that are based on testing a single flag. One type is for jumps taken if the flag is set and the other for jumps taken if the flag is clear. There are two instructions for each of the flags: CF, OF, SF, ZF, PF. The only flag, from the arithmetic flags, that does not have such instructions is the Auxiliary Flag. These instructions are summarized in the table below.

	Instruction
	Description
	Condition
	Aliases

	JC
	Jump if carry
	CF = 1
	JB, JNAE

	JNC
	Jump if no carry
	CF = 0
	JNB, JAE

	JZ
	Jump if zero
	ZF = 1
	JE

	JNZ
	Jump if not zero
	ZF = 0
	JNE

	JS
	Jump if sign
	SF = 1
	

	JNS
	Jump if no sign
	SF = 0
	

	JO
	Jump if overflow
	OF = 1
	

	JNO
	Jump if no overflow
	OF = 0
	

	JP
	Jump if parity
	PF = 1
	JPE

	JPE
	Jump if parity even
	PF = 1
	JP

	JNP
	Jump if no parity
	PF = 0
	JPO

	JPO
	Jump if parity odd
	PF = 0
	JNP

There are many applications for these instructions. For example, to check if the result is positive or negative, one can use the JNS and JS instructions. To check if the result of an operation on a signed number is correct or not, one can use the instructions JO and JNO. To check if the result is zero or not, one can use the instructions JZ and JNZ. To check if the result of comparing two values is equal or not, one can also use the JZ/JE and JNZ/JNE instructions. To check if the result of an operation on an unsigned number is correct or not, once can use the instructions JC and JNC. Furthermore, to check if the last bit shifted or rotated is 1 or 0, one can use the instructions JC and JNC.
The next example demonstrates the use of the JC instruction in counting the number of 0's in register AL and storing the count in register AH.

	Example: Use of the JC instruction.

	 XOR AH, AH
 MOV CX, 8
Next: ROL AL, 1
 JC Skip
 INC AH
Skip: LOOP Next

In the next example, we demonstrate the use of the JNC instruction in displaying the binary content of register BX.

	Example: Use of the JNC instruction.

	 MOV AH, 2ژ
 MOV CX, 16
Next MOV DL, 30H
 ROL BX, 1
 JNC Skip
 ADD DL, 1
Skip: INT 21H
 LOOP Next

The following example illustrates the use of the JNZ instruction. Notice that the loop is iterated until the content of BX becomes equal to zero and the zero flag (ZF) is set to one.

Unsigned Conditional Jump Instructions [image: image60.png]

Conditional jump instructions for unsigned comparisons deal with numbers that are positive numbers only. The following table shows the condition flags used in unsigned comparison and their meanings.

	Flags
	Meaning

	ZF = 1
	equality

	ZF = 0
	inequality

	CF = 1
	A < B

	CF = 0
	A > B

Note that if number A is less than number B, there will be a borrow when B is subtracted from A. This will set the CF to 1 to indicate that there was a borrow. However, if A is greater than B, there will be no borrow and hence CF=0. The following table shows all possible conditional jump instructions for unsigned number comparisons. The table also shows the flags condition for a jump to be taken.

	Instruction
	Equivalent
	Meaning (jump if)
	Condition

	JA
	JNBE
	Above (not below or equal)
	CF = 0 and ZF = 0

	JAE
	JNB
	Above or equal (not below)
	CF = 0

	JB
	JNAE
	Below (not above or equal)
	CF = 1

	JBE
	JNA
	Below or equal (not above)
	CF = 1 or ZF = 1

	JE
	JZ
	Equal (zero)
	ZF = 1

	JNE
	JNZ
	Not equal (not zero)
	ZF = 0

Signed Conditional Jump Instructions [image: image61.png]

Signed conditional jump instructions are used to test signed numbers. Signed numbers use 2's complement representation. Note that equal and not equal comparisons are the same for signed and unsigned numbers and are based on the Zero flag (ZF). The following table shows all possible conditional jump instructions for signed number comparisons. The table also shows when a jump is taken based on the status flags.

	Instruction
	Equivalent
	Description (Jump If)
	Condition

	JG
	JNLE
	greater (not less or equal)
	SF = OF and ZF=0

	JGE
	JNL
	greater or equal (not less)
	SF = OF

	JL
	JNGE
	less (not greater or equal)
	SF <> OF

	JLE
	JNG
	less than or equal (not greater)
	SF <> OF or ZF = 1

	JE
	JZ
	equal
	ZF = 1

	JNE
	JNZ
	not equal
	ZF = 0

The next table shows a set of two numbers n1, n2 and the result of executing the instruction CMP n1, n2 on the flags ZF, OF, SF.

	n1
	n2
	ZF
	OF
	SF

	56
	55
	0
	0
	0

	56
	-55
	0
	0
	0

	-55
	-56
	0
	0
	0

	55
	-75
	0
	1
	1

	55
	55
	1
	0
	0

	55
	56
	0
	0
	1

	-55
	56
	0
	0
	1

	-56
	-55
	0
	0
	1

	-57
	55
	0
	1
	0

It can observed from the above table that when n1 is greater than n2, the OF is equal to the SF. Also, it can be observed that when n1 is smaller than n2 the OF is not equal to the SF. However, it can be observed that when the two numbers are equal, the OF is also equal to the SF. Thus, the condition for checking whether n1 is greater than n2 is that the OF is equal to the SF and that the ZF=0. On the other hand, it is sufficient to check that the OF is not equal to the SF to know that n1 is smaller than n2.

Loop Instructions

The LOOP instruction is mainly used to simulate the different loops in HLL. The Loop instructions use the CX register to indicate the loop count. The syntax of the Loop instruction is:
LOOP label
· The Loop instruction decrements CX without changing any flags

· If CX is not zero after the decrement, control is transferred to the destination label

· The jump is a SHORT jump only

Note that the ECX register can be used as a loop counter in 32-bit mode. However, in this case, one has to use the instruction LOOPD instead of LOOP.
The following example illustrates the use of the Loop instruction in implementing a corresponding for loop in HLL.

	Example: For Loop in HLL.

	 …
 for (x=9;x>0;x--)
 n += x;
 …

	Example: Implementing For Loop in Assembly.

	 …
 ;for(x=9;x>0;x--)
 MOV CX,9
toploop: ADD n,CX ;n=n+x
 …
 LOOP toploop

LOOPZ/LOOPE and LOOPNZ/LOOPNE Instructions

In these two additional instructions, the state of the ZERO Flag may also cause loop termination in addition to the content of the CX register. Some action inside the loop should affect the zero flag (e.g. a CMP instruction) before these instructions are executed.

· LOOPZ/LOOPE: Loop while (ZF = 1) && (CX<> 0)

· LOOPNZ/LOOPNE: Loop while (ZF = 0) && (CX <> 0)

· LOOPZ is equivalent to LOOPE

· LOOPNZ is equivalent to LOOPNE

The format of the loop instructions along with the action taken is given in the following table:

	Instruction
	Action

	LOOP target
	CX= CX-1 ; if (CX <> 0) jump to target

	LOOPE/LOOPZ target
	CX= CX-1 ;if (CX <> 0) AND (ZF=1) jump to target

	LOOPNE/LOOPNZ target
	CX= CX-1 ;if (CX <> 0) AND (ZF=0) jump to target

The following example illustrates the use of the LOOPNE instruction. It accepts at most 9 characters from the keyboard, and when the 9th character is pressed (or the enter key is used) the number of key presses is displayed.

	Example: Use of the LOOPNE instruction.

	 …
 MOV AH,1
 MOV CX,9
NextChar: INT 21H
 CMP AL,13â€ژ
 LOOPNE NextChar
 ;Determine Count
 MOV AX, 0239H
 SUB AL,CL
 MOV DL,AL
 INT 21H
 …

The JCXZ instruction

It should be observed that the Loop instructions execute one iteration before decrementing CX and checking if its value is 0. So, if the initial value of CX is 0, then CX will become FFFF and the loop will repeat for 2^16=65536 times. The instruction JCXZ provides a solution for this problem by testing the CX register and if zero, control is transferred to the target instruction. The format of this instruction is

JCXZ target
Note that this instruction is equivalent to

CMP CX, 0

JZ target
except that JCXZ does not affect the flags, while the CMP/JZ combination affect the flags. The following example demonstrates a program that asks the user to enter a character (a-z), and counts all upper case and lower case characters in a Table defined in the data segment. Assume that the table size is 100 bytes.

	Example: Use of the LOOPNE and JCXZ instructions.

	 …
 MOV AH, 1 ; read a character
 INT 21H
 AND AL, 20H ; convert character to upper case
 XOR SI, SI ; character count
 XOR BX, BX ; table index
 MOV CX, 100â€ژ
Next: JCXZ Done
 MOV DL, Table[BX] ; get character from table
 INC BX
 AND DL, 20H ; convert character to upper case
 CMP AL, DL
 LOOPNE Next
 JNE Done
 INC SI
 JMP Next
Done: …

The next example demonstrates a program that counts the number of non-blank characters in a Table defined in the data segment. Assume that the table size is 100 bytes.

	Example: Use of the LOOPE and JCXZ instructions.

	 …

 XOR SI, SI
; character count
 MOV BX, -1
; table index
 MOV CX, 100â€ژ
Next: JCXZ Done
 INC BX
 CMP Table[BX], ' '
 LOOPE Next
 JE Done
 INC SI
 JMP Next
Done: …

Implementing High-Level Language Decision Structures [image: image62.png]

Modern High-level languages provide a variety of decision structures. These structures include selection structures such as if constructs and iterative structures such as while and for loop constructs. Assembly language does not provide these structures directly. However, it provides several basic instructions that can be used to construct these high-level selection and iterative structures. In this section, we demonstrate how these structures can be implemented in assembly language.

IF-Then and IF-THEN-ELSE Structures

The following is a pseudo code that shows the if-then structure used in a high level language.

	Example: IF-THEN Structure in HLL.

	 int n;
 if (n>7)
 do_it();
 ...

Here is an implementation of the if-then structure in assembly language.

	Example: Implementing IF-THEN Structure in Assembly.

	...
;if (n>7)
CMP n, 7
JNA skip
;then-part
CALL do_it
;end if
skip:
...

The following is an example of an if-then-else structure implementation in assembly language.

	Example: IF-THEN-ELSE Structure in HLL.

	 char n;
 ...
 if (n=='7')
 do_it();
 else
 do_that();

	Example: Implementing IF-THEN-ELSE Structure in Assembly.

	 ;if (n == '7')
 CMP n,'7'
 JNE else_
 ;then-part
 CALL do_it
 JMP SHORT endif
else_: CALL do_that
endif: ...

IF Structure with Logical Operators

The next example demonstrates the implementation of the IF structure with an AND logical operator. It tests whether ch is a lower case character or not. If it is a lower case it converts it to upper case.

	Example: IF Structure with an AND logical operator in HLL.

	 if ((ch >= 'a') && (ch <= 'z'))
 ch = ch - 32 ;

	Example: Implementing IF Structure with an AND logical operator in Assembly.

	 CMP ch, 'a'
 JB NotLowerCase
 CMP ch, 'z'
 JA NotLowerCase
LowerCase: SUB ch, 32
NotLoweCase:
 ...

In the next example, we demonstrate the IF structure with an OR logical operator. The function display() is called if the entered character is either an upper case 'Y' or lower case 'y' character.

	Example: IF Structure with an OR logical operator in HLL.

	 if ((ch = 'y') || (ch = 'Y'))
 display();

	Example: Implementing IF Structure with an OR logical operator in Assembly.

	 CMP ch, 'y'
 JE Skip
 CMP ch, 'Y'
 JNE Done
Skip: call display
Done: ...

CASE Statement

A CASE statement is a multi-way branch structure that tests a register, variable, or expression for particular values or a range of values. The general form is a s follows:
CASE expression

values-1: statements-1

values-2: statements-2

.

.

.

values-n: statements-n
EndCase
In this structure, the expression is tested and if its value is a member of the test values-i, then statements-i are executed. It is assumed that values-1,..., values-n are disjoint.
The following example illustrates the case statement in HLL and its implementation in assembly.

	Example: Case Statement in HLL.

	CASE AX

<0: BX=-1

=0: BX=0

>0: BX=1
EndCase

	Example: Implementing Case Statement in assembly.

	; case AX

 CMP AX, 0
; test AX

 JL Negative
; AX < 0

 JE Zero
; AX=0

 MOV BX, 1
; AX>0

 JMP EndCase
Negative: MOV BX,-1

 JMP EndCase
Zero:
 MOV BX, 0
EndCase:

Note that in the above example one CMP instruction is needed, because jump instructions do not affect the flags. We next give another example illustrating the CASE statement.

	Example: Another Case Statement in HLL.

	CASE A

1, 3: display 'o'

2, 4: display 'e'
EndCase

	Example: Implementing another Case Statement in assembly.

	; case AL
; 1, 3

 CMP AL, 1

 JE Odd

 CMP AL, 3

 JE Odd
; 2, 4

 CMP AL, 2

 JE Even

 CMP AL, 4

 JE Even
; not 1..4

 JMP EndCase

Odd:
 MOV DL, 'o'

 JMP Display
Even:
 MOV DL, 'e'
Display: MOV AH, 2

 INT 21H
EndCase:

WHILE Structure

The WHILE loop tests a condition before executing the loop body. The loop body is executed repeatedly as long as the condition is true.

	Example: WHILE Structure in HLL.

	 int n;
 ...
 while (n>0)
 n = n-2;
 ...

	Example: Implementing WHILE Structure in Assembly.

	...
;while (n>0)
while: CMP n,0
 JLE endwhile
 ;loop-body
 SUB n,2
 JMP while
endwhile:
...

Repeat-Until Structure

The Repeat-Until or Do-While structures test the repeat condition after executing the loop body. Thus, the loop body is executed at least once. The next example is a program that reads a string of characters and stores it in a table until a carriage return character is encountered, implementing a Repeat-Until Structure.

	Example: Implementing Repeat-Until Structure in Assembly.

	 XOR SI, SI ; initialize table index
 MOV AH, 1 ; reading a character
Repeat:
 INT 21H
 MOV TABLE[SI], AL

 INC SI

 CMP AL, 13 ; until condition
 JNE Repeat

 ...

Indirect Jump Example[image: image63.png]

In direct jump, the target address (i.e. its relative offset value) is encoded into the jump instruction itself. However, in an indirect jump, the target address is specified indirectly either through memory or a general-purpose register.
For example, if the CX register contains the offset of the target address, then we can write
 JMP CX
It should be observed that in indirect jumps, the target offset is the absolute value (unlike direct jumps, which use a relative offset value). The following example illustrates the use of indirect jump.
Example: An example with an indirect jump.

 .MODEL SMALL

 .STACK 100H

 .DATA

 jump_table DW code_0 ; indirect jump pointer table

 DW code_1

 DW code_2

 DW default_code ; default code for digits 3-9

 DW default_code

 DW default_code

 DW default_code

 DW default_code

 DW default_code

 DW default_code

 prompt_msg DB 10,13,'Enter a digit (0-9):$'

 msg_0 DB 10,13,'Economy class selected.$'

 msg_1 DB 10,13,'Business class selected.$'

 msg_2 DB 10,13,'First class selected.$'

 msg_default DB 10,13,'Not a valid code!$'

 .code

 MOV AX, @DATA

 MOV DS, AX

 read_again:

 MOV AH, 9 ; request a digit

 LEA DX, prompt_msg

 INT 21H

 MOV AH, 1 ; read input digit

 INT 21H

 SUB AL, '0' ; convert to numeric equivalent

 XOR AH, AH ; AH=0

 MOV SI, AX ; SI is index into jump_table

 ADD SI, SI ; SI = SI *2

 JMP jump_table[SI] ; indirect jump based on SI

 test_termination:

 CMP AL, 2

 JA done

 jmp read_again

 code_0:

 MOV AH, 9

 LEA DX, msg_0

 INT 21H

 JMP test_termination

 code_1:

 MOV AH, 9

 LEA DX, msg_1

 INT 21H

 JMP test_termination

 code_2:

 MOV AH, 9

 LEA DX, msg_2

 INT 21H

 JMP test_termination

 default_code:

 MOV AH, 9

 LEA DX, msg_default

 INT 21H

 JMP test_termination

 done:

 MOV AH, 4CH ; exit to DOS

 INT 21H

 END

The above example shows a simple program that reads a digit from the user and prints the corresponding choice represented by the input. In order to use the indirect jump, a jump table of pointers is built. The input digit is converted to act as an index into this table and is used in the indirect jump instruction.
Stack and Procedures[image: image64.png]

Objectives

· To understand the implementation of the stack in Pentium architecture.

· To learn to organize a program into procedures.

· To learn how to use the following Pentium instruction in a program: PUSH, POP, PUSHF, POPF, PUSHA, POPA, PUSHAD, POPAD, CALL, RET.

· To learn how to use Pentium stack for passing parameters.

· To learn how to assemble and link seperate files together using EXTRN and PUBLIC.

· To learn how to create a library of procedures and link to it.

· To learn how to use Pentium stack for declaring local variables.

The Stack [image: image65.png]

Stack is a very basic ADT (Abstract Data Type) that has many implementations in computer-related fields. The characteristics of a stack can be summarized as follows:

· Stack is a LIFO (Last-in First-out) process.

· Stack must have a pointer called Top of Stack (TOS) that always refers to the top of stack.

· Stack then must have two mandatory methods. The first is called Push(). The second is called Pop(). The push method is needed to put a new item into the stack and the pop method is intended for removing an item from the top of stack.

· Stack must also have a base. From which the stack grows up and shrinks down.

Pentium processors have a built-in stack. This stack is implemented as an array of consecutive memory cells. Because of array characteristic, the stack in Pentium has limited size.

· SS:[SP] always points to the top of stack.

· SS:[0] is the end of the stack. At this point, the stack is full.

· Initially, SS:[SP] is set to the particular address that depends upon the stack size. This address may be viewed as the base. At this point, the stack is empty. The size of the stack is defined by the programmer using directive .STACK. .STACK 200h means the maximum size of the stack is fixed to 512 bytes.

· Every time a new item is about to be put to the stack, the content of SP register is decremented first and then the new item is placed in that location. This mechanism ensures that SS:[SP] always points to the top of stack.

· Every time the last item put in the stack is going to be removed, Pentium reads the item from the location referred by SS:[SP] and stores it in another location. After that, Pentium adjusts the TOS by incrementing SS:[SP].

· However, Pentium can push/pop only either word (16-bit) or doubleword (32-bit) data.

Pentium Stack Instructions and Directives

Pentium has two very basic but powerful stack instructions: PUSH & POP
	Instruction
	Operand
	Note

	PUSH
	r/m16
r/m32
imm
Sreg
	If (the size of operand is 32-bit) {
SP=SP-4
;SS:[SP]=operand (dword assignment)}
If (the size of operand is 16-bit){
SP=SP-2
SS:[SP]=operand (word assignment)}

	POP
	r/m16
r/m32
Sreg
	POP CS is invalid
If (the size of operand is 32-bit)N=4
If (the size of operand is 16-bit) N=2
Read N bytes from memory at location SS:SP and store at operand
Operand=SS:[SP]
SP= SP + N

MASM provides us a special directive to initialize the size of the stack segment:

.STACK the size in bytes

The directive .STACK 200h in the beginning of your source code tells the assembler to set information in the program that when the program runs it will initialize the content of SP to 512.
Stack Usage

The Stack and its instructions can be utilized for

· preserving temporarily data and registers.

· supporting procedure and interrupt mechanism.

· passing parameters into procedures.

· allocating local variables.

Pentium Advanced Stack Instructions

	Instruction
	Operand
	Note

	PUSHF
	
	It pushes the rightmost 16-bit EFLAG register onto the stack.

	POPF
	
	It pops up the 16-bit data from SS:[SP] and stores into the righmost 16-bit EFLAG register.

	PUSHFD
	
	It pushes the content of EFLAGS register onto the stack.

	POPFD
	
	It pops up the 32-bit data from SS;[SP] and stores into EFLAGS register.

	PUSHA
	
	It is equivalent to instructions:
Temp=SP
PUSH AX
PUSH CX
PUSH DX
PUSH BX
PUSH Temp
PUSH BP
PUSH SI
PUSH DI

	POPA
	
	It is complementary for PUSHA instruction. It pops up DI first, then SI, BP, skip for SP, pops up BX, DX, CX, and finally AX.

	PUSHAD
	
	It is 32-bit version of PUSHA instruction.
Temp=ESP
PUSH EAX
PUSH ECX
PUSH EDX
PUSH EBX
PUSH Temp
PUSH EBP
PUSH ESI
PUSH EDI

	POPAD
	
	It reverses a previous PUSHAD instruction, restoring the general registers to their values before the PUSHAD instruction was executed.
POP EDI
POP ESI
POP EBP
throwaway=POP()
POP EBX
POP EDX
POP ECX
POP EAX

The following examples illustrate some useful applications of the stack instructions.

	Example 1: Assign DX:AX into EAX

	 push
DX
 push
AX
 pop
EAX

	Example 2: Assign CS into DS

	 push
CS
 pop
DS

	Example 3: Set CF=PF=1

	 pushf
 pop
AX
 or
AX, 5
 push
AX
 popf

 For 8086, the equivalent code is
 LAHF
 or
AH, 5
 SAHF

Procedures[image: image66.png]

In procedural paradigm, to solve a problem usually we use divide-and-conquer strategy. The problem is broken down into many constituent parts. These parts are relatively independent and can be viewed as black boxes. Then, using a procedural programming language such as C, Pascal, Basic, and Fortran, those components are implemented as subroutines, procedures, or functions. These subroutines accept well-defined inputs, regardless who supply the inputs, perform a certain action, and optionally return a specific result value.
By breaking down the program into many subroutines, it veils the complexity of the program so the designer or programmer can focus on the overall flow of the program. In addition, maintaining the program becomes much easier, and ultimately it increases the reusability. Furthermore, the developed subroutines may be used again to develop other programs.
Inputs are passed to precedurs by either passing them by value or by reference. The inputs are passed by value when the procedure is not going to change their content and hence only their values are passed to the procedure. However, when it is required that the procedure changes the content of the inputs, then what is passed is the addresses of the inputs, and this what is called passing by reference.
How does a Procedure work? [image: image67.png]

There are four steps that need to be accomplished in order to call and return from a procedure:

· Save the return address

· Procedure call

· Execute procedure

· Return execution to the saved return address.

As an illustration, Calling to and returning from a procedure may be depicted as:

	Procedure call and return mechanism

	 .CODE
 …
 lea AX, rtn1 ; AX=address of return point
 push AX ; save AX into the stack
 jmp subrtn ; goto the procedure part
 rtn1: ; return point
 …
; program halts
 subrtn:
 …
 pop BX ; read the return address
 jmp BX ; go back to the return point

Assembly-language procedures are similar to functions,subroutines,and procedures in high-level languages such as Java, C,FORTRAN,and Pascal. Two instructions control the use of assembly-language procedures. CALL pushes the return address onto the stack and transfers control to a procedure, and RET pops the return address off the stack and returns control to that location.

	Subroutine call and return instruction usage

	 .CODE
 .
 .
 call subrtn
 ; code here that would be executed following the return
 .
 .
 ; program halts
 subrtn
PROC
 .
 .
 ret
 subrtn
ENDP

	Instruction
	Operand
	Note

	CALL
	label name
	Push IP
IP= IP + displacement relative to next instruction

	CALL
	r/m
	Push IP
IP = [r/m]

	CALL
	label name (FAR)
	Push CS
Push IP
CS:IP=address of label name

	CALL
	m (FAR)
	Push CS
Push IP
CS:IP= [m]

	RET
	
	Pop IP

	RET
	imm
	Pop IP
SP = SP + imm

	RET
	 (FAR)
	Pop IP
Pop CS

	RET
	imm (FAR)
	Pop IP
Pop CS
SP = SP + imm

Assembler Directives for Procedures

MASM provides two directives to define procedures:PROC and ENDP. The PROC and ENDP directives mark the beginning and end of a procedure.
Defining Subroutine

The basic syntax for PROC is:

label PROC [NEAR | FAR]
.
.
RET [constant]
label ENDP
· In a NEAR procedure, both calling and called procedures are in the same code segment.

· Called and calling procedures are in two different segments in a FAR procedure.

· PROC and ENDP do not actually generate any code; they are directives, not instructions.

· PROC and ENDP control the type of RET instruction used in a given subroutine.

· If the operand to a PROC directive is NEAR then all RET instructions between that PROC directive and the corresponding ENDP directive are assembled as near returns.

· If, on the other hand, the operand to a PROC directive is FAR, then all RET instructions within that procedure are assembled as far return.

· If the PROC directive is without any operand, the assembler automatically makes the procedure near or far according to the memory model selected with the .MODEL directive.
· Tiny-, small-, and compact-model program have near calls.
· Medium-, large-, and huge-model programs have far calls.

	Example: TestSub is near-callable
	Example: TestSub is far-callable

	 .MODEL SMALL
 .
 .
 .
 TestSub
PROC
 .
 .
 ret
 TestSub
ENDP
	 .MODEL LARGE
 .
 .
 .
 TestSub
PROC
 .
 .
 ret
 TestSub
ENDP

Preserving Registers [image: image68.png]

One of the crucial issues in developing a stable and robust assembly language program is conflict of using register between calling program and the called procedure. Because registers are processor's resources shared together by calling program and the called procedure, then it makes sense that many times called procedure may modify the content of some registers that are still being used by the calling program. The customary solution is to preserve registers before the procedure performs its main job and to restore the register values after its completion. There are two ways to preserve registers:

· The procedure tackles everything. In the beginning, the procedure preserves registers and at the end before the procedure returns, it recovers all original registers values.

· The calling program presupposes that the procedures do not preserve the registers. The calling program takes all responsibilities to preserve and to restore the registers.

However, employing the register preservation carelessly causes performance degradation considerably. It could be time-consuming and it increases the amount of code. Thus, it is the programmer's responsibility to find the best trade-off.
Parameter Passing

Not like high level language, Assembly language has no support to define a list of parameters of a subroutine. This deficiency fortunately gives full flexibility to the programmers to arrange the way to pass parameters. There are three different ways of parameter passing:

· Using general purpose registers.

· Using global (static) variabels.

· Using stack.
Using general purpose registers

The programmer must place first the necessary parameters into a set of registers before invoking the subroutine using call instruction. To avoid confusion, it suggests to comment carefully each subroutine as to which parameters it expects to receive and in which registers they should be placed. The following is an example of call-by-reference subroutine using register method.

	Example: The subroutine to swap 2 byte-variables

	 ;INPUT:
SI and DI = the pointers to the variables OUTPUT:
 SWAP
PROC

xchg AL, [SI]

xchg AL, [DI]

xchg AL, [SI]

ret
 SWAP
ENDP

The following is an example of call-by-value subroutine using register method.

	Example: The subroutine to display a byte as a Hexadecimal number

	 ;INPUT:
DH OUTPUT:

 ;This subroutine displays the hexadecimal digits of the content of DH.
 ;AX and BX are preserved. BX and DL are destroyed.
 HEX
PROC

push AX

push DS

mov AX, CS

mov DS, AX
; DS == CS

mov AL, DH
; make a copy

shr AL, 4

mov BX, OFFSET Hexdigit

xlatb
; equiv. to mov AL, [BX+AL]

mov DL, AL

mov AH, 2

int 21h

mov AL, DH

and AL, 0Fh

xlatb

mov DL, AL

mov AH, 2

int 21h

mov DL,'h'

mov AH, 2

int 21h

pop DS

pop AX

ret
 HexDigit DB '0123456789ABCDEF'
 HEX ENDP

Advantages of the register method: Convenient, easier and Faster

Disadvantages:
· Only a few parameters can be passed using the register method.
· Only a small number of registers are available.
· Often these registers are not free. In fact, freeing them by pushing their values onto the stack negates the second advantage.
Using global (static) variables

The programmer must place first the necessary parameters into a set of global (public static) variables before invoking the subroutine using call instruction.

Advantages of the global variables method: convenient, easier and many parameters can be passed.
Disadvantages

· Actually this method violates the essence of modular programming paradigm.

· Hard and difficult to maintain the program because of the dependencies on global variables.

· Many times the global variables creates unprecedented side effects especially in distributed processes.

Try to avoid to use this method as much as possible. Only use in cases as the last solution.

Stack Method: Passing Arguments on the Stack

The programmer must first push the necessary parameters to the subroutine onto the stack. The subroutine then may access each parameter as an offset from BP.

This method is used widely by most of programming languages such as Fortran, C, Pascal, Basic.

There are two important issues must be considered before using stack method:

· The "naming convention" specifies how or if the assembler alters the name of an identifier before placing it into an object file.
· The "calling convention" determines how the assembler implements a call to a procedure and how the procedure returns to the caller.

MASM supports the following different conventions.

	Convention
	C
	SYSCALL
	STDCALL
	BASIC/FORTRAN/PASCAL

	Leading underscore
	X
	
	X
	

	Capitalize all
	
	
	
	X

	Arguments pushed left to right
	
	
	
	X

	Arguments pushed right to left
	X
	X
	X
	

	Caller stack cleanup
	X
	X
	*
	

	:VARARG
	X
	X
	X
	

 Naming Conventions

"Naming convention" refers to the way the assembler stores the names of identifiers. The first two rows of the above Table show how each language type affects symbol names. SYSCALL leaves symbol names as they appear in the source code, but C and STDCALL add an underscore prefix. PASCAL, BASIC, and FORTRAN change symbols to all uppercase.

The following list describes how these naming conventions affect a variable called Big Time in your source code:

	Langtype Specified
	Characteristics

	SYSCALL
	Leaves the name unmodified. The linker sees the variable as Big Time.

	C, STDCALL
	The assembler adds a leading underscore to the name, but does not change case.The linker sees the variable as _Big Time.

	PASCAL, FORTRAN, BASIC
	Converts all names to uppercase. The linker sees the variable as BIG TIME.

The C Calling Convention

Specify the C language type for assembly-language procedures called from programs that assume the C calling convention. Note that such programs are NOT NECESSARILY WRITTEN IN C, since other languages can mimic C conventions. With the C calling convention, the caller pushes arguments from right to left as they appear in the caller’s argument list. The called procedure returns without removing the arguments from the stack. It is the caller’s responsibility to clean the stack after the call, either by popping the arguments or by adding an appropriate value to the stack pointer SP.
Suppose you want to implement the following pseudo-code:

i = 25;

j = 4;

Test(i, j, 1);

Then, the assembly language code fragment looks like:

mov i, 25

mov j, 4

push 1

push _j

push _i

call _Test

add sp, 6

As seen above, the rightmost parameter, 1, being pushed first, then _j, and finally _i. Upon return from a subroutine, the parameters that were pushed on the stack are still there, but are no longer of any use. Consequently, immediately following each subroutine call, the calling code adjusts the stack pointer back to the value it contained before the parameters were pushed, thereby discarding the parameters. The following figure shows what the stack looks like just before the first instruction in subroutine Test is executed:

[image: image69.emf].

.

.

.

.

Higher Address

SP

SP+4

SP+2

Lower Address

Return Address

25 (i)

4 (j)

1 SP+6

.

.

.

.

.

The subroutine then can access parameters on the stack relative to the BP register. For example, suppose the subroutine Test in the previous example is:

	Example: Accessing parameters on the stack

	 _Test
PROC

push BP

mov BP, SP

mov AX, [BP + 4]
;get _i

add AX, [BP + 6]
;add _j

sub AX, [BP + 8]
;subtract parm 3 (1) from sum

pop BP

ret
 _Test
ENDP

The following figure shows the state of the stack after PUSH BP and MOV BP, SP are executed.

[image: image70.emf].

.

.

.

.

Higher Address

SP

SP+4

SP+2

Lower Address

Return Address

25 (i)

4 (j)

1

SP+6

.

.

.

.

.

Callers BP

SP+8

BP

BP+4

BP+2

BP+6

BP+8

The STDCALL Calling Conventions

Argument passing order for STDCALL is similar as the C calling convention.

· The caller pushes the arguments from right to left.
· The called procedure cleans the stack if the procedure does not accept a variable number of arguments. Otherwise, the caller must remove the parameters from the stack after the call.

	Example: Subroutine Test using STDCALL Convention

	 _Test
PROC

push BP

mov BP, SP

mov AX, [BP + 4]
;get _i

add AX, [BP + 6]
;add _j

sub AX, [BP + 8]
;subtract parm 3 (1) from sum

pop BP

ret 6
 _Test
ENDP

The Pascal Calling Convention

This convention pushes arguments left to right so that the last argument is lowest on the stack,and it requires that the called subroutines remove arguments from the stack.
Local Variables
We have known how to use stack as an interface for passing parameters to the subroutine. The idea is to use BP register as an anchor point to access the passed parameters using instructions like mov r/m, [BP + n].

When a subroutine is invoked, a new environment is created. In his newly created environment, new local variables are defined, while the values of the previous environment must be preserved. Variables for holding intermediate values during a computation like expression evaluation may also be needed. Like return addresses, these local variables are dynamic data whose values must be preserved over the lifetime of the procedure, but not beyond its termination. At the termination of the procedure, the current environment disappears and the previous environment must be restored.

· Space for local variables can be reserved by subtracting the required number of bytes from SP.

· Since the portion of the stack holding local variables is at a lower address than BP, negative offsets from BP are used to address local variables.

In the following example, assume that the size of char is 2 bytes, the size of int is 4 bytes, STDCALL convention is used.

	Pseudo-code (Java-like)
	Assembly Language

	void Test(char i, char j){
char b;
int k;

k = 9;
b = i;
}
	_Test PROC
push BP
mov BP, SP
sub SP, 6
push AX
mov DWORD PTR [BP - 6], 9
mov AX, [BP + 4]
mov [BP - 2], AX
pop AX
mov SP, BP
pop BP
ret 4
_Test ENDP

 Macros and Conditional Assembly [image: image71.png]

We have seen that procedures are extremely useful for implementing modular program design techniques.
In this unit, we discuss another mechanism to modularize program code based on macros. Simply put, a macro is a sophisticated text subsitution mechanism. The objectives of this unit are:

· To discuss macro definition and expansion

· To explain how blocks of statements can be repeated

· To describe conditional assembly directives

· To describe how to define a macro library

· To explore the performance tradeoffs associated with macros and procedures

 Macro Definition and Invocation [image: image72.png]

A macro is a block of text (code, data, etc.) that has been given a name (called a macro name). When the assembler encounters that name in a program, the block of text associated with the macro name is subsituted. This process is referred to as macro expansion .
Assemblers provide three directives to support macro substitutions: =, EQU, and MACRO.
The directives = and EQU can be used for constant substitution during assembly time. For example, we can write
 CLASS_SIZE = 90
or
 CLASS_SIZE EQU 90
Both statements cause 90 to be textually substituded for CLASS_SIZE.
The difference between = and EQU directives is that the = directive allows redifinition later on, while the constants defined by EQU cannot be redefined. However, both these directives are not useful for general text subsitution.
The syntax of macro definition is
 macro_name MACRO [parameter1, parameter2, ...]
 macro body
 ENDM
Here macro_name is the user-supplied name for the macro. The pseudo-ops MACRO and ENDM indicate the beginning and end of the macro definition. In the MACRO directive, the parameters are optional (as indicated by the square brackets []).
To invoke or call a macro, use the macro_name and supply the necessary parameter values. This causes a macro expansion, i.e. it copies the macro body into the program at the position of the invocation, just as if the user has typed them in. The format for invoking a macro is
 macro_name [argument1, argument2, ...]
During macro expansion, the assembler replaces each parameter in the macro body by its corresponding argument.
Position of Macro Definition
A macro definition must come before its invocation in a pogram. To ensure this sequence, macro definitions are usually placed at the beginning of a program.
One use of macros is to create new instructions. For example, we know that the operands of a MOV instruction can't both be word variables, but we can get arond this restriction by defining a macro to move a word into a word.

Example: Define a macro to move a word into a word.

 MOVW MACRO WORD1, WORD2

 PUSH WORD2

 POP WORD1

 ENDM

Example: Invoke the macro MOVW to move B to A, where A and B are word variables.

 MOVW A, B
To expand this macro, the assembler would copy the macro statement into the program at the position of the call, replacing the occurence of WORD1 with A and WORD2 by B. The result is

PUSH B

POP A
The 8086 processor does not allow specification of shift count great than 1 as an immediate value. Next, we will write a shift left macro that allows that. We will call this macro SHLI.

Example: Define a macro to shift left an operand to the left by an immediate value that can be greater than 1.

 SHLI MACRO operand, count

 MOV CL, count

 SHL operand, CL

 ENDM
Example: Invoke the macro SHLI to shift left regiter AX by 6 bits.

 SHLI AX, 6
This macro invocation will be expanded into the following code:

MOV CL, 6

SHL AX, CL
Macros versus Procedures

Macros are similar to procedures in some respects. Both improve program productivity by aiding in the development of modular source code. There are, however, some significant differences between them.

Parameter passing

Parameter passing in a macro invocation is similar to that in a procedure call of a high-level language. The arguments are listed as part of a macro call. Parameter passing in a procedure call often involves the stack. The number of stack operations in preparation for a procedure call grows in direct proportion to the number of parameters passed. This, in addition to the call/ret overhead, increases the overhead and affects the performance. Macros avoid this overhead by text substitution but increase the space requirement.

Types of parameters

Since a macro is a text substitution mechanism, a variety of parameter types can be passed. For example, we can write a macro
shift
MACRO
opcode, operand, count
 MOV CL, count
 opcode operand, CL

ENDM
and invoke it as
shift
SAL, AX, 3
which results in the following macro expansion
MOV CL, 3
SAL AX, CL
Here opcode is the instruction mnemonic, which can be an mnemonic in the shift and rotate family of instructions. Thus, the same macro can be used with all of the shift and rotate family of instructions on bytes, words, and doublewords that are either located in a register or memory. Clearly, such parameter types cannot be passed to a procedure.

Invocation mechanism

Macro invocation is done at assembly time by text substitution. However, procedure invocation is done at run time by transferring control to the procedure. This leads to the following tradeoff. Macros tend to increase the length of the executable code due to macro expansions. This leads to increased assembly time. Macro expansion also creates a nuisance at debuuging time--repeatedly looking at part of code (macro expansions) that you know works correctly. Procedures avoid these problems by transferring control to the procedure code. In debugging, the proecdure call can be skipped.
In summary, the tradeoffs are that using macros results in faster execution of the code. However, macros result in increased memory space due to macro expansions. Procedures save space, as only one copy of the procedure is kept. However, procedure invocation overhead (to pass parameters via the stack and for call/ret) increases the execution time. Note that macro invocation causes assembly-time overhead but not run-time overhead. The advantages and disadvantages associated with macros and procedures can be summarized into the following table:

	Type of Overhead
	Procedure
	Macro

	memory space
	lower
	higher

	Execution time
	higher
	lower

	Assembly time
	lower
	higher

When are macros better

Given the state of modern technology, this time versus space tradeoff is a major factor in preferring one over the other. The choice between macros and procedures depends on the application requirements. For typical applications, it is recommended to use procedures except in some special situations identified next:
· Macros are useful in defining macro-instructions that extend the instruction set of a processor. For example, suppose that we want to write a program module to multiply an operand by 16. We will do this by both a macro and a procedure to see the difference in the overhead.

Example: Write a macro mult16 to multiply an operand by 16 using shift instructions.

 mult16 MACRO operand

 MOV CL, 4

 SHL operand, CL

 ENDM
Example: Write a procedure times16 to multiply an operand by 16. Assume that the operand is pushed on the stack.

 times16 PROC

 PUSH BP

 MOV BP, SP

 PUSH AX

 MOV AX, [BP+4]

 MOV CL, 4

 SAL AX, CL

 MOV [BP+4], AX

 POP AX

 POP BP

 RET

 times16 ENDP
This procedure can be invoked to multiply a word variable count by 16 as

PUSH count

CALL times16

POP count
The overhead involved is substantial. Clearly, this is an impractical proposition. Macros are useful when text substitution is the only way available. Consider the following example. Suppose that we want to preserve the content of registers BX, CX, DX, SI, DI, and BP across procedure calls. We could use PUSHA and POPA, but these instructions save and restore the AX register as well. But, we want to return a result in AX. We can conveniently do this by the following two macros:
save_regs MACRO restore_regs MACRO
 PUSH BP POP BX
 PUSH DI POP CX
 PUSH SI POP DX
 PUSH DX POP SI
 PUSH CX POP DI
 PUSH BX POP BP
 ENDM ENDM
It is not possible to write a procedure to do the same.
Labels in Macros [image: image73.png]

A macro with a loop or decision structure contains one or more labels. If such a macro is invoked more than once in a program, a duplicate label appears, resulting in an assembly error. This problem can be avoided by using local labels in the macro.

Labels in Procedures

Label problems are avoided in procedures, as the scope of a label declared within a procedure body is limited to that procedure. The LOCAL directive is provided by the assembler to declare labels in a macro local to that macro. The syntax of using local directive is:
 LOCAL local-label1 [, local-label2, ...]
Every time the macro is expanded, the assembler assigns different symbols to the labels in the list.
Position of Local Label Definition in Macros
The LOCAL directive must appear on the next line after the MACRO statement; not even a comment can precede it.
Example: Write a macro to place the largest of two words in AX.

 GET_BIG MACRO WORD1, WORD2

 LOCAL EXIT

 MOV AX, WORD1

 CMP AX, WORD2

 JG EXIT

 MOV AX, WORD2

 EXIT:

 ENDM
Now, suppose that FIRST, SECOND, and THIRD are word variables. A macro invocation of the form
 GET_BIG FIRST, SECOND
expands as follows:
 MOV AX, FIRST
 CMP AX, SECOND
 JG ??0000
 MOV AX, SECOND
 ??0000:
A later call of the form:
 GET_BIG SECOND, THIRD
expands as follows:
 MOV AX, SECOND
 CMP AX, THIRD
 JG ??0001
 MOV AX, THIRD
 ??0001:
Subsequent invocations of this macro or to other macros with local labels causes the assembler to insert labels ??0002, ??0003, and so on into the program.
The labels that the assembler generates to replace the local labels are of the form ??XXXX, where XXXX is a hexadecimal number between 0 and FFFFH. Thus, a program can have up to 2^16=65,536 local labels, a large enough number for most programs.

Conflicts with Local Labels

To avoid conflicts with local labels, you should not use labels in your program that begin with ??.

 Macro Expansion in the .LST File [image: image74.png]

The .LST file is one of the files that can be generated when a program is assembled. It shows assembly code and the corresponding machine code, addresses of variables, and other information about the program. The .LST file also shows how macros are expanded. We will demonstrate this by an example.

Example: The following program contains the MOVW macro and two invocations.

 TITLE PGM1: MACRO DEMO

 .MODEL SMALL

 MOVW MACRO WORD1, WORD2

 PUSH WORD2

 POP WORD1

 ENDM

 .STACK 100H

 .DATA

 A DW 1, 2

 B DW 3

 MAIN PROC

 MOV AX, @DATA

 MOV DS, AX

 MOVW A, DX

 MOVW A+2, B

 ; dos exit

 MOV AH, 4CH

 INT 21H

 MAIN ENDP

 END MAIN
The next figure shows the file PGM1.LST. In this file, the assembler prints the macro invocations, followed by their expansions (shown in boldface). The digit 1 that appears on each line of the expansions means that these macros were invoked at the "top level"; that is, by the program itself. We will show later that a macro may invoke another macro.

	PGM1.LST

	
TITLE PGM1: MACRO DEMO

.MODEL SMALL

MOVW MACRO WORD1, WORD2

 PUSH WORD2

 POP WORD1

 ENDM

.STACK 100H
 0000
.DATA
 0000 0001 0002 A DW 1, 2
 0004 0003 B DW 3
 0000
.CODE
 0000
MAIN PROC
 0000 B8 ---- R
 MOV AX, @DATA
 0003 8E D8
 MOV DS, AX

 MOVW A, DX
 0005 52
 1 PUSH DX
 0006 8F 06 0000 R
 1 POP A

 MOVW A+2, B
 000A FF 36 0004 R
 1
 PUSH B
 000E 8F 06 0002 R
 1
 POP A+2

; dos exit
 0012 B4 4C
 MOV AH, 4CH
 0014 CD 21
 INT 21H
 0016
MAIN ENDP

 END MAIN

 List Control Directives [image: image75.png]

There are several list control directives to specify the contents of the output listing (.LST) file. These directives can appear anywhere in the language source code. Each directive will be in effect until replaced by another directive. The following two directives control the source lines in the .LST file:

· .LIST Allows listing of subsequent source lines (This is the default mode).

· .XLIST Suppresses listing of subsequent source lines.

Example: We can suppress the contents of an include file as shown below.

 .XLIST ; suppress listing

 INCLUDE part0.inc

 .LIST ; restore listing
Macro list control directives

The assembler always lists the macro definistions in the .LST file. The following three list control directives affect only macro invocation calls:

· .LALL Enables listing of macro expansions. All source lines are listed, except those beginning with a double semicolon.

· .SALL Suppresses listing of all statements in macro expansions.

· .XALL Lists only the source statements in a macro expansion that generate code or data. Statements that do not generate code or data such as comments (EQU and =) are not listed. It also suppresses repeat block directives and conditional assembly directives, that will be discussed later. (default option.)

Comments in Macros

Any comment that starts with ;; will appear only in the macro definition but not in macro expansions. Comments that start with ; (i.e., the standard comments) appear in macro expansions as well.

Example: Suppose that the MOVW macro is rewritten as ahown below. Show how the following macro invocations would appear in a .LST file.

 MOVW MACRO WORD1, WORD2

 ; moves source to destination

 ;; uses the stack

 PUSH WORD2

 POP WORD1

 ENDM

 .XALL

 MOVW DS,CS

 .LALL

 MOVW P,Q

 .SALL

 MOVW AX,[SI]
The above macro invocations would appear in a .LST file as follows:
 .XALL
 MOVW DS,CS
 PUSH WORD2
 POP WORD1
 .LALL
 MOVW P,Q
 ; moves source to destination
 PUSH Q
 POP P
 .SALL
 MOVW AX,[SI]

Assembly errors during macro expansion

If the assembler finds an error during macro expansion, it indicates an error at the point of the macro invocation; however, it is more likely that the problem is within the macro itself. To find where the mistake really is, you need to inspect the macro expansion in the .LST file.

Nested Macros[image: image76.png]

Macros can be nested, i.e., a macro may invoke another macro. When macros are expanded, the nesting level is shown on the left of each expanded statement.

Example: Let us write a macro to copy a string using two other macros to save and restore registers.

 SAVE_REGS MACRO R1, R2, R3

 PUSH R1

 PUSH R2

 PUSH R3

 ENDM

 RESTORE_REGS MACRO R1, R2, R3

 POP R1

 POP R2

 POP R3

 ENDM

 COPYS MACRO SOURCE, DESTINATION, LENGTH

 SAVE_REGS CX, SI, DI

 LEA SI, SOURCE

 LEA DI, DESTINATION

 CLD

 MOV CX, LENGTH

 REP MOVSB

 RESTORE_REGS DI, SI, CX

 ENDM
Example: Show the code that the assembler will generate when it encounters the macro invocation COPYS STRING1, STRING2, 15.

 PUSH CX

 PUSH SI

 PUSH DI

 LEA SI, STRING1

 LEA DI, STRING2

 CLD

 MOV CX, 15

 REP MOVSB

 POP DI

 POP SI

 POP CX

Recursive Macros

A macro may invoke itself; such macros are called recursive macros.
Macro Library [image: image77.png]

The macros that a program invokes can be stored in a file. This makes it possible to create a library file of useful macros and use it using the INCLUDE pseudo-op. For example, suppose the file's name is MACROS, on a disk in drive A. When the assembler encounters the pseudo-op
 INCLUDE A:MACROS
in a program, it copies all the macro definitions from the file MACROS into the program at the position of the INCLUDE statement.

Position of INCLUDE Statement

The INCLUDE statement may appear anywhere in the program, as long as it precedes the invocation of its macros.
Examples of Useful Macros

The following are examples of macros that are useful to have in a macro library.

Example: Write a macro to return to DOS.

 DOS_RTN MACRO

 MOV AH, 4CH

 INT 21H

 ENDM

 The macro invocation is DOS_RTN
Example: Write a macro to display a carriage return and line feed.

 NEW_LINE MACRO

 MOV AH, 2

 MOV DL, 0DH

 INT 21H

 MOV DL, 0AH

 INT 21H

 ENDM

 The macro invocation is NEW_LINE
Example: Write a macro to display a character string such that the string is a macro parameter.

 DISP_STR MACRO STRING

 LOCAL START, MSG

 ; save registers

 PUSH AX

 PUSH DX

 PUSH DS

 JMP START

 MSG DB STRING, '$'

 START:

 MOV AX, CS

 MOV DS, AX

 MOV AH, 9

 LEA DX, MSG

 INT 21H

 ; restore registers

 POP DS

 POP DX

 POP AX

 ENDM

 Sample invocation: DISP_STR "This is a string"
When the DISP_STR macro is invoked, the string argument replaces the STRING parameter. Because the string is being stored in the code segment, CS must be moved to DS.

Using a Macro Library

The preceding macros have been placed in file MACROS. In the following example, we will show how to use a macro library in a program.

Example: Write a program that uses the macro library MACROS to display a message, go to a new line, and display another message.

 .MODEL SMALL

 .STACK 100H

 INCLUDE MACROS

 .CODE

 MAIN PROC

 DISP_STR "This is the first line"

 NEW_LINE

 DISP_STR "This is the second line"

 DOS_RTN

 MAIN ENDP

 END MAIN
Macro Operators

[image: image78.png]

There are five operators to manipulate macros as shown in the next table.

	Operator
	Meaning

	;;
	Suppress comment operator

	&
	Substitute operator

	<>
	Literal-text string operator

	!
	Literal-character operator

	%
	Expression evaluate operator

We have already seen how the ;; operator works. We will briefly discuss next the remaining four operators.
Substitute Operator (&) [image: image79.png]

The substitute operator (&) forces the assembler to substitute a parameter with the actual argument. The syntax is
 &name
where name is the value of the argument in the macro call. The & operator is typically used to concatenate one or more parameters with other text.

Example: We can write a macro to sort two numbers num1 and num2 that works on a 16-bit signed or unsigned numbers.

 Sort2 MACRO cond, num1, num2

 LOCAL done

 PUSH AX

 MOV AX, num1

 CMP AX, num2

 J&cond done

 XCHG AX, num2

 MOV num1, AX

 done: POP AX

 ENDM
In this macro, the cond parameter specifies the relationship of num2 relative to num1. For example, to sort two unsigned numbers value1 and value2 such that value1 >= value2, we can invoke the macro as
 sort2 AE, value1, value2
which causes the following macro expansion:
 sort2 AE, value1, value2
 PUSH AX
 MOV AX, value1
 CMP AX, value2
 JAE ??0000
 XCHG AX, value2
 MOV value1, AX
 ??0000: POP AX
If value1 and value2 are signed numbers, this macro should be invoked as
 sort2 GE, value1, value2
which generates the JGE conditional jump instruction in the macro expansion. The substitute operator is also useful to force the assembler to substitute a parameter inside a quoted string. This is illustrated in the following example.

Example: Write a macro to define an error message for informing the user when the input number is out of range.

 range_error MACRO number, variable

 err_msg&number DB "&variable: out of range", 0

 ENDM
When the macro is invoked as
 range_error 1, Assignment_mark
it will be expanded as
 err_msg1 DB "Assignment_mark: out of range",0
Literal-Text String Operator (<>) [image: image80.png]

The literal-text string operator (< >) informs the assembler that the enclosed text should be treated as a single string rather than separate arguments. The syntax is
 < text >
The text is treated as a single argument even if it contains parameter separators. Some typical parameter separators are commas, spaces, tabs, etc. The assembler removes the angle brackets and uses text as the argument.

Example: Modify the range_error macro defined before to inform the user of the correct range along with the error message.

 range_error1 MACRO number, variable, range

 err_msg&number DB "&variable: out of range", 0

 range_msg&number DB "Correct range is &range", 0

 ENDM
When we invoke this macro as
 range_error1 1, < Assignment mark >, < 0 to 25 >
the macro expansion will look like this
 err_msg1 DB "Assignment mark: out of range", 0
 range_msg1 DB "Correct range is 0 to 25", 0
This operator can also be used to force the assembler to treat a character literally by removing its default special meaning. For example, <;> passes ; as an argument without treating it as the comment operator. This can also be done using the literal-character operator, as will be seen next.
Literal-Character Operator (!) [image: image81.png]

The literal-character operator (!) preceding a character forces the assembler to treat the character literally without its default special meaning. The syntax is
 !character
Thus, !; is equivalent to <;>. The following example shows an instance where this operator is useful.

Example: Consider the macro defined below.

 range_error2 MACRO number, variable, range

 err_msg&number DB "&variable: out of range - &range", 0

 ENDM
We can invoke this in .DATA part as
 range_error2 3, mark, < can!'!'t be !> 100 >
to create the error message
 err_meg3 DB "mark: out of range - cant''t be > 100", 0
Note that if we didn't use the ! operator in the third argument, the assembler would have interpreted the third argument as < can''t be >.

Successive Single Quotes

Note that two successive single quotes will produce a single quote in the output.
Expression Evaluate Operator (%) [image: image82.png]

The syntax of the expression evaluate operator (%) is
 %expression
The expression is evaluated and its value is used to replace the expression itself. Typically, this operator is used to provide an argument in a macro call.

Example: Consider a macro to allocate and initialize an array of a given size. Assume that the macro receives the array name and size, element size (B for byte, W for word, ...), and the initial value.

 init_array MACRO element_size, name, size, init_value

 name D&element_size size DUP (init_value)

 ENDM
To reserve space for an integer array of 47x7 (marks) and initialize it to -1, we can call the macro as:
 init_array W, marks, %47*7, -1
The macro call will be expanded as
 marks DW 329 DUP (-1)
Repeat Block Directives [image: image83.png]

 Introduction [image: image84.png]

There are four directives to repeat a block of statements -- REPT The REPT directive causes the statements in the macro body to be repeated a number of times equivalent to the value of the specified expression., WHILE The WHILE directive causes the statments in the macro body to be repeated until the specified expression evaluates to false (zero)., IRP The IRP directive causes the statements in the macro body to be repeated once for each argument., and IRPC The IRPC directive causes the statements in the macro body to be repeated once for each character in the string argument.. These directives can be used both inside and outside a macro definition. They are mostly used to define and initialize variables in a data segment.

Each directive identifies the beginning of a block of statements and ENDM indicates the end of a repeat block. We will briefly discuss next these four directives.
REPT Directive [image: image85.png]

The REPT directive can be used to repeat a block of statements. Its syntax is
 REPT expression
 statments
 ENDM
When the assembler encounters this macro, the statements in the macro body are repeated a number of times equivalent to the value of the expression. It is important to note that expression must evaluate to a constant at assembly time.

REPT Macro Invocation

A REPT macro may be invoked by placing it in the program at the point that the macro's statements are to be repeated. Another way to invoke a REPT macro is to place it in an ordinary macro and invoke that macro.
Example: Write a macro to initialize a block of memory to the first N integers.

 BLOCK MACRO N

 K=1

 REPT N

 DW K

 K=K+1

 ENDM

 ENDM
To declare a word array A and initialize it to the first 100 integers, we can place the following statements in the data segment:
 A LABEL WORD
 BLOCK 100
Invocation of the BLOCK macro initializes K to 1 and the statements inside the REPT macro are assembled 100 times. The first time, DW 1 is generated and K is incremented to 2; the second time, DW 2 is generated and K becomes 3; the 100th time, DW 100 is generated and K becomes 101. The final result is equivalent to
 A DW 1
 DW 2
 DW 3
 .
 .
 .
 DW 100

Example: Write a macro to initialize an n-word array to 1!, 2!, ..., n!.

 FACT MACRO N

 M=1

 F=1

 REPT N

 DW F

 M=M+1

 F=M*F

 ENDM

 ENDM
To declare a word array B of the first 5 factorials, the data segment can contain
 B LABEL WORD
 FACT 5
which will be expanded to
 B DW 1
 DW 2
 DW 6
 DW 24
 DW 120
WHILE Directive [image: image86.png]

The WHILE directive can also be used to repeat a block of statements. Its syntax is
 WHILE expression
 statments
 ENDM
The statments in the macro body are repeated until the expression evaluates to false (zero). The expression is evaluated before each iteration of the macro body.

Example: Write a macro to initialize a block of memory to the first N integers.

 BLOCK2 MACRO N

 K=1

 WHILE K LE N

 DW K

 K=K+1

 ENDM

 ENDM
The macro invocation shown below
 C LABEL WORD
 BLOCK2 5
will expand as follows
 C DW 1
 DW 2
 DW 3
 DW 4
 DW 5
IRP Directive [image: image87.png]

The IRP (iteration repeat) directive provides a means of supplying a variable parameter to each iteration of a repeat block. It syntax is
 IRP parameter, < argument1 [, argument2, ...] >
 statments
 ENDM
The arguments are given as a list separated by commas. Note that the angle brackets are part of the syntax and are required. During the first iteration, argument1 is assigned to the parameter for use in the block of repeat statements; during the second iteration, argument2 is assigned, and so on. Therefore, the argument list specifies both the number of iterations and the actual values to be used in each iteration.

Example: Write a macro to save and restore an arbitrary number of registers.

 SAVE_REGS MACRO REGS RESTORE_REGS MACRO REGS

 IRP D, <REGS> IRP D, <REGS>

 PUSH D POP D

 ENDM ENDM

 ENDM ENDM
To save registers AX, BX, CX, DX, we can write
 SAVE_REGS < AX, BX, CX, DX >
which will be expanded into
 PUSH AX
 PUSH BX
 PUSH CX
 PUSH DX
To restore these registers, write
 RESTORE_REGS < DX, CX, BX, AX >
 IRPC Directive [image: image88.png]

The IRPC (iteration repeat with character substitution) directive is similar to the IRP directive. The difference is in how the variable parameter values are specified. Its syntax is
 IRPC parameter, string
 statments
 ENDM
The statements in the macro body are repeated once for each character in string. Like in the IRP directive, string specifies the number of iterations as well as the character to be used in each iteration.

Example: Write a macro to display a string in upper case.

 DSTRU MACRO string

 MOV AH, 2

 IRPC char, < string >

 LOCAL DISP

 MOV DL, "&char"

 CMP DL, "Z"

 JB DISP

 CMP DL, "a"

 JB DISP

 CMP DL, "z"

 JA DISP

 SUB DL, 20H

 DISP: INT 21H

 ENDM

 ENDM
Note that the angle brackets around the string argument in the IRPC macro are needed to allow for spaces in the string. Also, it is important to note here that the LOCAL definition has to be in the IRPC macro body and not in the DSTRU macro body. The macro invocation DSTRU Hello will produce the macro expansion as shown in the next figure.

	Expansion of the macro invocation DSTRU Hello

	 dstru Hello
 1 MOV AH, 2
 2 MOV DL, "H"
 2 CMP DL, "Z"
 2 JB ??0000
 2 CMP DL, "a"
 2 JB ??0000
 2 CMP DL, "z"
 2 JA ??0000
 2 SUB DL, 20H
 2 ??0000: INT 21H
 2 MOV DL, "e"
 2 CMP DL, "Z"
 2 JB ??0001
 2 CMP DL, "a"
 2 JB ??0001
 2 CMP DL, "z"
 2 JA ??0001
 2 SUB DL, 20H
 2 ??0001: INT 21H
 2 MOV DL, "l"
 2 CMP DL, "Z"
 2 JB ??0002
 2 CMP DL, "a"
 2 JB ??0002
 2 CMP DL, "z"
 2 JA ??0002
 2 SUB DL, 20H
 2 ??0002: INT 21H
 2 MOV DL, "l"
 2 CMP DL, "Z"
 2 JB ??0003
 2 CMP DL, "a"
 2 JB ??0003
 2 CMP DL, "z"
 2 JA ??0003
 2 SUB DL, 20H
 2 ??0003: INT 21H
 2 MOV DL, "o"
 2 CMP DL, "Z"
 2 JB ??0004
 2 CMP DL, "a"
 2 JB ??0004
 2 CMP DL, "z"
 2 JA ??0004
 2 SUB DL, 20H
 2 ??0004: INT 21H

Conditional Assembly [image: image89.png]

Introduction
[image: image90.png]

Conditional directives may be used to assemble certain statements and exclude others. They may be used anywhere in the assembly program, but are most often used inside macros. The general syntax of conditional assembly directives is
 Conditional
 Tstatements
 [ELSE
 Fstatements]
 ENDIF
Each conditional assembly directive ends with an ENDIF and there can be an optional ELSE clause present. If Conditional evaluates to true, the Tstatments are assembled, otherwise Fstatements are assembled if the ELSE clause is present. The next table gives the forms of the most useful conditional directives and what is required for them to be evaluated as true.

	Form
	TRUE IF

	IF exp
	Constant expression exp is nonzero.

	IFE exp
	Constant expression exp is zero.

	IFB < arg >
	Argument arg is missing (blank). Angle brackets are required.

	IFNB < arg >
	Argument arg is not missing (not blank).

	IFDEF sym
	Symbol sym is defined in the program (or declared as EXTRN).

	IFNDEF sym
	Symbol sym is not defined or EXTRN.

	IFIDN < str1 > < str2 >
	Strings str1 and str2 are identical (Case sensitive).

	IFIDNI < str1 > < str2 >
	Strings str1 and str2 are identical (Case insensitive).

	IFDIF < str1 > < str2 >
	Strings str1 and str2 are different (Case sensitive).

	IFDIFI < str1 > < str2 >
	Strings str1 and str2 are different (Case insensitive).

IF and IFE Directives [image: image91.png]

The syntax of the IF and IFE directives is
 IF expression
 IFE expression
The IF directive assembles the then part if the expression evalues to true (nonzero). The IFE directive is the IF counterpart and assembles the then part if the expression is false (zero). The next table shows some operators that can be used in an expression.

	Operator Type
	Operators

	Arithmetic
	+,-,*,/,mod,unary + and -

	Relational
	EQ, GE, GT, LE, LT, NE

	Logical
	NOT, AND, OR, XOR

Example: Write a macro to define a block of memory words with N entries, consisting of the first K integers, followed by N-K zero words.

 BLOCK MACRO N, K

 I=1

 REPT N

 IF K+1-I

 DW I

 I=I+1

 ELSE

 DW 0

 ENDIF

 ENDM

 ENDM
The following macro invocation
 A LABEL WORD
 BLOCK 10, 5
will produce the following statements
 A DW 1
 DW 2
 DW 3
 DW 4
 DW 5
 DW 0
 DW 0
 DW 0
 DW 0
 DW 0

Example: Write a macro to exchange two memory operands such that the two operands can be either byte or word operands.

 MXCHG MACRO operand1, operand2

 IF (TYPE operand1) NE (TYPE operand2)

 %OUT Operands of MXCHG do not match.

 ELSE

 IF (TYPE operand1) EQ 1 ; BYTE operands

 XCHG AL, operand1

 XCHG AL, operand2

 XCHG AL, operand1

 ELSE ; WORD operands

 XCHG AX, operand1

 XCHG AX, operand2

 XCHG AX, operand1

 ENDIF

 ENDIF

 ENDM
The TYPE operator returns the number of bytes reserved for the operand in memory. The next table shows the values returned by the type operator.

	Type of Memory Operand
	Value Returned

	BYTE
	1

	WORD
	2

	DWORD
	4

	QWORD
	8

	NEAR
	FFFFH

	FAR
	FFFEH

	Constant
	0

The %OUT directive is used for displaying text on the screen. It syntax is
 %OUT text
where text can contain any character. This directive is useful for displaying error or warning messages during the assembly process.

IFDEF and IFNDEF Directives [image: image92.png]

The syntax of IFDEF and IFNDEF directives is
 IFDEF symbol
 IFNDEF symbol
If symbol is defined (IFDEF) or not defined (IFNDEF), the conditional block of statements is assembled. A common use of these directives is to customize code for a particular processor.

Example: Write a macro to save all registers on the stack.

 PUSHALL MACRO

 IFNDEF PROC_TYPE

 PROC_TYPE EQU 8086

 ENDIF

 IF PROC_TYPE EQ 8086

 PUSH AX

 PUSH BX

 PUSH CX

 PUSH DX

 PUSH SI

 PUSH DI

 PUSH BP

 PUSH SP

 ELSE

 PUSHA

 ENDIF

 ENDM
In the above example, the assembly time variable PROC_TYPE is used to identify the processor type. The /D option (e.g. /D PROC_TYPE=486) can be used to generate code targeted for a particular processor. If the processor type is not specified on the assembly command line (i.e., the /D option is not specified), the default 8086 version is generated.
For 80186 or later processors, the PUSHA instruction pushes all registers (AX, BX, CX, DX, SI, DI, BP, and SP) onto the stack. However, there is no such instruction for the 8086 processor, and we have to push each register individually.

 IFB and IFNB Directives [image: image93.png]

The syntax of the IFB and IFNB directives is
 IFB < argument >
 IFNB < argument >
Note that the angle brackets are required. The IFB directive assembles the then part if the argument is blank. The IFNB directive assembles if the argument is not blank. These directives are useful to test the presence as well as the number of arguments specified in a macro call.

Example: Write a macro READ MACRO BUF, LEN that either reads a string into the byte array BUF of length LEN (if both arguments are present), or reads a single character into AL (if both arguments are missing).

 READ MACRO BUF, LEN

 ; BUF = STRING BUFFER ADDRESS

 ; LEN = MAX NO. OF CHARS TO READ

 IFNB < BUF >

 IFNB < LEN >

 MOV AH, 0AH ; read string function

 LEA DX, BUF ; DX has string address

 MOV BUF, LEN ; 1st byte has array size

 INT 21H ; read string

 ELSE

 %OUT ERROR: Missing 2nd argument

 EXITM

 ENDIF

 ELSE

 MOV AH, 1 ; read character function

 INT 21H ; read character

 ENDIF

 ENDM
If the above macro is invoked by the statement
 READ MSG, 10
then since both arguments are present, the following code will be assembled
 MOV AH, 0AH
 LEA DX, MSG
 MOV MSG, 10
 INT 21H

String MSG Declaration

String MSG must be a declared array of at least 13 bytes (1 byte for the maximum number of characters expected, 1 byte for the actual number of characters read, 10 bytes for storing the characters, and 1 byte for the carriage return.) If the macro invocation is
 READ
then since both arguments are blank, the following code will be assembled
 MOV AH, 1
 INT 21H
If the macro is improperly called with only one argument, then an error message is displayed using the %OUT directive and the macro expansion process is terminated using the EXITM directive.
The EXITM directive stops any macro expansion or repeat block expansion that is in progress. All remaining statements after EXITM are ignored.
Another way for indicating when a macro is invoked incorrectly is by using the .ERR directive. When the assembler encounters this directive, it displayes the message "forced error", which indicates a fatal assembly error.

IFIDN and IFDIF Directives [image: image94.png]

The syntax of IFIDN (if identical) and (if different) directives is
 IFIDN < argument1 >, < argument2 >
 IFDIF < argument1 >, < argument2 >
The angle brackets are required. The condition block of statements are assembled if the arguments are identical (IFIDN) or different (IFDIF) character strings.

These two directives are case sensitive (i.e., AX and Ax are not identical). The case insensitive versions of these directives are IFIDNI and IFDIFI (i.e., with these directives, AX and Ax are treated as identical).

Example: Write a macro to compute the square of an unsigned byte operand and store the result in the operand itself assuming that it can fit in a byte. The operand can be a register or memory operand.

 SQUAREB MACRO operand

 IFDIFI <AL>,<operand>

 PUSH AX

 MOV AL, operand

 ENDIF

 MUL operand

 IFDIFI <AL>,<operand>

 MOV operand, AL

 POP AX

 ENDIF

 ENDM
The above example cannot be coded to meet the requirements of the macro without using the IFDIFI directive.

Directives Overhead

Note that all directives introduce only assembly-time overhead but not run-time overhead.

String Handling Instructions[image: image95.png]

Objectives:

· To describe Pentium string manipulation instructions

· Understand the effect of Direction Flag on string instructions

· Understand the role of SI and DI registers in string instructions

· Learn Move String Instructions: MOVS, MOVSB, MOVSW, MOVSD

· Learn Compare String Instructions: CMPS, CMPSB, CMPSW, CMPSD

· Learn Scan String Instructions: SCAS, SCASB, SCASW, SCASD

· Learn Store String Instructions: STOS, STOSB, STOSW, STOSD

· Learn Load String Instructions: LODS, LODSB, LODSW, LODSD

· Learn String Prefixes: REP, REPE, REPNE

 Introduction [image: image96.png]

A string is a sequence of characters. String processing is an important aspect of any programming language. String handling instructions allow the programmer to deal with strings in an efficient way. String instructions operate on blocks, or contiguous linear arrays, of memory.
There are five classes of string instructions:

· Move string instructions: MOVS, MOVSB, MOVSW, MOVSD. These instructions are used to copy a block of memory to another block of memory.

· Compare string instructions: CMPS, CMPSB, CMPSW, CMPSD. These instructions are used for
· comparing two blocks of memory.

· Scan string instructions: SCAS, SCASB, SCASW, SCASD. These instructions are used for scanning a block of memory for a particular value.

· Store string instructions: STOS, STOSB, STOSW, STOSD. These instructions are used for storing values into a block of memory.

· Load string instructions: LODS, LODSB, LODSW, LODSD. These instructions are used for loading values from a block of memory.

All the string instructions assume the following:

· The address of the source string is stored in the SI register.

· The address of the destination string is stored in the DI register.

· The offset stored in SI is relative to the Data Segment (DS).

· The offset stored in DI is relative to the Extra Segment (ES).

· All string instructions do not have explicit operands except the general forms of string instructions: MOVS, CMPS, SCAS, STOS, LODS.

· The operands used in the general forms of string instructions are just used to determine the size of the operands.

· Depending on the size of the operands:

· the MOVS instruction will be replaced by MOVSB, MOVSW, or MOVSD.

· the CMPS instruction will be replaced by CMPSB, CMPSW, or CMPSD.

· the SCAS instruction will be replaced by SCASB, SCASW, or SCASD.

· the STOS instruction will be replaced by STOSB, STOSW, or STOSD.

· the LODS instruction will be replaced by LODSB, LODSW, or LODSD.

· Depending on the direction flag, the SI and/or DI registers are either incremented or decremented to point at the next address in the string.

· If the Direction Flag is 0, the SI and/or DI are incremented.

· If the Direction Flag is 1, the SI and/or DI are decremented.

· The SI and/or DI registers are either incremented or decremented by 1, 2, or 4 depending on the string instruction executed.

· The instruction CLD clears the Direction Flag.

· The instruction STD sets the Direction Flag.

Since the offset of the SI is relative to the DS and the offset of the DI is relative to the ES, we need to make ES equal to DS if both strings are in the DS. This can be easily accomplished by the following instructions:

PUSH DS

POP ES
Move String Instructions [image: image97.png]

The move string instructions are used to copy an array from one location to another location. They have one of the following forms:

· MOVS dest_string, src_string

· MOVSB

· MOVSW

· MOVSD

When the first form, MOVS des_string, src_string, is used the assembler will replace it by MOVSB, MOVSW, or MOVSD depending on the size of the operands dest_string and src_string.
The semantics of the instructions MOVSB, MOVSW, and MOVSD are illustrated below:
	Instruction
	Description

	MOVSB
	ES:[DI]<-DS[SI] ;
IF (DF=0)
{SI=SI+1; DI=DI+1}
ELSE
{SI=SI-1;DI=DI-1}

	MOVSW
	ES:[DI+1:DI]<-DS[SI+1:SI] ;
IF (DF=0)
{SI=SI+2; DI=DI+2}
ELSE
{SI=SI-2;DI=DI-2}

	MOVSD
	ES:[DI+3:DI]<-DS[SI+3:SI] ;
IF (DF=0)
{SI=SI+4; DI=DI+4}
ELSE
{SI=SI-4;DI=DI-4}

The MOVSB instruction

The MOVSB (move string, byte) instruction fetches the byte at address SI, stores it at address DI and then increments or decrements the SI and DI registers by one.

The MOVSW instruction

The MOVSW (move string, word) instruction fetches the word at address SI, stores it at address DI and then increments or decrements SI and DI by two.

The MOVSD instruction

The MOVSD (move string, double word) instruction fetches the double word at address SI, stores it at address DI and then increments or decrements SI and DI by four.

Let us consider the case of moving (i.e. copying) an array Array1 from one location to another location Array2, assuming the number of elements to move is 100 bytes.

If we use the normal MOV instructions, the program would look like:

	Example: Copy 100 bytes from Array1 to Array2, using the MOV instruction.

	
LEA DI, Array2
; Starting address of Destination

LEA SI, Array1

; Starting address of Source

MOV CX, 100

; Number of elements = 100
Next:
MOV AL, [SI]

; AL <== [SI]

MOV [DI], AL

; [DI] <== AL

INC SI

; SI + 1

INC DI

; DI + 1

LOOP Next

; Next element

...

However, If the string instructions are used, the code would be:

	Example: Copy 100 bytes from Array1 to Array2, using MOVSB instruction.

	
LEA DI, Array2
; Starting address of Destination

LEA SI, Array1

; Starting address of Source

MOV CX, 100

; Number of elements = 100

PUSH DS

POP ES

; make ES=DS

CLD

; set SI and DI to auto-increment

next:
MOVSB

LOOP next

REP Prefix

Since string instructions are designed to operate on arrays of bytes, words, or double words, their execution is repeated depending on the size of the processed arrays. Instead of using the Loop instruction, the string instructions come with a repeat prefix, REP, that allows their execution to be repeated a number of times depending on the unsigned content of the CX register. The semantics of REP are:

While (CX <> 0)

execute the string instruction

CX = CX -1

end while
The CX register is first checked and if it is not 0, only then is the string instruction is executed. Thus, if CX is 0 to start with, the string instruction is not executed at all. This is in contrast to the LOOP instruction, which first decrements CX and then tests if CX is 0.
Next we show how the above example can be used with the REP prefix.

	Example: Copy 100 bytes from Array1 to Array2, using MOVSB instruction with the REP prefix.

	
LEA DI, Array2
; Starting address of Destination

LEA SI, Array1

; Starting address of Source

MOV CX, 100

; Number of elements = 100

PUSH DS

POP ES

; make ES=DS

CLD

; set SI and DI to auto-increment

REP
MOVSB

Note that Array1 can also be copied to Array2 using the MOVSW instruction. This is illustrated in the example below.

	Example: Copy 100 bytes from Array1 to Array2, using MOVSW instruction with the REP prefix.

	
LEA DI, Array2
; Starting address of Destination

LEA SI, Array1

; Starting address of Source

MOV CX, 50

; Number of elements = 50 words = 100 bytes

PUSH DS

POP ES

; make ES=DS

CLD

;set SI and DI to auto-increment

REP
MOVSW

We can also copy Array1 into Array2 by starting the copying from the bottom of the arrays. This is called the auto-decrement mode since SI and DI will be decremented after the move operation. This is illustrated in the example below.

	Example: Copy 100 bytes from Array1 to Array2, using MOVSB instruction with the REP prefix based on the auto-decrement mode.

	
LEA DI, Array2+99
; Ending address of Destination

LEA SI, Array1+99
; Ending address of Source

MOV CX, 100

; Number of elements = 100 bytes

PUSH DS

POP ES

; make ES=DS

STD

; set SI and DI to auto-decrement

REP
MOVSB

In the next example, we illustrate the use of move string instructions to copy Array1 into Array2 in reverse.

	Example: Copy 100 bytes from Array1 to Array2 in reverse order.

	
LEA DI, Array2+99
; Ending address of Destination

LEA SI, Array1

; Starting address of Source

MOV CX, 100

; Number of elements = 100 bytes

PUSH DS

POP ES

; make ES=DS

CLD

; set SI and DI to auto-increment

Next:
MOVSB

SUB DI, 2

; adjust DI to pint at next address

LOOP Next

Note that in the above example, SI and DI are both incremented after the data movement. However, what we want is to have SI incremented by one while DI is decremented by one. To achieve this, we decrement DI by 2 after the MOVSB instruction so that the net effect on DI is decrementing it by 1. For this reason, we can not use the REP prefix here and we have to use the loop instruction.
Compare String Instructions [image: image98.png]

The compare string instructions are used to compare two strings. They have one of the following forms:

· CMPS dest_string, src_string

· CMPSB

· CMPSW

· CMPSD

When the first form, CMPS des_string, src_string, is used the assembler will replace it by CMPSB, CMPSW, or CMPSD depending on the size of the operands dest_string and src_string.
The semantics of the instructions CMPSB, CMPSW, and CMPSD are illustrated below:
	Instruction
	Description

	CMPSB
	Affect the flags based on the result of DS:[SI]-ES:[DI] ;
IF (DF=0)
{SI=SI+1; DI=DI+1}
ELSE
{SI=SI-1;DI=DI-1}

	CMPSW
	Affect the flags based on the result of DS:[SI+1:SI]-ES:[DI+1:DI] ;
IF (DF=0)
{SI=SI+2; DI=DI+2}
ELSE
{SI=SI-2;DI=DI-2}

	CMPSD
	Affect the flags based on the result of DS:[SI+3:SI]-ES:[D3+1:DI] ;
IF (DF=0)
{SI=SI+4; DI=DI+4}
ELSE
{SI=SI-4;DI=DI-4}

Note that unlike the CMP instruction which performs the operation destination - source, the compare string instructions perform the operation source - destination.
The CMPSB Instruction
This instruction is used to compare arrays of bytes. It compares the byte addressed by DS:[SI] to the byte addressed by ES:[DI] by performing the subtraction operation DS:[SI] - ES:[DI], setting the arithmetic flags based on the result of the subtraction. Note that the result is not stored and is just used to affect the flags. Then, SI and DI are either incremented or decremented by 1 depending on the Direction Flag. After executing this instruction, it is possible to use any of the conditional jump instructions.

The CMPSW Instruction

This instruction is used to compare arrays of words. It compares the word addressed by DS:[SI] to the word addressed by ES:[DI] by performing the subtraction operation DS:[SI+1:SI] - ES:[DI+1:DI], setting the arithmetic flags based on the result of the subtraction. Then, SI and DI are either incremented or decremented by 2 depending on the Direction Flag.

The CMPSD Instruction

This instruction is used to compare arrays of double words. It compares the double word addressed by DS:[SI] to the double word addressed by ES:[DI] by performing the subtraction operation DS:[SI+3:SI] - ES:[DI+3:DI], setting the arithmetic flags based on the result of the subtraction. Then, SI and DI are either incremented or decremented by 4 depending on the Direction Flag.

In the next example, we illustrate the use of compare string instructions in comparing two strings.

	Example: Comparison of two strings.

	
MOV
SI, offset str1

MOV
DI, offset str2

PUSH DS

POP ES

CLD

;left to right or auto-increment mode

MOV
CX, 12

;string length
Next:
CMPSB

;cmp till equal or cx=0

JB
str1smaller

JA
str2smaller

;the strings are equal - so far

LOOP Next

...

REPE/REPZ Prefix

Like the unconditional repeat prefix, there are conditional repeat prefixes that come with string instructions. REPE (Repeat if Equal) or REPZ (Repeat if ZF=1) is one of the conditional repeat prefixes that come with string instructions. Its operation is similar to the REP prefix except that repetition is also conditional on the Zero Flag as shown below:

While (CX <> 0)

execute the string instruction

CX = CX - 1;

If (ZF = 0) then

exit loop

end if

end while
The string instruction will repeat execution as long as CX is not equal to 0 and also the result of comparison sets the ZF to 1, i.e. the two compared operands are equal. So, it will stop once the first mismatch is found or if CX becomes 0.
In the next example, we show the use of the REPE prefix in comparing two strings.

	Example: Comparison of two strings using REPE prefix.

	
MOV
SI, offset str1

MOV
DI, offset str2

PUSH DS

POP ES

CLD

;left to right or auto-increment mode

MOV
CX, 12

;string length
REPE CMPSB

;cmp till equal or cx=0

JB
str1smaller

JA
str2smaller

;the strings are equal - so far

...

REPNE/REPNZ Prefix

REPNE (Repeat if not Equal) or REPNZ (Repeat if ZF=0) is the second conditional repeat prefix. Its operation is as follows:

While (CX <> 0)

execute the string instruction

CX = CX - 1;

If (ZF = 1) then

exit loop

end if

end while
The string instruction will repeat execution as long as CX is not equal to 0 and also the result of comparison sets the ZF to 0, i.e. the two compared operands are not equal. So, it will stop once the first match is found or if CX becomes 0.
For example, suppose that we want to count the number of characters that are matching between two strings. This can be done as follows:

	Example: Counting number of character matches between two strings.

	
MOV
SI, offset str1

MOV
DI, offset str2

PUSH DS

POP ES

CLD

;left to right or auto-increment mode

MOV
CX, 12

;string length

XOR AL, AL

;# of character matches
Again:
JCXZ Done
REPNE CMPSB

;cmp till equal or cx=0

JNE
Done

INC
AL

JMP Again
Done:

...

Note that it is not allowed to use the REP prefix with the compare string instructions as it does not make sense. Similarly, it is not allowed to use the REPE/REPZ or REPNE/REPNZ prefixes with the move string instructions.

Scan String Instructions [image: image99.png]

The scan string instructions are useful in searching for a particular value or a character in a string. They have one of the following forms:

· SCAS dest_string

· SCASB

· SCASW

· SCASD

The SCAS instruction only requires a destination string (pointed at by ES:DI) rather than both a source and a destination string. The source operand is the value in the AL (SCASB), AX (SCASW), or EAX (SCASD) register. The SCAS instruction compares the value in the accumulator (AL, AX, or EAX) against the value pointed at by ES:DI and then increments (or decrements) DI by one, two, or four.
When the first form, SCAS des_string, is used the assembler will replace it by SCASB, SCASW, or SCASD depending on the size of the operand dest_string.
The semantics of the instructions SCASB, SCASW, and SCASD are illustrated below:

	Instruction
	Description
	

	SCASB
	Affect the flags based on the result of AL-ES:[DI] ;
IF (DF=0)
DI=DI+1
ELSE
DI=DI-1
	

	SCASW
	Affect the flags based on the result of AX-ES:[DI+1:DI] ;
IF (DF=0)
DI=DI+2
ELSE
DI=DI-2
	

	SCASD
	Affect the flags based on the result of EAX-ES:[DI+3:DI] ;
IF (DF=0)
DI=DI+4
ELSE
DI=DI-4
	

The SCASB Instruction

The SCASB instruction compares the content of the AL register to the byte addressed by ES:[DI] by performing the subtraction operation AL - ES:[DI], setting the arithmetic flags based on the result of the subtraction. Then, DI is either incremented or decremented by 1 depending on the Direction Flag. After executing this instruction, it is possible to use any of the conditional jump instructions.

The SCASW Instruction

The SCASW instruction compares the content of the AX register to the word addressed by ES:[DI] by performing the subtraction operation AX - ES:[DI+1:DI], setting the arithmetic flags based on the result of the subtraction. Then, DI is either incremented or decremented by 2 depending on the Direction Flag.

The SCASD Instruction

The SCASD instruction compares the content of the EAX register to the double word addressed by ES:[DI] by performing the subtraction operation EAX - ES:[DI+3:DI], setting the arithmetic flags based on the result of the subtraction. Then, DI is either incremented or decremented by 4 depending on the Direction Flag.

Similar to the compare string instructions, the conditional repeat prefixes REPE/REPZ and REPNE/REPNZ can be used with the scan string instructions.

The next example illustrates the use of the scan string instructions in searching for a particular character in a string.

	Example: Character search in a string.

	
MOV DI, offset str

PUSH DS

POP ES

CLD

;left to right or auto-increment mode

MOV CX, 12

;string length

MOV AL, 'A'

;character to be searched is A
REPNE SCASB

;cmp till equal or cx=0

JNE Not_Found

DEC DI

...

Note that in the above example, if the searched character is found, then DI will be pointing at the address of the first location it is found at.

The following example can be used to skip initial blank characters in a string. It leaves DI pointing to the first non-blank character in the searched string.

	Example: Skip blank characters in a string.

	
MOV DI, offset str

PUSH DS

POP ES

CLD

;left to right or auto-increment mode

MOV CX, 12

;string length

MOV AL, ' '

;character to be skipped is blank
REPE SCASB

;cmp till not equal or cx=0

JE No_Blank

DEC DI

...

 Store String Instructions [image: image100.png]

The store string instructions are useful in initializing a block of memory with a particular value. They have one of the following forms:

· STOS dest_string

· STOSB

· STOSW

· STOSD

The STOS instruction only requires a destination string (pointed at by ES:DI). The source operand is the value in the AL (STOS), AX (STOSW), or EAX (STOSD) register. The STOS instruction stores the value in the accumulator (AL, AX, or EAX) into the corresponding locations pointed by ES:DI and then increments (or decrements) DI by one, two, or four.

When the first form, STOS des_string, is used the assembler will replace it by STOSB, STOSW, or STOSD depending on the size of the operand dest_string.

The semantics of the instructions STOSB, STOSW, and STOSD are illustrated below:
	Instruction
	Description

	STOSB
	ES:[DI]<-AL ;
IF (DF=0)
DI=DI+1
ELSE
DI=DI-1

	STOSW
	ES:[DI+1:DI]<-AX ;
IF (DF=0)
DI=DI+2
ELSE
DI=DI-2

	STOSD
	ES:[DI+3:DI]<-EAX ;
IF (DF=0)
DI=DI+4
ELSE
DI=DI-4

The STOSB instruction

The STOSB stores the value in the AL register into the byte addressed by ES:[DI]. DI is then incremented (if DF=0) or decremented (if DF=1) by 1.

The STOSW instruction

The STOSW instruction stores the AX register into the word addressed by ES:[DI]. DI is then incremented (if DF=0) or decremented (if DF=1) by 2.

The STOSD instruction

The STOSD instruction stores the EAX register into the double word addressed by ES:[DI]. DI is then incremented (if DF=0) or decremented (if DF=1) by 4.

Note that it is possible to use only the unconditional repeat prefix REP with store string instructions.

The next example illustrates the use of the store string instructions in initializing a block of memory by a particular value.

	Example: Initialize an array of 100 bytes by the value -1.

	
MOV DI, offset Array

MOV CX, 100

MOV AX, DS

MOV ES, AX

CLD

MOV
AL, -1
REP
STOSB

...

Note that we can initialize the Array using the dup operator by using the following declaration in the data segment:
Array DB 100 DUP(-1)
However, in many programming instances it is required to initialize an array repeatedly and in this case the store string instructions can be used.
Load String Instructions [image: image101.png]

The load string instructions are useful when it is required to process the elements of an array. They have one of the following forms:

· LODS src_string

· LODSB

· LODSW

· LODSD

The LODS instruction only requires a source string (pointed at by DS:SI). The destination operand is the AL (LODSB), AX (LODSW), or EAX (LODSD) register. The LODS instruction loads the value from the corresponding locations pointed by DS:SI into the accumulator (AL, AX, or EAX) and then increments (or decrements) SI by one, two, or four.

When the first form, LODS src_string, is used the assembler will replace it by LODSB, LODSW, or LODSD depending on the size of the operand src_string.

The semantics of the instructions LODSB, LODSW, and LODSD is illustrated below:

	Instruction
	Description

	LODSB
	AL<-DS:[SI] ;
IF (DF=0)
SI=SI+1
ELSE
SI=SI-1

	LODSW
	AX<-DS:[SI+1:SI] ;
IF (DF=0)
SI=SI+2
ELSE
SI=SI-2

	LODSD
	EAX<-DS:[SI+3:SI] ;
IF (DF=0)
SI=SI+4
ELSE
SI=SI-4

The LODSB instruction

The LODSB loads the byte addressed by DS:[SI] into register AL. SI is then incremented (if DF=0) or decremented (if DF=1) by 1.

The LODSW instruction

The LODSW loads the word addressed by DS:[SI] into register AX. SI is then incremented (if DF=0) or decremented (if DF=1) by 2.

The LODSD instruction

The LODSD loads the double word addressed by DS:[SI] into register EAX. SI is then incremented (if DF=0) or decremented (if DF=1) by 4.

Note that repeat prefixes cannot be used with load string instructions as their use does not make sense.

The next example illustrates the use of the load and store string instructions in converting the characters of strings to upper case characters.

	Example: Convert all string characters to upper case using load and store string instructions.

	
MOV SI, offset Array

MOV DI, SI

MOV CX, 100
; Array length

MOV AX, DS

MOV ES, AX

CLD
Next:
LODSB

OR AL, 20H
; convert to upper case

STOSB

LOOP Next

Note that since the character is already an upper case, it will remain upper case by the instruction OR AL, 20H. However, the lower case characters will be converted to upper case characters. Also, note that since the blank character has the ASCII code 20H, it will not be affected and will remain as is.

79 of 84

[image: image102.png]

_1163770032.vsd
Return Address�

.
.
.
.
.�

Higher Address�

SP �

SP+4 �

SP+2 �

Lower Address�

25 (i)�

4 (j)�

1�

SP+6 �

.
.
.
.
.�

_1163770253.vsd
Return Address�

.
.
.
.
.�

Higher Address�

SP �

SP+4 �

SP+2 �

Lower Address�

25 (i)�

4 (j)�

1�

SP+6 �

.
.
.
.
.�

Callers BP�

SP+8 �

BP �

BP+4 �

BP+2 �

BP+6 �

BP+8 �

_1163321690.unknown

