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[image: image22.png]In this unit, the student will study the process of designing a simple Central Processing Unit. The student should be able to design a simple CPU starting from the instruction set. The objectives of this unit are: 

· To describe the CPU design process. 

· To explain data-path design and compare alternative implementation of datapaths. 

· To describe the generation of control signals using hardwired and microprogrammed implementations. 

· To describe the basic interface between the CPU and memory. 

· To describe the design of instruction formats of a given instruction set. 

CPU Design
Introduction [image: image23.png]
A computer system consists of a Central Processing Unit (CPU), main memory and Input/Output Devices interconnected through buses. A CPU is decomposed into two main parts: the data path and the control unit. The data path consists of the set of registers, arithmetic blocks and interconnections required to accomplish the changes an instruction makes when executed. The flow of data between registers in the CPU or between a register and a memory location occurs in the data path. Also, arithmetic operations are performed in the data path. The data path is controlled by a set of signals to cause actions to take place. Examples of such signals are strobe signals to load registers and signals to control the connectivity of outputs to a bus. 
	In order to perform an operation on the data path, it is required to generate the control signals in the correct order to affect the correct data path activity. The figure shows the block diagram of a computer subsystem. 
The control unit receives signals that describe the state of the data path and the control unit sends control signals to the data path. These signals control the data flow within the CPU, and between the CPU and main memory and input/output. 
	[image: image24.png]


As can be seen from the figure, the data path in the CPU is designed based on a single bus. It consists of a set of general purpose registers, Arithmetic and Logic Unit (ALU), Program Counter (PC), Instruction Register (IR), Memory Address Register (MAR), Memory Data Register (MDR), and two auxiliary registers, Y and Z, that are required to temporarily store one operand and the result when doing ALU operations.MAR and MDR registers are used as interface registers to the memory system. MAR contains the address of the memory operand, and is connected to the address bus. MDR is used as a buffer for outgoing and incoming values and is connected to the data bus.
Data Path Design [image: image25.png]
Register Transfer[image: image26.png]
The process of instruction execution or any function performed inside the CPU can be described as a set of register transfer operations. In each clock, one or more register transfer operations are performed. The following table shows a set of 8086 instructions and their corresponding register transfer operations: 

	Instruction 
	Register Transfer 

	MOV AX, BX 
	AX ← BX 

	ADD AX, BX 
	AX ← AX + BX 

	INC AX 
	AX ← AX + 1 

	XCHG AX, BX 
	AX ← BX; BX ← AX 

	JMP Label 
	PC ← Label 


Due to the given CPU design, some of these register transfer operations can not be implemented in one clock cycle and have to be broken into a number of register transfer operations that have to be performed in a sequence. For example, consider the implementation of instruction ADD AX, BX in a single-bus CPU design. It is not possible to execute this instruction in a single register transfer operation because there is a single bus connected to the ALU and we cannot put both operands AX and BX on the bus in the same time. Also, the result cannot be put back from the ALU to the bus in the same cycle. In this case, the instruction will be executed in three register transfer operations based on the single-bus CPU given in the introduction, as shown below: 
Example: Register Transfer Sequence for Executing the Instruction ADD AX, BX.

 1. Y ← AX

 2. Z ← Y + BX

 3. AX ← Z

We next relate data transfer operations to the logic circuits that implement them. It is important to consider not only where the data moves but when. If A and B are m-bit registers, the register transfer A ← B can be implemented by two sets of m flip-flops as shown below. 

SEE ONLINE ANIMATED FIGURE

The m-bit data is copied from register B into register A when the strobe signal is activated. Assuming rising-edge triggered flip-flops, the transfer operation occurs on the rising edge of the strobe 
In order to transfer data between n registers, this can be achieved by interconnecting the registers using n multiplexers such that the input of each register is connected to an (n-1)*1 multiplexer. In the (n-1)*1 multiplexer, the other n-1 registers are connected to the n-1 inputs of the multiplexer and log (n-1) selection lines are used to select the required register. This solution is expensive as it requires complex routing of the wires between the n registers in addition to the n multiplexers and n log (n-1) selection lines. The figure shows three single-bit registers interconnected using multiplexers. Note that in this structure, each register is connected to the other two registers using a 2x1 MUX. Also, the capture of the value for each register is controlled by a control signal.
SEE ONLINE ANIMATED FIGURE

	Instead, a better solution is to use a tri-state bus that is shared among all registers. In this case, all the registers are connected to the bus through tri-state buffers such that one tri-state buffer is enabled at a time. Each tri-state buffer is controlled by an output enable signal that when set high connects the input of the buffer to the output otherwise produces a high-impedance value Z. The next figure illustrates the operation of a tri-state buffer.
	[image: image27.png]


The bus will be connected to the input of all registers. This structure allows any register to transfer its value on the bus which will reach all the registers interconnected by the bus. In order to control, which register will capture the value on the bus, we need a strobe signal for each register. To allow for propagation delay across the bus and for FF setup time, the registers capture on the falling edge of the clock while the tri-state buffer enable signals are assumed to be activated on the rising edge of the clock. This is achieved by Anding the strobe signals with the complement of the clock. This figure shows two registers interconnected using the tri-state bus structure.
SEE ONLINE ANIMATED FIGURE

To transfer the content of register R1 to register R2, the R1out signal and R2in signal are enabled on the rising edge of the clock. This puts the value of R1 on the bus and makes R2 capture the bus value on the falling edge of the clock. The next figure shows three single-bit registers interconnected using the tri-state bus structure. 

SEE ONLINE ANIMATED FIGURE

Register Transfer Timing

As we have seen, information is processed in the data path by register transfers. In a register transfer operation, information is moved out of a register, along a bus, possibly through combinational logic, and into another register. These actions take time, and in this section we will discuss how much time they take. Being able to estimate the timing of such actions is crucial in determining the maximum clock frequency that a circuit will support. 
The next figure shows an example of the clocking and timing relationships that exist along the data path. The figure shows the information being propagated from register R1, the transmitter, through tri-state buffer and bus, through a combinational logic block such as an ALU into register R2, the receiver. Propagation time through the wires interconnecting the registers and logic gates is assumed negligible in this example.
SEE ONLINE ANIMATED FIGURE

The figure follows the signal as it travels from output register to input register: 

1. The information propagates through the tri-state buffer in tg time. 

2. The information then travels across the bus in time tbp. 

3. The information propagates through the ALU or other combinational logic block in time tcomb. 

4. The signal arrives at R2. The data has to arrive at the input of R2 and be stable before the capture clock of R2 by the flip-flop setup time tsu. After the capture clock of R2 is activated, the data will be stored in R2 after a flip-flop propagation delay tff. 

Estimating the Pulse Width

In order for the value of R1 to be captured correctly at R2, the width of the clock pulse has to satisfy the following relation: 
tw >= tg + tbp + tcomb + tsu 

Estimating the Minimum Clock Period

The minimum clock period for a register transfer is the time required to propagate data entirely around the circuit, so that the new value is in the destination register and ready for another cycle. The minimum clock period for this particular register transfer is 

tclk= tg + tbp + tcomb + tsu + tff 

Note that there is no concern about the hold time since the pulse width will always be greater than th. 

Timing Parameters Example 

	Example timing parameters for National Semiconductor FAST TTL gates and flip-flops and VITESSE GaAs gate-array components are shown in the following table.
	Name 

Parameter 

FAST Delays 

VITESSE Delays 

Tri-state buffer propagation 

tg 

5 ns 

150 ps 

Bus propagation (assumed) 

tbp 

5 ns 

500 ps 

Logic delay 

tcomb 

14 ns 

400 ps 

Flip-flop propagation time 

tff 

6 ns 

440 ps 

Flip-flop setup time 

tsu 

2 ns 

146 ps 

Flip-flop hold time 

th 

3 ns 

104 ps 




The table contains only the pessimistic values: the maximum propagation delays and setup and hold times. The prudent engineer will add a 10% "Murphy's law factor" to these values to account for variation in test equipment and power supply voltage, and the possibility that some parts from the vendor will be outside the specification range. 

Example: Calculate the maximum clock frequency for the circuit structure given in thist figure using the data from the above table.
	For the FAST TTL parts, the minimum clock period is given by

    tmin = tg + tbp + tcomb + tsu + tff = 5 + 5 + 14 + 2 + 6 = 32 ns 

    We add 10% safety margin, tmin = 35.2 ns.

    Therefore, the maximum clock frequency = 1/(35.2 ns) = 28.4 MHZ.

 For the VITESSE gate array, the minimum clock period is given by

    tmin = tg + tbp + tcomb + tsu + tff = 150 + 500 + 400 + 146 + 440 = 1636 ps  

    We add 10% safety margin, tmin = 1799.6 ps.

    Therefore, the maximum clock frequency = 1/(1799.6 ps) = 555.7 MHZ. 
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Single-Bus CPU Design
	In the following, we show the data path structure of a single-bus CPU design. The data path is assumed to be 16-bit wide. It consists of four general purpose registers, namely R1, R2, R3, and R4. It also contains the Program Counter (PC) and the Instruction Pointer (IP) registers. In addition, it contains an Arithmetic and Logic Unit (ALU). Note that one input of the ALU is directly connected to the bus, while the second input is connected to register Y which is a temporary register to hold the first operand (A). The result of the ALU is stored temporarily in register Z as it cannot connect directly to the bus. 
	[image: image29.png]


Remember that the bus can hold a single value at a time. Thus, it cannot be holding the value of the B operand of the ALU and in the same time hold the ALU result as this will lead to bus contention (conflict). The data path also contains two registers to interface with the memory subsystem, namely the Memory Address Register (MAR) and the Memory Data Register (MDR). The MAR is connected to the address bus and the MDR is connected to the data bus.
Note that all the registers connected to the CPU bus are connected through tri-state buffers and have output control signals (OUT Signals). This applies to all the registers except the MAR and the Y register. The output of both registers is not connected to the bus. Also, all the registers are controlled by capture signals (IN signals) that capture on the falling-edge of the clock. 
Fetch Control Sequence

In the fetch-execute cycle, the CPU goes in the cycle of reading an instruction, then executing it and repeating the process until it is terminated. The Program Counter holds the address of the next instruction to be fetched from memory. The Instruction Register is used to hold the fetched instruction to be executed. In the fetch phase, the CPU reads the instruction from memory based on the address given in the PC and stored the read instruction in the IR. Then, the program counter is incremented by the size of the fetched instruction. In the execution phase, the instruction is executed which involves decoding the instruction to know its type, fetching the operands of the instruction if necessary and finally executing the instruction. 
For simplicity, let us assume that each instruction occupies one memory location so that we increment the program counter by 1. The fetch-execute process can be summarized as follows: 

1. Fetch the content of memory location pointed by PC and load it into IR; IR ← [PC] 

2. Increment the content of PC by 1; PC← PC + 1 

3. Execute the instruction based on the content of IR. 

The fetch control sequence of the single-bus CPU is illustrated next. Each control sequence Ti corresponds to one or more clock cycles. In order to fetch an instruction from memory in the single-bus CPU, this requires three control steps and at least three clock cycles as shown below: 

	Control Sequence 
	Active Signals 

	T1 
	PCout, MARin, Read, ALU (C=B+1), Zin 

	T2 
	Zout, PCin, WMFC 

	T3 
	MDRout, IRin 


In T1, the content of the program counter is put on the bus by activating the signal PCout. The ALU is controlled to perform the operation C=B+1 i.e. to increment the B input which is connected to the bus (which contains the PC content). The MAR will capture the content of the bus (which is the content of PC) by activating the MARin signal and the Z register will capture the output of the ALU (which is the incremented value of the PC) by activating the Zin signal. Both the MAR and PC will capture on the falling-edge of the clock. Also, the read signal is activated to request the memory to perform a read operation. Note that T1 will finish in one clock cycle. 

In T2, the content of the Z register is put on the bus by activating the Zout signal. The PC is loaded by the content of the bus (which is the content of the Z register which is PC+1) by activating the signal PCin. The Wait Memory Function Complete (WMFC) signal is activated to inform the control unit to remain in T2 until the memory finishes the requested read operation. This is why T2 make take more than one clock cycle depending on the number of clock cycles needed by the memory to finish the read operation. After the memory finishes its function, it will put the requested value (in this case the instruction) in the MDR. 
In T3, the content of the MDR (which contains the read instruction) is put on the bus by activating the signal MDRout. The IR is loaded with the fetched instruction by activating the signal IRin. This control step will take one clock cycle. Thus, at the end of this control step the fetch cycle will be complete. The fetched instruction is in the IR and the PC has been incremented to point to the next instruction to be fetched. 

SEE ONLINE ANIMATED FIGURE

Synchronous vs. Asynchronous Memory Transfer  [image: image30.png]
Data transfer between the CPU and memory can be either synchronous or asynchronous. In the synchronous transfer, it i sassumed that a memory transfer operation (i.e. read or write) can be completed in a fixed and predetermined number of clock cycles. In this case, whenever the CPU requests a memory operation, it will wait for the required number of cycles and after that it knows that the operation has been completed. The synchronous transfer leads to simpler implementation, but can't accommodate devices of widely varying speeds. 
	In the asynchronus transfer, the CPU after requesting a memory operation wailts until the memory indicates that it completed the requested operation by setting a memory function complete signal to 1. The CPU-Memory interface is shown below. 
In the asynchronous transfer, the CPU puts the address in MAR and issues a read/write signal. The CPU then waits the memory function complete signal to be set to 1. It is assumed that the read/write signals will remain set until the memory function complete signal is set to 1.. 
	[image: image31.png]


Once the memory function complete signal is set to 1, the read/write signals are cleared and the data on the data bus is loaded into MDR and can be used by the CPU Next table shows the fetch control sequence for both asynchronous and synchronous memory transfer. It is assumed the memory read operation will take two clock cycles to complete. Unless specified, we will assume asynchronous memory transfer. 

	Asynchronous Transfer 
	Synchronous Transfer 

	T1 PCout, MARin, Read, ALU (C=B+1), Zin 
	T1 PCout, MARin, Read, ALU (C=B+1), Zin 

	T2 Zout, PCin, WMFC 
	T2 Zout, PCin 

	T3 MDRout, IRin 
	T3 

	
	T4 MDRout, IRin 


Execution Control Sequence for Add Instruction
[image: image32.png]Let us consider the instruction ADD R1, [R3] (R1← R1 + [R3]) and derive its execution control sequence. Execution of this instruction requires the following: 

1. Read the content of memory location pointed by R3 

2. Perform the addition 

3. Load the result into R1 

The control sequence for this instruction using the single-bus CPU is shown in the next table: 

	Control Sequence 
	Active Signals 

	T4 
	R3out, MARin, Read 

	T5 
	R1out, Yin, WMFC 

	T6 
	MDRout, ALU (C=A+B), Zin 

	T7 
	Z1out, R1in, END 


After fetching the instruction, the next clock transfers the control to T4 which is the start of the execution control sequence for this instruction. In T4, the content of R3 is put on the CPU bus by activating the signal R3out and this value is captured in MAR and the Read signal is activated. In this cycle, a memory read operation is performed reading the content of the address stored in R3. In T5, while waiting for the memory to finish the requested read operation, the content of R1 is stored in the Y register. The signal WMFC will ensure that the CPU will remain in T5 and not go to T6 until the memory finishes the requested operation. Once the requested read operation is complete, the MDR will contain the read operand and CPU will go to T6. In T6, the content of MDR (which contains the read operand) is put on the CPU bus and an ALU addition operation is selected. This will add the content of Y (which is the stored content of R1) and the read operand, and store the result in the Z register. In T7, the content of Z register is put on the CPU bus and is captured in R1. Note that the END signal is also activated to indicate the end of the execution control sequence for this instruction. This signal will cause the CPU go to T1 in the next clock cycle for fetching the next instruction. 
The execution control sequence of the ADD R1, [R3] instruction for the single-bus CPU is demonstrated in the next figure: 

SEE ONLINE ANIMATED FIGURE

Execution Control Sequence for JMP Instruction
[image: image33.png]Let us consider the instruction JMP Label (PC← Label) and derive its execution control sequence. This unconditional jump instruction will load the program counter with the address of Label such that in the next fetch cycle, the instruction is fetched from the address given by Label. 
In relative addressing (short and near jumps), what is stored in the instruction is not the absolute address of label but an offset from the PC, i.e., Label - PC. Note that PC will be pointing at the instruction following the JMP instruction. When the CPU executes the JMP instruction, it will add the content of PC to the offset stored in the instruction to get the actual address of Label, i.e. (Label-PC)+PC= Label. The execution control sequence for the JMP Label instruction for the single-bus CPU is given in the following table: 

	Control Sequence 
	Active Signals 

	T4 
	PCout, Yin 

	T5 
	(offset-field-of-IR)out, ALU (C=A+B), Zin 

	T6 
	Zout, PCin, END 


In T4, the content of PC is stored in the Y register. In T5, the offset field of the IR, which contains Label-PC, is put on the CPU bus and added with Y and the result is stored in Z. At this point Z will contain the actual address of Label. In T6, the content of the Z register, which is the address of Label, is stored in PC and the execution control sequence is terminated by the END signal. The execution control sequence of the JMP instruction for the single-bus CPU is demonstrated in the next figure: 

SEE ONLINE ANIMATED FIGURE

Execution Control Sequence for Conditional JMP Instruction
Unlike unconditional Jump instruction, conditional jump instructions perform the jump if a condition is satisfied. Let us consider the branch on Negative instruction JMPN Label (PC← Label if N=1) and derive its execution control sequence. Here we assume the sign flag is N. So, if the sign flag is 1, indicating that the answer is negative, the branch is taken and the PC is loaded with the address of Label. The execution control sequence for the JMPN Label instruction for the single-bus CPU is given in the following table: 

	Control Sequence 
	Active Signals 

	T4 
	PCout, Yin, If (N=0) then END 

	T5 
	(offset-field-of-IR)out, ALU (C=A+B), Zin 

	T6 
	Zout, PCin, END 


In T4, the content of PC is stored in the Y register. If the sign flag N=0, then the END signal will be activated in this cycle making the next control sequence generated T1 instead of T5. This means that the branch is not taken and the execution of the instruction is finished in one clock cycle. Note that the content of the PC stored in the Y register will not be used. In this case, the next instruction to be fetched will be the one following the JMPN instruction. If N = 1, it means that the branch will be taken and the END signal will not be activated. In this case, the next control sequence will be T5. The activation of the END signal is conditional based on the sign flag N. In T5, the offset field of the IR, which contains Label-PC, is put on the CPU bus and added with Y and the result is stored in Z. At this point Z will contain the actual address of Label. In T6, the content of the Z register, which is the address of Label, is stored in PC and the execution control sequence is terminated by the END signal. The execution control sequence of the JMPN instruction for the single-bus CPU is demonstrated in next figure: 

SEE ONLINE ANIMATED FIGURE

Execution Control Sequence for Additional Instruction  [image: image34.png]
In this section, we will consider several examples where we generate the execution control sequence for a number of instructions for the single-bus CPU. 

Example: Generate the execution control sequence for the instruction ADD R1, 2 (R1← R1 + 2) for the single-bus CPU. 

          T4 R1out, Yin

          T5 (constant-field-of-IR)out, ALU (C=A+B), Zin 

          T6 Zout, R1in, END 

Example: Generate the execution control sequence for the instruction XCHG R1, R2 (R1← R2; R2← R1) for the single-bus CPU. 

          T4 R1out, ALU (C=B), Zin

          T5 R2out, R1in

          T6 Zout, R2in, END 

Note that in this example the Z register is used as a temporary register to perform the exchange operation. However, none of the program accessible registers can be used for this purpose (e.g. R1, R2, R3, R4). 

Example: Generate the execution control sequence for the instruction INC [R1] ([R1]← [R1]+1) for the single-bus CPU. 

          T4 R1out, MARin, Read, WMFC

          T5 MDRout, ALU (C=B+1), Zin

          T6 Zout, MDRin, Write, WMFC

          T7 END 

In this example, we first read the operand to be incremented from memory. Then, we increment the operand and store it back. Note that MAR is loaded with the address of the operand in T4 and will remain having that address in T4-T7. The reason why the END signal is not placed in T6 in this example will be illustrated later when describing the CPU-Memory interface circuitry. 

Example: Generate the execution control sequence for the instruction CMP R1, R2 (R1-R2) for the single-bus CPU. 

          T4 R1out, Yin

          T5 R2out, ALU (C=A-B), FLAGSin, END 

The CMP instruction subtracts the second operand from the first, and based on the result updates the flags. So, it is assumed here that there will be a FLAGS register that will store the flags and there will be a unit to compute the flags. The FLAGSin signal will control loading the values into the FLAGS register. 

Example: Generate the execution control sequence for the instruction LOOP Next for the single-bus CPU. 

          T4 R1out, ALU (C=B-1), Zin

          T5 Zout, R1in, If (Z=0) then END

          T6 PCout, Yin

          T7 (offset-field-of-IR)out, ALU (C=A+B), Zin

          T8 Zout, PCin, END 

In this example, it is assumed that the loop counter is stored in register R1. So, R1 is decremented first and in T5 if the Z register contains 0 which is the result of decrementing R1, then the END signal will be activated to indicate the end of the execution of the instruction and that the loop instruction will terminate. Otherwise, a similar action to the JMP instruction is performed. 
Performance Considerations
[image: image35.png]The execution time of a program depends on the following: 

· IC: the instruction count i.e., the number of instructions executed in the program 

· CPI: the number of clocks needed for execution per instruction 

· τ: the clock period 

Thus, the execution time of a program, T, can be expressed as: 
 T = IC x CPI x τ
To reduce the execution time of a program, this can be achieved through one of the following: 

1. Reduce the number of in the instructions in the program. 

2. Reduce the number of clocks required for executing each instruction. 

3. Reduce the clock period. 

Reducing the number of instructions in a program is the task of the programmer or compiler. Reducing the clock period can be achieved mainly by using a fast implementation technology. However, the number of clocks required for executing each instruction can be reduced by using multiple-bus CPU organization. Next, we will see two-bus and three-bus CPU organizations and their impact on reducing the number of clocks required for instruction execution. 
Two-Bus CPU Design  [image: image36.png]
	In this figure, a two-bus CPU design is shown. In this design, information travels out of the registers on the B bus, labeled "Out Bus", and into the registers on the A, or "In Bus". Note that in this design, the C register connected to the output of the ALU is eliminated as the ALU output can occupy the A bus while one of the operands is on the B bus. 
In order to perform a register transfer operation in this design, the value must be gated onto the Out bus, and strobed in from the In bus. There is only one way to interconnect the B bus with the A bus, and that is through the ALU. The ALU function C=B copies the contents of the B bus to the C output of the ALU, and from there to the A bus. 
	[image: image37.png]


The fetch control sequence of the two-bus CPU design is illustrated next. In order to fetch an instruction from memory in the two-bus CPU, this requires three control steps and at least three clock cycles as shown below: 

	Control Sequence 
	Active Signals 

	T1 
	PCout,ALU (C=B), MARin, Read 

	T2 
	PCout, ALU (C=B+1), PCin, WMFC 

	T3 
	MDRout, ALU (C=B), IRin 


Note that the number of clock cycles required to fetch an instruction in the two-bus CPU design is the same as the single-bus CPU design. So, no reduction in the number of cycles needed for the fetch phase. 
SEE ONLINE ANIMATED FIGURE

Execution Control Sequence for Add Instruction
[image: image38.png]Let us consider the instruction ADD R1, [R3] (R1← R1 + [R3]) and derive its execution control sequence for the two-bus CPU design. The control sequence for this instruction using the two-bus CPU is shown in the next table: 

	Control Sequence 
	Active Signals 

	T4 
	R3out, ALU (C=B), MARin, Read 

	T5 
	R1out, ALU (C=B), Yin, WMFC 

	T6 
	MDRout, ALU (C=A+B), R1in, END 


The execution control sequence of the ADD instruction for the two-bus CPU is demonstrated in the next figure: 

SEE ONLINE ANIMATED FIGURE

The number of clock cycles for the ADD instruction is 6 in the two-bus CPU, including the fetch clock cycles, while it is 7 in the single-bus CPU. Thus, there is a speedup gain in the number of clock cycles required to execute the add instruction by one clock cycle. The percentage speedup can be computed as follows: 
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As an example for computing speedup, let us assume the following: 

1. Instruction count is the same in both single-bus and two-bus CPU designs. 

2. All instructions execute in the two-bus CPU in 7 cycles instead of 8 in the single-bus CPU. 

3. Clock period is the same for both designs. 
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However, if we look more carefully at the organization of the two-bus CPU design we will notice that it requires two-bus propagation delays instead of one. This implies that the clock period on the two-bus design will be larger than that in the single-bus CPU design. Assume 10% increase in the clock period. 
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Thus, the performance advantage gained by decreasing CPI may be lost due to increase in clock period. 

Execution Control Sequence for Unconditional and Conditional Jump Instructions

The execution control sequence for the JMP Label instruction for the two-bus CPU is given in the following table: 

	Control Sequence 
	Active Signals 

	T4 
	PCout, ALU (C=B), Yin 

	T5 
	(offset-field-of-IR)out, ALU (C=A+B), PCin, END 


As can be seen, the number of execution control sequences for the JMP instruction is two for the two-bus CPU design while it is three in the single-bus CPU. So, there is a saving of one clock cycle in the execution of the instruction. The execution control sequence of the JMP Label instruction for the single-bus CPU is demonstrated in the next figure: 
SEE ONLINE ANIMATED FIGURE

The execution control sequence for the JMPN instruction for the two-bus CPU is given in the following table: 

	Control Sequence 
	Active Signals 

	T4 
	PCout, ALU (C=B), Yin, If (N=0) then END 

	T5 
	(offset-field-of-IR)out, ALU (C=A+B), PCin, END 


Similarly, there is a saving of one clock cycle in the execution control sequence for the JMPN instruction in the two-bus CPU compared to the single-bus CPU. 

Three-Bus CPU Design
	[image: image42.png]Having three buses in a CPU design means that all three buses can be used in ALU operations, two for the source operands and one for the result. The next figure shows a three-bus CPU design with three buses A, B, and C corresponding to the ALU inputs and outputs. 
So, in this design no TMP registers are needed to be connected to the ALU to temporarily hold an operand or the result. In this design, an ALU operation can be performed in one cycle, unlike the single-bus and two-bus CPU designs. This is both operands can be put on the A bus and B bus simultaneously and the result put on the C bus. 
	[image: image43.png]


Note that in this design, each of the registers R1-R4 is connected to bus A and bus B. So, each of these registers can place a value on either of the buses. Thus, each register has two OUT control signals one for the A bus and the other for the B bus. For example, R1out,A controls the tri-state buffer connecting R1 to the A bus, while R1out,B controls the tri-state buffer connecting R1 to the B bus. 
Note that IR is connected only to the A bus, while PC and MDR are connected only to the B bus. Note also that the input of all registers is connected to the C bus. However, the input of the MAR register is also connected to the B bus. So, there are two control signals for loading a value to MAR namely, MARin,C and MARin,B. The input of MAR will be connected to a multiplexer to select the input either from the B or C bus. p> The fetch control sequence of the three-bus CPU design is illustrated next. In order to fetch an instruction from memory in the three-bus CPU, this requires two control steps and at least two clock cycles as shown below: 

	Control Sequence 
	Active Signals 

	T1 
	PCout, MARin,B, Read, ALU (C=B+1), PCin, WMFC 

	T2 
	MDRout, ALU (C=B), IRin 


Note that the number of clock cycles required to fetch an instruction in the three-bus CPU design is less than both two-bus and single-bus designs by one clock cycle. The fetch control sequence for the three-bus CPU design is illustrated next. 

SEE ONLINE ANIMATED FIGURE

Execution Control Sequence for Add Instruction
[image: image44.png]Let us consider the instruction ADD R1, [R3] (R1← R1 + [R3]) and derive its execution control sequence for the three-bus CPU design. The control sequence for this instruction using the three-bus CPU is shown next:
	Control Sequence 
	Active Signals 

	T3 
	R3out,B, MARin,B, Read, WMFC 

	T4 
	MDRout, R1out,A,ALU (C=A+B), R1in, END 


The execution control sequence of the ADD instruction for the three-bus CPU is demonstrated in the next figure: 

SEE ONLINE ANIMATED FIGURE

The number of clock cycles for the ADD instruction is 4 in the three-bus CPU, including the fetch clock cycles, while it is 7 in the single-bus CPU, and 6 in the two-bus CPU. Thus, there is a significant speedup gain in the number of clock cycles required to execute the ADD instruction. Note that the clock period in the three-bus CPU is similar to that in the two-bus CPU as the signals propagate through the A and B buses in parallel and it requires two-bus propagation delays like the two-bus CPU. 
In the next example, we will compare the execution control sequence for the instruction ADD R1, R2 for the single-bus, two-bus, and three-bus CPU designs. 

Example: Generate the execution control sequence for the instruction ADD R1, R2 (R1← R1 + R2) for the single-bus, two-bus, and three-bus CPU designs.

 Single-bus CPU:

          T4 R1out, Yin

          T5 R2out, ALU (C=A+B), Zin

          T6 Zout, R1in, END

 Two-bus CPU:

          T4 R1out, ALU (C=B), Yin

          T5 R2out, ALU (C=A+B), R1in, END

 Three-bus CPU:

          T3 R1out,A, R2out,B, ALU (C=A+B), R1in, END

As can be seen, the number of clock cycles to execute an instruction in the three-bus CPU design is less than those needed in the two-bus CPU design, which are less than in the single-bus CPU design. 
Execution Control Sequence for Unconditional and Conditional Jump Instructions

The execution control sequence for the JMP instruction for the three-bus CPU is given in the following table: 

	Control Sequence 
	Active Signals 

	T3 
	PCout, (offset-field-of-IR)out, ALU (C=A+B), PCin, END 


As can be seen, the number of execution control sequences for the JMP instruction is one for the three-bus CPU design while it is two for the two-bus CPU design, and three for the single-bus CPU. So, there is a saving of one clock cycle over the two-bus CPU, and two clock cycles over the single-bus CPU in the execution of the instruction. The execution control sequence of the JMP Label instruction for the three-bus CPU is demonstrated in the next figure: 

SEE ONLINE ANIMATED FIGURE

The execution control sequence for the JMPN instruction for the three-bus CPU is given in the following table: 

	Control Sequence 
	Active Signals 

	T3 
	PCout, (offset-field-of-IR)out, ALU (C=A+B), If (N=1) then PCin, END 


Note that in the execution control sequence of this instruction, the signal PCin becomes 1 conditionally based on the sign flag (N). So, PCin becomes 1 if N=1 and we are in T3 of the JMPN instruction. If N=0, PCin will be 0 and the PC will not be loaded by the target address (Label) and the next instruction to be fetched will be the one sequentially after the JMPN instruction. Similarly, there is a saving of one clock cycle in the execution control sequence for the JMPN instruction in the three-bus CPU compared to the two-bus CPU, and two clock cycles compared to the single-bus CPU. 
Control Unit Design  [image: image45.png]
Introduction

The control unit generates the control signals required to perform an operation in the proper sequence. All the signals that control the operation of the data path are generated by the control unit. Signals generated by the control unit are uniquely determined by: 

· Contents of control step counter: each state, or count, corresponds to one of the time steps required in the sequence. 

· Contents of the instruction register: specifies the type of the instruction to be executed as specified by the opcode. 

· Contents of the condition code and other status flags: signals from data path like Sign Flag, Zero Flag, ... etc., and other signals like MFC, interrupts, ... etc. 

Control unit can be designed using any of the following approaches: 

· Hardwired Controller: uses combinational logic to produce control signal outputs. 
· Microprogrammed Controller: control signals are generated by a program similar to machine language programs. 
We will consider both approaches in the design of control unit and compare the two approaches in terms of area, speed, and flexibility. 
Hardwired Control Unit Design[image: image46.png]
The general hardwired control unit organization is shown below: 

[image: image47.png]
It consists of a control step counter. The counter is used to keep track of the control step we are currently in. Let n be the maximum number of control steps required for implementing any instruction in the CPU. Then, the size of the control step counter is k=log2 n bits. The step counter then feeds an n x 2n Decoder to generate n control step signals T1, T2, ..., Tn. For example, if the maximum number of control steps required for implementing any instruction in the CPU n=7 (i.e. T1..T7), then K= 3 bits and the control step counter will be a 3-bit counter. The control step decoder will be a 3x8 decoder. Note that only the first 7 outputs of the decoder (corresponding to T1..T7) will be used and the last output will be ignored. 
An instruction decoder is also used to decode the opcode of the instruction register to generate a signal for each instruction. For example, if the opcode is 3 bits, i.e. there are 8 instructions in the CPU, then a 3x8 instruction decoder is used to generate 8 signals, one for each instruction. 
The encoder is basically the combinational logic that implements the equation for each control signal based on the control step signals, the instruction signals, and the flags. 
Note here that the END signal will be connected to a synchronous reset input of the control step counter. This will ensure that when END=1 in a control step on the next rising-edge of the clock, the counter resets to 0 and hence T1 becomes 1, i.e. the control unit goes to T1 to start the fetch process fetching an instruction from memory after finishing the execution of an instruction. 
Another important signal is the Run signal. This signal is ANDED with the clock to control the step counter clock. When Run=0, the clock feeding the step counter will be 0 and the counter will not increment. However, when Run=1 the counter increments on the rising-edge of the clock. The Run signal is used to control when we should wait until the memory finishes its operation and not go to the next control step. The generation of the Run signal will be illustrated when the CPU-Memory interface circuitry is discussed later. 
Generation of Control Signals
As we have seen, control signals can be generated based on the control step, the instruction being executed and Flags. For each signal, we need to find all the conditions that make the signal 1. We do that by considering all the control steps that require the signal to be 1 and derive the equation for it. 
	For example, let us derive the equation for the Zin signal considering only the instructions ADD R1, [R3], JMP, and JMPN for the single-bus CPU. 
Zin = T1 + T6 . ADD + T5 . JMP + T5 . JMPN
As can be seen, Zin is required to become 1 in T1 in the fetch phase, in T6 of the ADD instruction, in T5 of the JMP instruction, and T5 of the JMPN instruction. The logic diagram corresponding to the equation is shown
	[image: image48.png]


Similarly, the equation for the END signal can be derived as: 
END = T7 . ADD + T6 . JMP + T4 . N’ . JMPN + T6 . N . JMPN
    = T7 . ADD + T6 . JMP + T4 . N’ . JMPN + T6 . JMPN
The logic diagram for the END signal is shown below: 
[image: image49.png]
Similarly, the equation is derived for each signal in the design and is implemented using logic gates. This is why the approach is called hardwired since the control signals are generated by logic gates. 
Deriving Rout & Rin Signals for Registers
So far, when we generated the execution control sequence for an instruction we were assuming the knowledge of the particular operands and derived the execution control sequence accordingly. However, a designer when writing the execution control sequence for an instruction does not know what are the operands until the instruction is fetched. So, the execution control sequence for an instruction has to be written in a general way regardless of the actual operands. Let us clarify this by an example. 
Let us consider the instruction ADD R0, R1 (R0← R0 + R1) on the single-bus CPU. The execution control sequence for this instruction is given below: 
T4 R1out, Yin
T5 R0out, ALU (C=A+B), Zin
T6 Zout, R0in, END
The designer needs to write this execution control sequence in general such that the source and destination operands can be any register. Then, the particular Rout and Rin signals will be derived by the control unit after the instruction is fetched and the operands are known. The general execution control sequence for this instruction can be written as: 
T4 Rsrc,out, Yin
T5 Rdst,out, ALU (C=A+B), Zin
T6 Zout, Rdst,in, END
So, here the control unit will generate three general signals Rsrc,out, Rdst,out, and Rdst,in. The derivation of the particular register signals after the instruction is fetched is illustrated below. 
SEE ONLINE ANIMATED FIGURE

In this circuit, it is assumed that the CPU has 4 registers. So, there are 2 bits for the source operand and 2 bits for the destination operand. A 2x4 decoder is used to decode the source operand and generate a signal for each register (R0, R1, R2, and R3). So, if the source operand is R0, the R0 signal will be 1 and all the other signals will be 0. If it is R1, then the R1 signal will be 1 and so on. Similarly, a 2x4 decoder is used to decode the destination operand and generate a signal for each register (R0, R1, R2, and R3). So, if the destination operand is R0, the R0 signal will be 1 and all the other signals will be 0. If it is R1, then the R1 signal will be 1 and so on. 
Let us assume that the fetched instruction is ADD R0, R1. In this case, the output of the source decoder will make R1 1, call it R1,src, and the output of the destination decoder will make R0 1, call it R0,dest. Then, in T4 when Rsrc,out is 1, R1out becomes 1 since R1src is 1. In T5, when Rdst,out is 1, R0out will be 1 since R0,dst is 1. In T6, when Rdst,in is 1, R0in will be 1 since R0,dst is 1. Thus, the particular register signals are derived correctly. 
CPU-Memory Interface Circuit
We have seen before that the CPU-Memory interface includes the data bus, address bus and some control signals including Read, Write, and Memory-Function-Complete (MFC). The CPU is interfaced to the data bus and address bus through the MDR and MAR registers, respectively. 
In addition to this interface, there is a need for a CPU-Memory interface circuitry to manage their interaction. When the CPU wants to perform a read or write operation, it asserts either the Read or Write signal and puts the address to be read from or written to in the MAR register. Then, the CPU waits for the memory to finish the requested transfer operation. It is required that the CPU keeps the Read or Write signal set until the memory finishes the requested operation. The memory activates the MFC signal when the requested operation is completed. One the MFC is set to 1, and then the Read or Write signal can be set to 0. This interaction process between the CPU and memory is called handshaking. 
A versatile CPU can communicate with main memory modules of different speeds 

· A fast memory can be accessed within a single clock cycle 

· Slower memory may require several clock cycles 

The CPU-memory interface circuit should handle both fast and slow memories. Recall that internal signals generated by the control unit are active for one clock cycle during a given control step. Slow memory has to see those signals for more than one clock cycle. So, the CPU-memory interface circuit has to keep the Read or Write signals set to 1 until the MFC signal becomes 1. This is because the CPU will set them to 1 for one clock cycle and then go to the next control step when they may become 0. 
It is assumed here that the memory is falling-edge triggered i.e., MFC signal will change value on the falling-edge of the clock. However, the control unit is rising-edge triggered and changes values of control signals on the rising edge of the clock. 
The CPU-Memory interface circuit is shown below. 

SEE ONLINE ANIMATED FIGURE

Note that the Read signal is connect to a 2-input AND gate, a JK-flip-flop, and a 2-input OR gate. This circuitry is designed to keep the Read signal 1 when set until the MFC is set to 1. Once the MFC signal becomes 1 on the falling-edge of the clock, the Read signal goes to 0 on the next rising-edge of the clock. This circuitry is connected to a D-flip-flop that is triggered on the falling-edge of the clock. The purpose of this D-FF is to make the Read signal becomes negative-edge triggered. Note that MAR loads the value on the negative-edge of the clock. Thus, this way, the Read signal will be seen by the memory set to 1 when the address contains the address to be read from memory. 
Initially it is assumed that the MFC signal is 0. Assume that the Read signal is set to 1. This will make the 2-input AND gate become 1 and also 2-input OR gate (R) 1. Also, note that the J input of the JK-FF becomes 1 while the K input is 0 since it is connected to MFC. On the next rising-edge of the clock, assume that the Read signal will become 0 as the control unit goes to the next control step. At this point, the output of the 2-input AND gate will go to 0. However, the output of the JK-FF will become 1 sine the JK inputs where 1 and 0 at the rising-edge of the clock which sets the JK-FF to 1. Thus, the output of the 2-input OR gate (R) remains 1. Thus, the R signal and the MR signal keep their value which is what is required. 
Next, assume that on the next falling-edge of the clock the MFC signal becomes 1. This makes the J input of the JK-FF 0 and the K input 1. Thus, on the next rising-edge of the clock, the JK-FF will reset to 0 and the R signal becomes 0. Thus, the handshaking process is achieved. A similar circuit is implemented for the Write signal to achieve the same functionality. An additional functionality of the CPU-Memory interface signal is to make the control unit remain in the same control step when a Read or Write operation were requested and the memory did not finish its function (i.e. MFC did not become 1) and the WMFC signal is 1. This is achieved by adding a 2-input OR gate that Ores the R and W signal to indicate that a Read or Write signal is requested. This is connected to a 3-input Nand gate generating the RUN signal. The RUN signal is ANDED with the clock and controls the clock of the step counter. So, if RUN is 0 the step counter is not clocked and will remain in the same control step. Note that RUN becomes 0 if there is a Read or Write operation and the memory did not finish its operation (MFC=0) and the WMFC=1. When MFC becomes 1 on the falling-edge of the clock, RUN becomes 1, so on the next rising-edge of the clock the control step counter increments and goes to the next control step. Next, let us consider the following sequence of control steps: 
T1 Read, WMFC
T2 Write
T3 WMFC
T4 ....
The timing diagram corresponding to this control sequence is shown below: 

[image: image50.png]
A Read request is initiated in T1 and due to the WMFC signal in T1 the step counter will remain in T1 in the next clock cycle since MFC is 0. Since MFC becomes 1 in the second clock cycle, the Run signal becomes 1 so the step counter goes to T2 in the third clock cycle. Note that because MFC becomes 0 in the falling edge of the third clock (T2) a Read or Write request in T2 will not be seen in T2 since T1 has a WMFC signal. As can be seen from the timing diagram, while the Write request is initiated in T2, the MW signal becomes 1 in T3. So, in general a Read or Write request will not be seen in a cycle following a cycle that has a WMFC signal. The request is delayed by one clock cycle. 

To make sure that whenever we have a Read or Write in a cycle that MR or MW will be set to 1 in the same cycle, do not have a Read or Write signal in a cycle directly following a cycle that has WMFC signal. 
Note that WMFC signal can be put in the same cycle with a Read or Write signal. Also, note that WMFC signal can not be in the same cycle with END signal. This is because the next cycle, T1, has a Read signal. 
Microprogrammed Control Unit Design[image: image51.png]
Objectives:

· To describe the basic operation of the microprogrammed control unit design 

· To illustrate a structured design approach for a generalized microprogrammed control unit design 

· To discuss the various microinstruction formats including: Horizontal microcode, Vertical microcode, and Field-encode format. 

· To describe the requirement of multiway branching and illustrate its solution using Bit Oring. 

· To compare hardwired and microprogrammed control unit design approaches 

Microprogrammed Control Unit Operation [image: image52.png]
In the microprogrammed control unit design, the control signals are generated by a program similar to machine language programs. The basic idea is that the control unit stores the values of the signals in memory instead of computing them. This can be accomplished by allocating for every signal a bit in memory, and if the signal is to be 1, the bit will store a 1; otherwise it will store a 0. 
For example, suppose that the control unit needs to generate 20 control signals. Then, 20 bits are allocated for each memory address. Each memory address will store the signal values for a particular clock cycle. For example, memory address 0 will store the signal values for clock cycle T1, memory address 1 will store the signal value for clock cycle T2, and so on. 
The word whose bits represent the various control signals required is called a Control Word (CD). An individual control word is also called a Microinstruction. A Microroutine is the sequence of control words corresponding to the control sequence of a machine instruction. The Control Store stores the microroutines for all instructions in the instruction set of a computer. The Control Store is a ROM since once it is programmed, it will be just read to get the signal values. 
Let us consider the instruction ADD R1, [R3] (R1← R1 + [R3]) for the single-bus CPU. The control sequence for fetching this instruction and executing it using the single-bus CPU is shown in the next table: 

	Control Sequence 
	Active Signals 

	T1 
	PCout, MARin, Read, ALU (C=B+1), Zin 

	T2 
	Zout, PCin, WMFC 

	T3 
	MDRout, IRin 

	T4 
	R3out, MARin, Read 

	T5 
	R1out, Yin, WMFC 

	T6 
	MDRout, ALU (C=A+B), Zin 

	T7 
	Z1out, R1in, END 


We can store the required control signals for this control sequence in memory as follows: 

	Control Sequence 
	Memory Address 
	PCout 
	MARin 
	Read 
	Zin 
	Zout 
	PCin 
	WMFC 
	MDRout 
	IRin 
	R3out 
	R1out 
	Yin 
	R1in 
	END 
	AS1 
	AS0 

	T1 
	0000 
	1 
	1 
	1 
	1 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	1 

	T2 
	0001 
	0 
	0 
	0 
	0 
	1 
	1 
	1 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	x 
	x 

	T3 
	0002 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	1 
	1 
	0 
	0 
	0 
	0 
	0 
	x 
	x 

	T4 
	0003 
	0 
	1 
	1 
	0 
	0 
	0 
	0 
	0 
	0 
	1 
	0 
	0 
	0 
	0 
	x 
	x 

	T5 
	0004 
	0 
	0 
	0 
	0 
	0 
	0 
	1 
	0 
	0 
	0 
	1 
	1 
	0 
	0 
	x 
	x 

	T6 
	0005 
	0 
	0 
	0 
	1 
	0 
	0 
	0 
	1 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 

	T7 
	0006 
	0 
	0 
	0 
	0 
	1 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	1 
	1 
	x 
	x 


Note that for this example we assumed that the ALU can perform the following four operations: C=A+B, C=B+1, C=A-B, C=B-1. The following table shows the ALU functions and the corresponding selection lines: 

	ALU Function 
	AS1 
	AS0 

	C=A+B 
	0 
	0 

	C=B+1 
	0 
	1 

	C=A-B 
	1 
	0 

	C=B-1 
	1 
	1 


To read the control words sequentially from the control store, a Microprogram Counter (uPC) is used. The uPC is incremented every clock cycle causing successive microinstructions to be read from the control store. Thus, the control signals are delivered to the various parts of the CPU in the correct sequence. 

When the instruction register (IR) is loaded with a new instruction, the address of the microroutine for the instruction to be executed is loaded into the uPC. Thus, we need an address generator that generates the address of the microroutine for each instruction based on its opcode. The microprogrammed control unit block diagram is shown below: 

[image: image53.png]
Microprogrammed Control Unit with Conditional Branching

Let us next consider the branch on Negative instruction JMPN Label (PC← Label if N=1). The microroutine for this instruction is shown in the following table: 

	Control Sequence 
	Memory Address 
	Active Signals 

	T1 
	0 
	PCout, MARin, Read, ALU (C=B+1), Zin 

	T2 
	1 
	Zout, PCin, WMFC 

	T3 
	2 
	MDRout, IRin, branch to starting address of appropriate routine 

	.............................. 
	............................. 
	................................................................................................................ 

	T4 
	25 
	PCout, Yin, If (N=0) then branch to microinstruction 0 

	T5 
	26 
	(offset-field-of-IR)out, ALU (C=A+B), Zin 

	T6 
	27 
	Zout, PCin, END 


In this example, the starting address of the microroutine for the branch on Negative instruction is 25. As can be seen from this example, in addition to generating the control signals, the control unit needs to check conditions codes or status flags to choose between alternative courses of action. Thus, additional fields are added to the microinstruction to allow the capability of conditional branching. The branch address is also added to the microinstruction. 

The control unit organization to allow conditional branching in the microprogram is illustrated below: 

[image: image54.png]
In the microprogrammed control unit with conditional branching, the uPC is incremented every time a microinstruction is fetched from the microprogram memory, except in the following situations: 

· When a new instruction is loaded into the IR, the uPC is loaded with the starting address of the microroutine for that instruction 

· When an END microinstruction is encountered, the uPC is loaded with the address of the first CW in the microroutine for the instruction fetch cycle. 

· When a Branch microinstruction is encountered and the branch condition is satisfied, the uPC is loaded with the branch address stored in the microinstruction 

General Microprogrammed Control Unit Organization[image: image55.png]
A microcded control unit with branching can be designed with the following structured design: 

[image: image56.png]
This structured microprogrammed control unit design has the following main components: 

· A uPC to hold the address of the next contol word or microinstruction to be fetched from the control store. 

· An incrementer to increment the uPC. 

· A Control Store to store the microroutines for all the instructions. 

· A microinstruction register (uIR), to hold the fetched microinstruction. 

· A programmable logic array (PLA), serving as a lookup table mapping the opcode filed of IR to the starting address of the microroutine of the executed instruction. 

· A 4x1 Multiplexer. The uPC can be loaded from four different sources by the 4x1 Multiplexer: 

· The incremented uPC. 

· The output of the PLA. 

· An external source. This allows the uPC to be initialized to a starting value to begin instruction fetch, interrupt service, or reset. 

· Branch address field from the current microinstruction. This allows unconditional and conditional microbranches. 

· A Sequencer. This is a combinational circuit that controls the 4x1 multiplexer select lines based on the microbranch control signals driven from the microinstruction and the condition codes and flags. 

Control Word Format 

The control store contains three kinds of fields in each control word: 

· Control signal field, C bits: used to store the control signals such as PCin, MARout, etc., with 1 bit for each control signal. 
· Branch address field, n bits: used to store the microbranch address, where n is the number of bits in the uPC. 
· Branch control field, k bits: contains various signals to control branching in microcoded control unit. 
An example of a control store with m-bits wide control word is shown below: 

[image: image57.png]
Branching Controls 

A detailed description of the branching control signals in the structured microprogrammed control unit design is illustrated below: 

[image: image58.png]
The first 2 bits in the control word specify which multiplexer input is to be selected 

· 00: Increment uPC 

· 01: PLA 

· 10: External address 

· 11: Branch address 

The next 5 bits select the condition under which the multiplexer input is selected 

· BrUn: Branch unconditionally 

· BrNotZ: Branch if the Zero Flag is equal to 0 

· BrZ: Branch if the Zero Flag is equal to 1 

· BrNotN: Branch if the Sign Flag is equal to 0 

· BrN: Branch if the Sign Flag is equal to 1 

Based on these 7 bits, the sequencer can be designed to control the selection of the 4x1 multiplexer. For example, branches can be formed by choosing one alternative form from each of the following lists: 
         {NotN               }             
         {N                  }    {PLA             }
 Br      {NotZ               }    {External Address}
         {Z                  }    {Branch Address  }
         {Unconditionally    }
Microcode Branching Example 

The following table illustrates a microcode branching example: 

	Address 
	Mux Select (MS1 MS0) 
	BrUn 
	BrNotZ 
	BrZ 
	BrNotN 
	BrN 
	Control Signals 
	Branch Address 
	Branching Action 

	200 
	00 
	0 
	0 
	0 
	0 
	0 
	. . . 
	xxx 
	None -- 201 next 

	201 
	01 
	1 
	0 
	0 
	0 
	0 
	. . . 
	xxx 
	To output of PLA 

	202 
	10 
	0 
	0 
	1 
	0 
	0 
	. . . 
	xxx 
	To external address if Z=1 else to address 203 

	203 
	11 
	0 
	0 
	0 
	0 
	1 
	. . . 
	300 
	To 300 if N=1 else to address 204 

	204 
	11 
	0 
	0 
	0 
	1 
	0 
	0. . .0 
	206 
	To 206 if N=0 else to address 205 

	205 
	11 
	1 
	0 
	0 
	0 
	0 
	. . . 
	204 
	Br to 204 


Note that the address fileds are specified in decimal. All others are in binary. Also note that xxx represents a Don't care, which indicates that the branch address is not used. The following is a description of the brabching action taken by each control word in the above example: 

· Control word at address 200: Since the Mux Select bits are 00, the uPC incrementer is selected. 
· Control word at address 201: Mux setting of 01 selects PLA output address and unconditionally since BrUn=1. 
· Control word at address 202: Has Mux setting of 10 and BrZ bit set. So the branch will be taken to address on external lines provided the Z signal is set. 
· Control word at address 203: Branch to microaddress 300 if the N bit is set. 
· Control words at address 204 and 205: Implement a while loop. Note that the control signals are zero at address 204, since this CW just implements a test. 
Microinstruction Formats [image: image59.png]
There are several formats for encoding the control signals in a control word. In this section, we will discuss the following three control word formats: 

· Horizontal Format, called Horizontal microcode 

· Vertical Format, called Vertical microcode 

· Field-encoded Format 

Each of these formats provides a tradeoff in terms of the control store size and the speed of operation of the control unit. 

Horizontal Microcode 

In the horizontal format, each control signal is represented by a single bit in the control word. Thus, if the design has 500 control signals, this will require 500 bits in each control word to store the control bits. In this format, the control store looks horizontal in shape since the control words are wide. 

The disadvantage of the horizontal format is that the size of the control store is large. However, it has the advantage of speed of operation as the control signals will be ready as soon as the control word is fetched from the control store. 

Vertical Microcode 

In the vertical microcode organization, the following steps are performed: 

· Identify the number of distinct control words in the design 

· Encode each distinct control word by assigning a unique n-bit code to it, where n is log2 (number of distinct control words) 

· Instead of storing the actual control signals that need to be generated, only the n-bit code is stored for each CW 

· Use a nx2n decoder to generate a decoded signal for each distinct control word 

· To generate the control signals, use an OR gate based on the decoded control word signals, for each control signal in the design. 

The following figure illustrates the horizontal and vertical control store organization. 

[image: image60.png]
To illustrate the vertical microcode organization, suppose that we have only the instruction ADD R1, [R3] (R1← R1 + [R3]). The control words for this instruction and the code assigned to each control word is shown below: 

	Control Sequence 
	Active Signals 
	CW Code 

	T1 
	PCout, MARin, Read, ALU (C=B+1), Zin 
	000 

	T2 
	Zout, PCin, WMFC 
	001 

	T3 
	MDRout, IRin 
	010 

	T4 
	R3out, MARin, Read 
	011 

	T5 
	R1out, Yin, WMFC 
	100 

	T6 
	MDRout, ALU (C=A+B), Zin 
	101 

	T7 
	Z1out, R1in, END 
	110 


Since we have 7 distinct CWs, we need to encode each control word using a 3-bit code. We also need a 3x8 decoder to decode the CW codes and generate the decoded CW signals. The following figure illustrates the generation of some of the control signals in this example. 

SEE ONLINE ANIMATED FIGURE

The vertical microcode organization reduces the width of the CWs making the control store having the vertical shape. The advantage of the vertical microcode organization is that it reduces the control store size significantly. For example, suppose that a design has 500 control signals and 100 CWs. The size of the control store will be 100x(7+500+7) = 51400 bits. Note that the first 7 bits are used for Mux control and uBranch control signals. The last 7 bits are for storing the uBranch address. However, in the vertical microcode organization each CW will be encoded with 7 bits since we have 100 CWs. So, the size of the control store will be 100x(7+7+7)= 2100 bits. 

The vertical microcode organization provides slower implementation compared to the horizontal microcode organization. To generate the control signals, it requires reading the CW code from the control store, decoding the CW, and then using OR gates. This requires more time and slows down the control unit operation. 

Filed-Encoded Format 

It can be observed that there are signals in the design that cannot be 1 at the same time. These signals ate called Mutually Exclusive signals. In order to save the size of the control store, all mutually exclusive signals can be grouped together and encoded so that a code is stored for this group instead of the actual signals. Then, a decoder can be used to decode the group code and generate the signals. 

For example, let us consider a single-bus CPU design. Let us assume that the data path of this CPU has four general purpose registers R1, R2, R3, and R4. It has also a temporary register Temp. In addition, it has the registers PC, IR, MAR, MDR, Y, and Z registers. To control these registers, for capturing values in these registers, 11 signals are required. For putting the values of these registers on the CPU bus, 9 signals are required. Note that the Y register and MAR register do not put their values on the CPU bus. Thus, a total of 20 signals are required to control these registers. 

Assume that the ALU has 3 select lines and it can perform 8 different functions. This requires 3 control signals to control the ALU. In addition, we need 5 more control signals for Carryin, Read, Write, WMFC, and END. Thus, the total number of control signals that need to be generated by the control unit are 20+3+5=28 signals. 

The following table shows the field encoded format of the control word after grouping mutually exclusive signals: 

	F1 (4 bits) 
	F2 (3 bits) 
	F3 (3 bits) 
	AS3 AS2 AS1 
	Read 
	Write 
	Carry-in 
	WMFC 
	End 

	0000: No action 
	000: No action 
	000: No action 
	000: ADD 
	
	
	
	
	

	0001: PCout 
	001: PCin 
	001: MARin 
	001: INC 
	
	
	
	
	

	0010: MDRout 
	010: IRin 
	010: MDRin 
	010: SUB 
	
	
	
	
	

	0011: Zout 
	011: Zin 
	011: TEMPin 
	011: DEC 
	
	
	
	
	

	0100: R0out 
	100: R0in 
	100: Yin 
	100: AND 
	
	
	
	
	

	0101: R1out 
	101: R1in 
	
	101: OR 
	
	
	
	
	

	0110: R2out 
	110: R2in 
	
	110: XOR 
	
	
	
	
	

	0111: R3out 
	111: R3in 
	
	111: NOT 
	
	
	
	
	

	1000: IRout 
	
	
	
	
	
	
	
	

	1001: TEMPout 
	
	
	
	
	
	
	
	


The filed-encoded format, in this example, requires 4+3+3+3+1+1+1+1+1=18 signals to encode the control signals instead of 28 signals in the horizontal format. However, 3 decoders are required to decode the encoded groups: a 4x16 decoder to decode group F1 signals, a 3x8 decoder to decode group F2 signals, and a 3x8 decoder to decode group F3 signals. 

This approach comes in the middle in between the horizontal and vertical formats. Its control store is less than the horizontal microcode and larger than the vertical microcode. However, its implementation is slower than the horizontal microcode and faster than the vertical microcode. 
 Microprogram Example for Add Instruction with Addressing Modes  [image: image61.png]
In this section, we will discuss the microroutine for an ADD instruction with several addressing modes. The format of the ADD instruction is shown below: 
ADD Rdst, Rsrc
This instruction adds the source operand to the contents of the register Rdst and places the sum in Rdst. Assume that the source operand can be specified in one of the following addressing modes: 

· Register: Rsrc contains the source operand. 
· Autoincrement: Rsc contains the address of the source operand in memory. Rsrc will be incremented after reading the operand from memory. 
· Autodecrement: Rsc contains the address of the source operand in memory. Rsrc is decremented before reading the operand from memory. 
· Indexed: Rsc plus a displacement form the address of the source operand in memory. It is assumed that the displacement is stored in the address following the instruction address. 
In addition, each of these addressing modes can be either direct or indirect. In the indirect form, an additional memory read operation is performed to obtain the required operand. For example, in the register indirect addressing mode, the register contains the address of the operand. Similarly, in the Autoincrement indirect addressing mode, Rsrc contains the address of the address of the operand. So, the content of the memory address pointed by Rsrc, is the address of the operand and not the operand. So, in this case two memory reads are needed. Thus, in total the ADD instruction has 8 addressing modes for the source operand. 

The instruction is assumed to be 16-bits and its format is shown below: 

	Bits 15-11 
	Bits 10-8 
	Bits 7-4 
	Bits 3-0 

	Opcode 
	Addressing mode of source 
	Rsrc 
	Rdst 


Bit 10 and 9 indicate the four addressing modes: 

· 00: register 

· 01: autoincrement 

· 10: autodecrement 

· 11: indexed 

Bit 8 indicates whether the addressing mode is direct or indirect; 0=direct, 1=indirect. It is assumed that there are 16 registers in this design so 4 bits are assigned for Rsrc and 4 bits for Rdst. 

The microprogram for the ADD instruction with the 8 addressing modes is shown in the following diagram. It is assumed that both the instruction and data operands are 16 bits. 
SEE ONLINE FIGURE

Multiway Branching

As can be seen from the microprogram for the ADD instruction with addressing modes, we need to branch to different addresses depending on the addressing mode. For example, for the addressing modes autoincrement, autodecrement and indexed, depending on whether the instruction is direct or indirect we need to branch to either address 170 or 171. This is called multiway branching. 

Multiway branching for this case can be implemented in one of the following techniques: 

· Use two uBranch instructions, one is conditional based on bit 8 of the instruction register. 

· Include two uBranch fields within a branch microinstruction, where each field is used to generate a particular uBranch address depending on bit 8. 

· Bit Oring: Specify one address and use an OR gate to change the address depending on bit 8. 

The most efficient way for solving multiway branching is Bit Oring. The first technique increases the size of the control store as two microinstructions will be used. The second technique also increases the size of the control store as two uBranch addresses are included in each microinstruction. 

With a large number of instructions with different addressing modes, generating large number of branch addresses increases circuit complexity. A simple and inexpensive way of generating the required branch addresses is to use a Programmable Logic Array (PLA). The opcode of the machine instruction is translated into the starting address of the corresponding microroutine. 

Since the source operand is fetched depending on the addressing mode, this results in the need for multiway branching depending on the addressing mode. In this case, Bit Oring can also be used as an effective solution for multiway branching. 

Bit Oring 

In this example, it is assumed that the addresses are in octal format, i.e. 3 bits per digit. The difference between the address for the direct addressing mode, 171, and the address for the indirect addressing mode, 170, is just bit 0. Thus, the microroutine will specify the address 170 and let the Bit Oring circuitry either keep Bit 0 as is or change it to 1. This is done based on Bit 8 that controls whether the addressing mode is direct or indirect. 

The required addresses for fetching the source operand according to the addressing modes are shown below: 

	Addressing Mode 
	Address 

	Register Direct 
	101 

	Register Indirect 
	111 

	Autoincrement 
	121 

	Autodecrement 
	141 

	Indexed 
	161 


As can be observed, these addresses differ only in the middle digit. So, the address 101 can be stored in the microroutine and Bits 9 and 10 are used to change the middle digit in the address according to the addressing mode using Bit Oring. 

The Bit Oring circuitry implementing multiway branching for this example is shown below: 

[image: image62.png]
Note that the octal address 101 is obtained from the PLA when the ADD instruction is decoded and loaded into the uPC after Oring with bits 10, 9, and 8. Bit 8 is Ored with the least significant bit going to the uPC to choose between addresses 170 and 171. 

The control signal ORindrsrc is used to enable or disable Bit Oring for the case of direct and indirect addressing mode. When this signal is 0, the output of the AND gate is 0 and the address generated will be unadjusted. Similarly, the control signal ORmode is used to enable or disable Bit Oring for modifying the middle address digit. When this signal is 0, Bit Oring is disabled. 

Note that the Bit Oring circuitry is placed after the 4x1 multiplexer in the design. This way, it can alter the address generated by the PLA or the uBranch address if needed. The microroutine for the Autoincrement addressing mode for the ADD instruction using Bit Oring is shown below: 

	Address (Octal) 
	Microinstruction 

	000 
	PCout, MARin, Read, ALU(C=B+2), Zin 

	001 
	Zout, PCin, WMFC 

	002 
	MDRout, IRin, uBranch{ uPC<-101 (from PLA); UPC5,4<-[IR10,9]; UPC3<-[IR10]' . [IR9]' . [IR8] } 

	121 
	Rsrcout, MARin, Read, ALU(C=B+2), Zin 

	122 
	Zout, Rsrcin, WMFC, uBranch{ uPC<-170 (from uBranch field); UPC0<-[IR8]' } 

	170 
	MDRout, MARin, Read, WMFC 

	171 
	MDRout, Yin 

	172 
	Rdstout, ALU(C=A+B), Zin 

	173 
	Zout, Rdstin, End 


To accommodate Bit Oring for this example, two bits are added in the uBranch control signals for controlling the signals ORindrsrc and ORmode. The control store content for this example is shown below: 

	Address 
	MS1 MS0 
	BrUn 
	BrNotZ 
	BrZ 
	BrNotN 
	BrN 
	ORindrsrc 
	ORmode 
	Control signals 
	Branch Address 

	000 
	00 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	... 
	xxx 

	001 
	00 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	... 
	xxx 

	002 
	01 
	0 
	0 
	0 
	0 
	0 
	0 
	1 
	... 
	xxx 

	121 
	00 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	... 
	xxx 

	122 
	11 
	1 
	0 
	0 
	0 
	0 
	1 
	0 
	... 
	170 

	170 
	00 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	... 
	xxx 

	171 
	00 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	... 
	xxx 

	172 
	00 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	... 
	xxx 

	173 
	11 
	1 
	0 
	0 
	0 
	0 
	0 
	0 
	... 
	000 


Note that the microroutine is not terminated by the END signal. Instead, the starting address of the fetch microroutine is specified in the uBranch address field. 
Hardwired vs. Microprogrammed Control Unit  [image: image63.png]
Hardwired and microcode methods form two radically different approaches to control unit design. Each has advantages and disadvantages when performance and cost are compared. 

· Speed: Hardwired is the best approach when speed of operation is most important. 
· Flexibility of use: Microcoding provides considerable flexibility in implementing instruction sets and facilitates adding new instructions to existing machines. 
· Ease of prototyping: Microprogramming can be used for rapid prototyping of new designs or emulating several instruction sets. 
It is worth mentioning that, in general, the Complex Instruction Set Computers (CISC), e.g. Intel family of processors (i.e. 8086, Pentium, etc.), use the microprogrammed control unit design approach. However, in general, the Reduced Instruction Set Computers (RISC), e.g. SUN SPARC processors, use the hardwired control unit design approach. 

Improving Performance of Microprogrammed Control Unit 

Fetching an instruction from the control store takes considerably longer than generating control signals using hardwired circuits. To improve performance of microprogrammed control unit, the following measures can be taken: 

· Use very fast memory for the control store 

· Use long microinstructions to simultaneously generate as many control signals as possible 

· Use prefetching: fetch the next microinstruction while the current one is being executed. 

Simple CPU Design Example  [image: image64.png]
In this section, we will illustrate the design process of a simple CPU. Assume that the CPU has the following specifications: 
· The CPU has four instructions with a fixed size format; each instruction is 8-bits long. The instructions are listed below where AX is a 6-bit register and C is a 6-bit constant. 

	Opcode 
	Instruction 
	Operation 

	00 
	NOP 
	No operation 

	01 
	LOAD C 
	AX ← C 

	10 
	ADD C 
	AX ← AX + C 

	11 
	SUB C 
	AX ← AX - C 


· The instruction format is as shown below: 

	Bits 7-6 
	Bits 5-0 

	Opcode 
	Constant 


· It has one programmer accessible register, AX. 

· It is a 6-bit machine with 8-bit data bus and 6-bit address bus. 

· It has an adder/subtractor with two inputs: 
· Cin: If 1 the carry-in is 1, otherwise it is 0. 

· OP: If 0 addition is performed, otherwise subtraction is performed. 

Data Path Design 

The data path design for this CPU is shown below: 
SEE ONLINE FIGURE

The signals that control this data path are: AXout, AXin, Zout, Zin, PCout, PCin, IRout, IRin, MDRout, MARin, Cin, OP, and Select. Thus, 13 control signals are required to control the data path of this CPU. It should be observed that the 2x1 multiplexer added in the design allows passing the Adder/Subtractor B input to register Z. This is done by setting Select to 1, Cin to 0, and OP to 0 to perform addition. This also allows the implementation of an increment to the B input of the Adder/Subtractor by doing the same while setting Cin=1. Note that there is no need for the Y register due to the addition of the 2x1 multiplexer. The Z register is serving the purpose of both the Y and Z registers in the single-bus CPU design. 

In addition to these signals, the control unit needs also to generate the signals Read, WMFC, and End. So, the total number of signals that need to be generated by the control unit are 16 signals. 

Generation of Control Sequences 

Next, we generate the step control sequences for fetching an instruction, and the four CPU instructions as shown below: 

	Fetching an Instruction: 

T1 PCout, MARin, Select, Cin, Zin, Read 

T2 Zout, PCin, WMFC 

T3 MDRout, IRin 

	NOP Instruction: 

T4 End 

	LOAD C Instruction: 

T4 IRout, AXin, End 

	ADD C Instruction: 

T4 AXout, Select, Zin 

T5 IRout, Zin 

T6 Zout, AXin, End 

	SUB C Instruction: 

T4 AXout, Select, Zin 

T5 IRout, OP, Zin 

T6 Zout, AXin, End 


Hardwired Control Unit Design for the Simple CPU 

Since the maximum number of control steps is 6, the step counter size is a 3-bit counter. This requires a 3x8 step decoder. Since the opcode is 2 bits, the instruction decoder is a 2x4 decoder. The control signals equations for all the signals in the design are as follows: 

PCout = T1 

MARin = T1 

Select = T1 + T4 (ADD + SUB) 

Cin = T1 

Zin = T1 + (T4+T5) (ADD + SUB) 

Read = T1 

Zout = T2 + T6 (ADD + SUB) = T2 + T6 

PCin = T2 

WMFC = T2 

MDRout = T3 

IRin = T3 

End = T4 (NOP + LOAD) + T6 (ADD + SUB) = T4 (NOP + LOAD) + T6 

IRout = T4 LOAD + T5 (ADD + SUB) = T4 LOAD + T5 

AXin = T4 LOAD + T6 (ADD + SUB) = T4 LOAD + T6 

AXout = T4 (ADD + SUB) 

OP = T5 SUB 

It should be observed that the equation for Zout has been simplified from Zout = T2 + T6 (ADD + SUB) to Zout = T2 + T6. This is because we will not reach to T6 unless the instructions are either ADD or SUB since both the NOP and LOAD instructions end at T4. Similar simplifications are done for other signals. 

The hardwired control unit design for this simple CPU is shown below. 
SEE ONLINE FIGURE

Microprogrammed Control Unit Design for the Simple CPU 

The first thing to specify in the microprogrammed control unit design is the control word format. For this design, due to its simplicity, we do not need branching in the microinstructions. So, there is no need for the uBranch address and the uBranch control signals. 

It is also sufficient to use a 2x1 multiplexer such that one input is selected from the uPC incrementer and the other input is selected from the PLA. So, one mux select signal is needed. This design has 16 control signals to be generated. So, the number of bits in the CW is 17 bits. The format of the control word is shown below: 

	16 
	15 
	14 
	13 
	12 
	11 
	10 
	9 
	8 
	7 
	6 
	5 
	4 
	3 
	2 
	1 
	0 

	MS 
	PCout 
	MARin 
	Select 
	Cin 
	Zin 
	Read 
	Zout 
	PCin 
	WMFC 
	MDRout 
	IRin 
	End 
	IRout 
	AXin 
	AXout 
	OP 


Since the number of control words in the design is 11 CWs, then the size of the control store will be 11x17 bits. Also, the size of the uPC is 4 bits. The uIR will be 17 bits; equal to the CW size. The incrementer will be a 4-bit incrementer. 

The content of the control store is shown below: 

	Microroutine 
	Adress 
	MS 
	PCout 
	MARin 
	Select 
	Cin 
	Zin 
	Read 
	Zout 
	PCin 
	WMFC 
	MDRout 
	IRin 
	End 
	IRout 
	AXin 
	AXout 
	OP 

	Fetch 
	0000 
	0 
	1 
	1 
	1 
	1 
	1 
	1 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 

	
	0001 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	1 
	1 
	1 
	0 
	0 
	0 
	0 
	0 
	0 
	0 

	
	0010 
	1 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	1 
	1 
	0 
	0 
	0 
	0 
	0 

	NOP 
	0011 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	1 
	0 
	0 
	0 
	0 

	LOAD 
	0100 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	1 
	1 
	1 
	0 
	0 

	ADD 
	0101 
	0 
	0 
	0 
	1 
	0 
	1 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	1 
	0 

	
	0110 
	0 
	0 
	0 
	0 
	0 
	1 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	1 
	0 
	0 
	0 

	
	0111 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	1 
	0 
	0 
	0 
	0 
	1 
	0 
	1 
	0 
	0 

	SUB 
	1000 
	0 
	0 
	0 
	1 
	0 
	1 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	1 
	0 

	
	1001 
	0 
	0 
	0 
	0 
	0 
	1 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	1 
	0 
	0 
	1 

	
	1010 
	0 
	0 
	0 
	0 
	0 
	0 
	0 
	1 
	0 
	0 
	0 
	0 
	1 
	0 
	1 
	0 
	0 


Next, we need to design the PLA to provide the mapping between the opcode and the address bits. The table specifying the required mapping is shown below: 

	Instruction 
	OPC1 OPC0 
	PLA3 PLA2 PLA1 PLA0 

	NOP 
	00 
	0011 

	LOAD C 
	01 
	0100 

	ADD C 
	10 
	0101 

	SUB C 
	11 
	1000 


Using K-map simplification, the following equations for the PLA output can be found: 

· PLA0 = OPC0' 

· PLA1 = OPC1' . OPC0' = (OPC1 + OPC0)' 

· PLA2 = OPC1 XOR OPC0 

· PLA3 = OPC1 . OPC0 

The microprogrammed control unit design for this simple CPU is shown below: 
SEE ONLINE FIGURE

 Instruction Set Design  [image: image65.png]
Objectives:

To introduce the basic concepts and tradeoffs involved in the design process of a computerâ€™s instruction set. 

 Introduction  [image: image66.png]
· Instruction set design refers to the process of defining a computerâ€™s instructions, their format, size, the way they access their operands (i.e. addressing modes), resources utilization ...etc. 

· Before the computer can be designed, a special attention has to be paid to designing its instruction set 

· Instruction set design is the most important factor affecting the performance of a computer 

· Each instruction must specify the following: 

1. Which operation to perform (the op-code) 

2. Where to get the operands 

3. Where to put the result 

4. Where to find the next instruction 

The following points illustrate the main issues and trade-offs involved in the instruction set design: 

	Fewer instructions means: 

1. Longer programs (in number of instructions) due to lack of complex instructions 

2. Simpler processor design which in turn makes it possible to execute more instructions in a given time 

This is the main philosophy of the RISC A reduced instruction set computer (a computer with fewere and simpler instructions) (Reduced Instruction Set Computers) 

	More instructions results in: 

1. More complex logic design of processor 

2. More complex control unit, whether hardwired or microprogrammed, with fewer instructions executed in a given time 

3. Shorter programs (due to the availability of more complex instructions) and (possibly) shorter execution times 

This is the main philosophy of the CISC A complex instruction set computer (a computer with large number of instructions that are generally capable of performing complex functions) (Complex Instruction Set Computers) 


Computers instructions can be classified into three primary types: 

· Data movement instructions 

· Arithmetic and Logic (ALU) instructions 

· Flow Control (branch) instructions 
 Data Movement Instructions  [image: image67.png]
These instructions move data within the computer and to or from I/O devices. Possible data movements are: 

· Memory-to-Memory 

· Memory-to-CPU (i.e. to CPU registers) 

· Constant-to-CPU (the constant would be specified in the instruction itself) 

· Input-to-CPU 

· CPU-to-Memory 

· CPU-to-Output 

The more the allowable data movements the more complex the CPU design become. A decision can be made to simplify the CPU by restricting data movement to or from the CPU registers (i.e. either the source or the destination has to be a register). The moved data size might range from a single byte to hundreds of bytes. 

The longer the length of the moved data in a single instruction, the more complex the resulting CPU design. Requiring more than one instruction to move longer words of data would simplify the CPU design. Depending on the intended applications, the maximum size of data word that can be moved in one instruction is selected to minimize the overall execution time. Separate instructions might deal with different data types. Possible data types are integers, floating point, characters, and address data type. This would complicate the CPU design further. The table below shows examples of data movement instructions from different machines illustrating the different options discussed above. 
Examples of data movement instructions from several machines
	Instruction 

	Description 

	Machine 


	MOV A, B 

	Move 16-bit data from memory location A to memory location B 

	VAX11 


	LDA A, Addr 

	Load the accumulator A with the byte at memory location Addr 

	M6800 


	lwz R3, A 

	Move 32-bit data from memory location A to register R3 

	PPC601 


	li $3, 455 

	Load the 32-bit integer constant 455 into register $3 

	MIPS R3000 


	mov R4, dout 

	Move 16-bit data from register R4 to output port dout 

	DEC PDP11 


	IN AL, KBD 

	Load a byte from input port KBD to the lower 8-bits of the accumulator register 

	Intel Pentium 


	LEA.L (A0), A2 

	Load the address pointed to by A0 into A2 

	MC68000 



	


 ALU Instructions  [image: image68.png]
These instructions perform the arithmetic and logic operations on data (such as addition, subtraction, multiplications, division, AND, OR, NOT â€¦etc.) 

More complex operations (such as multiplication, division, floating point arithmetic) shorter machine programs but also more complex ALU design. 

Operand access modes are very detrimental to how fast ALU instructions can be executed and the complexity of the CPU design: 

· Allowing operands and/or results to reside in memory offers great programming flexibility at the expense of higher design complexity 

· Restricting operands and/or results to register values, simplifies the design significantly, however, operands and results would have to be fetched/stored in memory using data movement instructions. 

The table below shows examples of ALU instructions from different machines illustrating the different operand/result access modes discussed above. 
Examples of ALU instructions from several machines
	Instruction 

	Description 

	Machine 


	MULF A,B,C 

	Multiply the 32-bit floating point values at memory locations A and B, and store the result in location C 

	VAX11 


	nabs r3,r1 

	Store the negative absolute value of r1 in r3 

	PPC601 


	ori $2,$1,255 

	Store the logical OR of register $1 with constant 255 into register $2 

	MIPS R3000 


	DEC R2 

	Decrement the 16-bit integer in register R4 

	DEC PDP11 


	SHL AX,4 

	Shift the 16-bit value in register AX left by 4 bits 

	Intel 8086 



	


 Flow Control (Branch) Instructions  [image: image69.png]
These instructions alter the flow of programs hence the name flow control. A transfer of control (i.e. a branch) other than the next one in sequence requires calculation of a target address.
The branch instruction specifies the target address or how it is calculated, which is then loaded to the IP register replacing the normal address 

Allowing more elaborate methods of branch target address calculation to match HLL constructs such as for, while, and repeat loops reduces the size of machine programs significantly at the cost of more complexity in CPU design. 
If a special register is used for the target address, the CPU can prefetch the instruction at the branch target address making it ready for execution right after the branch instruction is executed. Branch instructions can be unconditional or conditional based on the values status flags or other registers or memory locations. The table below shows examples of branch instructions from different machines with different branch address calculation methods. 
Examples of branch instructions from several machines
	Instruction 

	Description 

	Machine 


	BLBS A, Tgt 

	Branch to address Tgt if the least significant bit at location A is set 

	VAX11 


	bun r2 

	Branch to location in r2 if the previous floating point comparison signaled that one or more of the values was not a number 

	PPC601 


	beq $2,$1,32 

	Branch to location IP+4+32 if contents of registers $1 and $2 are equal 

	MIPS R3000 


	SOB R4 Loop 

	Decrement register R4 and branch to address Loop if result not equal 0 

	DEC PDP11 


	JCXZ Addr 

	Jump to Addr if contents of CX = 0 

	Intel 8086 



	


 Machine Classes  [image: image70.png]
In addition to specifying the operation to be performed, instructions should also specify the locations of operands and results and the location of the next address if it is different from the default location stored in the IP 

Machines are classified based on operand and result locations into three main categories: 

Load-Store Machines: 

· These are also known as register-to-register or general register machines 
· Memory access is restricted to load and store instructions only. A load instruction moves data from memory to a CPU register and the store instruction moves data from CPU to memory 

· Load and store instructions have two operands; one in a register and another in memory. The register address is considered آ½ an address since it requires less bits. Hence these machines are also classified as 1آ½-Address machines figure blow illustrates a genral register (i.e. a 1آ½-Address) load-store machine and its instruction formats. An example of ADD operation is shown. Operands have to be loaded into CPU register before they can be added. 
SEE ONLINE FIGURE

· The reduction in the address fields reduces the size of machine instructions and simplifies the CPU design 

· Operands and results of ALU and branch instructions only reside in CPU registers. This makes these instructions very efficient 

· These machines however, are very inefficient for data-intensive applications (like multi-media) where large volume of data need to be processed and hence be moved in and out of the CPU 

· Most RISC machines are of this type 

Register-Memory Machines: 

· These machines locate operands and result in a combination of memory and registers 

· One of the operand or the result must be an accumulator or general register, thus these machines are 1- or 1آ½-Address machines the figure below illustrates a 1-Address machine and its instruction format. An accumulator holds one of the operands and the result while the other operand is located in the memory. 

SEE ONLINE FIGURE

· The accumulator can be loaded from memory or its content stored to memory, reducing the instruction size significantly 

· Again 1-Address machines are very inefficient with data-intensive applications 

Memory-Memory Machines: 

· These machines allow both the operands and the result to reside in memory 

· They are classed as 2- or 3-address machines. In 2-address machines one of the operands also serves as the result location 

· Fig. m300230.3 illustrates a 3-Address machine with 24-bit-wide address bus and its instruction format. The instruction length is very large because of the three memory addresses 

· A 2-Address machine and its instruction format is illustrated in figure below . The compromise of storing the result in one of the operands location reduces the instruction length significantly 

SEE ONLINE FIGURE

SEE ONLINE FIGURE

· Many machines combine instructions from different classes (i.e. 1-Address, 1آ½-Address, 2-Address, and 3-Address formats) trading off number of instructions per program for number of bits per instruction 

· Variable length instructions are widely used to optimize the performance across different instruction classes 

 Addressing Modes  [image: image71.png]
· The different ways that can be utilized by an instruction to access its operands are called Addressing Modes 
· As seen before, operands can reside in memory or CPU registers 

· Accessing operands in memory requires the CPU to compute the effective address of the operand 
· The computation of the effective address depends on the addressing mode expressed in the instruction figure below summarize some of the commonly used addressing modes and how the effective address is computed for each. These are: 

1. Immediate Addressing: 

· The operand itself, not its address, is specified in the instruction (Fig. m300240.1 (a)) hence no address computations are required 

· Used to introduce constants into the program 

· Can not be used for addressing the result 

2. Direct Addressing: 

· The address of the operand is specified in the instruction as a constant (Fig. m300240.1 (b)) 

· No address computations are required and the operand can be accessed directly 
3. Indirect Addressing: 

· The address location that contains the address of the operand is specified in the instruction (Fig. m300240.1 (c)). Hence this address is a pointer to the operand 

· Two memory references/accesses are required to access the operand 

4. Register Direct Addressing: 

· The operand is contained in a register which is specified by the instruction (Fig. m300240.1 (d)) 

· Since no memory access is required, operand access is much faster than direct and indirect addressing 

· This addressing mode is used to provide access to local variables and intermediate results 

5. Register Indirect Addressing: 

· The address of the operand is contained in a register which is specified by the instruction (Fig. m300240.1 (e)) 

· This addressing mode is usually used to provide sequential access to data arrays that are stored in the memory. By incrementing the register after each access, the next data item in the array can be accessed 

· Many computers have instructions that auto-increment (or decrement) the address-holding register after each access to point to the next data item automatically 

6. Indexed, Displacement or Based Addressing: 

· The effective address is formed by adding a fixed constant, usually contained in the instruction itself, to an address value (index) contained in a register (Fig. m300240.1 (f)) 
· Usually used to access arrays, records (such as those in Pascal), or C-language struct. These data structures are usually stored at a fixed offset from a start address 

· Because of the index addition, the effective address computation would take more CPU cycles than previous addressing modes 

· Modern computers include a separate address calculation unit with its own arithmetic functional blocks to reduce the time required to compute the effective address 

7. Relative Addressing: 

· Similar to indexed addressing except that the base address is held in the PC (or IP) register (Fig. m300240.1 (g)) 

· Hence the operand is stored at a memory location with a fixed offset from the current instruction 

SEE ONLINE FIGURE

 Final Note About Addressing Modes

Addressing modes are selected to reduce the number of instructions per program, allow easy access to complex data structures such as arrays, records, and structures, or reduce the time required to access operands. Direct and fast access is traded off with flexibility in accessing complex data structures. Adding dedicated address calculation units help resolving these tradeoffs at the expense of more design complexity. 
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