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Objectives:
To introduce the basic architecture/operation of a computer 

· To introduce assembly language
 and how it is related to high-level languages
 

· Explain the motivation for programming in assembly 

· Introduce machine language
, data types, and instruction
 

Basic Components of Computers[image: image48.png]



Computers are large digital systems
 used to process digitized information
 based on a user defined sequence of commands (i.e. the program). To begin to understand the components of a computer, consider the following example: We want to have an automated (no or minimum human interaction) method to find the average height of students in classes. How can we devise a digital system to do this? So let us come up with the basic building blocks for this computer.
Input/Output Devices[image: image49.png]



	We need a way to enter (input) our data to the computer. Also, after we calculate the average height, we will need to get the result and present it to the user in a convenient form.
Input Devices

Input devices are devices that can enter data to computers. Examples of input devices include keyboards, Mouse, touch pads, light pens, joy sticks ...etc. (see Figure 1) 
	[image: image50.png]



Figure 1: Examples of input devices

	
[image: image51.emf]
Figure 2: Examples of  output devices
	Output Devices
An output device is used to output the data. Examples of output devices are monitors, printers ...etc. (see Figure 2).
Peripheral devices 

Include input and output devices are called peripheral devices. A computer device, such as a CD-ROM drive or printer, that is not part of the essential computer, i.e., the memory and microprocessor. Peripheral devices can be:

	· External: such as mouse, keyboard, printer, monitor, external Zip drive or scanner, or 

· Internal, such as CD-ROM drive, CD-R drive or internal modem. 


Memory Devices
	Before we can do our calculation, we need to store the data we have entered into the computer or it will be lost, so we need some device that can remember the data, hence we have to have a memory
 device. 

	We should be able to perform two major operations: 
1. Store (write) data 

2. Get (read) stored data 
Figure 2 shows different memory types and relative performance/cost of each type. More information is given about theses types next.
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Figure 2: Different memory types of  output devices


Random-Access Memory (RAM)

· Used to store the information used by the computer (usually called the main memory
)
· It can be read and written to 

· It is volatile: when powered off, the stored information are gone
· Stored information can be accessed in any order at equal time periods (hence named random access) 

· Information is accessed by an address that specifies the exact location of the information in the RAM.

ROM (Read-Only-Memory)

· A read-only-memory; usually used to store the information required by the computer to start-up
· Non-volatile memory: keeps the stored information even when powered off
· Has random access of stored information (can be accessed in any order at equal time periods)
· Recent types of ROMs that are used in PCs (personal Computers) are also called FLASH or CMOS. 
Cache

· A very fast RAM that is used to store most frequently or recently used information 

· Recent computers have 2-levels of cache; the first level is faster but smaller in size (usually it is internal cache), and the second level is slower but larger in size (external cache)

Registers

· Fastest storage elements 

· Similar to Cache, are used to store temporary or most frequently used information 

· Information is stored in named locations (not addressed locations) 

· Information is accessed by specifying the name of the register where they exist 

· There are two main types of registers in computer systems: 

· General Purpose Registers that are accessible to the programmers of the computer
· Special Purpose Registers that are only used by the computer itself and can not be accessed by the programmer directly. 

· State-of-the-art computers contain large number of registers that are usually organized into one dimensional arrays called register files

	Arithmetic and Logic Unit (ALU)
Now we have to have a digital circuit that can perform the required arithmetic and logical operations to do our calculations, that is Arithmetic and Logic Unit
 or simply the ALU
 
Modern computers have multiple ALUs to be able to do multiple calculations at the same time (to increase speed). The figure shows the symbolic view of the ALU and its operation. An ALU has two inputs as well as selection lines. The selection lines specify the operation to be performed on the inputs.
	[image: image53.emf] 

Figure 2: symbolic view of the Arithmetic and Logic Unit (ALU)


The Stored Program
The Algorithm

Now we need to define the set of necessary steps and their proper sequence that are required to obtain the average height from the set of input data. These steps would make what is called an algorithm
. The algorithm is made of the following simple steps:

3. Read the students heights one by one 

Add them one by one 

Divide the final sum by the number of students to get the average

The Program

The above Algorithm is an abstract description of the solution, i.e. it does not show details on how our digital system can actually perform these steps. We need to write a more detailed description of the solutions steps, this would be the program
. Table 1 and Table 1 show a possible program that can achieve the developed Algorithm. This program can be stored in the memory so that it can be used over and over. 

Table 1: A Pseudo Program for the Average Height Problem- Declaration Section
	4. Define the required variables to hold the different values involved in our program:

A variable n to hold the number of students,

Another variable I to be used as a counter,

An array of n variables h(n) to hold the heights of students

A variable Average to hold the average


In Fact, a program can be manipulated, moved, deleted or have more appended to it in the memory. This is the concept of the stored program
 and it is the basis for all modern computers.
Table 1: A Pseudo Program for the Average Height Problem- Calculation Section
	5. Read (through an input device) the number of students n and store it (in the memory)

6. Set Average to 0 and store it

7. Set I to 1 and store it

8. Read from the input device h(i) and store it

9. Read both h(i)  and Average (from the memory)

10. Add h(i)  to Average and store the new value of Average 

11. Read I

12. Increment I (i.e. set I = i+1) and store the new value 

13. Read n and I and check if they are equal

14. If they are not equal go to step 4 otherwise continue to step 11

15. Read n and Average

16. Set Average = Average / n and store the new value. This value now contains the final answer


The memory contains both data and instructions. These are the two types of information handled by computers.
Instructions and Machine Language

· Each command of the program is called an instruction
 
· Computers only deal with binary data, hence the instructions must be in binary format (0s and 1s)  

· The set of all instructions (in binary form) makes up the computer's machine language
. This is also referred to as the instruction set19.  

·  Hence, the program above has to be translated to the computer's machine language before it is stored in the memory  
· A machine language program written for one type of computers, say a Sun-Ultra 20 machine wont work with another type of computers say an IBM-compatible PC.  

Micro-Operations

·  The computer breaks down machine instructions into smaller operations that are called micro-operations  

·  These micro-operations are performed by the computer automatically (i.e. the programmer does not specify them)  

·  In the program above, fetching the operands, adding them and then writing back the result to the memory are examples of micro-operations. In fact some of the above instructions will combine into a single machine instruction. For example instructions 6 and 7 will be combined as an ADD instruction.  

Instruction Fields

Machine language instructions usually are made up of several fields. Each field specifies different information for the computer. The major two fields are: 

·  Opcode
  field which stands for operation code and it specifies the particular operation that is to be performed. Each operation has its unique opcode and may take the computer several micro-operations to accomplish.  

·  Operands
 fields which specify where to get the source and destination operands for the operation specified by the opcode. The source/destination of operands can be the memory or one of the general-purpose registers.  
	The figure below shows the correspondence between several assembly instructions and their machine code equivalent. 
[image: image54.png]Assembly Code
Instruction
MOV AX, 5
ADD AX, BX

JMP Next

Machine Code
Opcode Operand

B8 0005
03C3
EB E7




This table shows a number of assembly instructions and their corresponding machine code. The first column shows the address at which the instruction is stored, the second column shows the machine code for the instruction and the third column shows the corresponding assembly instruction. 

	Address 

Machine Code 

Instruction 

0005 

B8 0001 

MOV AX, 1 

0008 

B8 0002 

MOV AX, 2 

000B 

B8 0003 

MOV AX, 3 

000E 

B8 0004 

MOV AX, 4 

0011 

BB 0001 

MOV BX, 1 

0014 

B9 0001 

MOV CX, 1 

0017 

BA 0001 

MOV DX, 1 

001A 

8B C3 

MOV AX, BX 

001C 

8B C1 

MOV AX, CX 

001E 

8B C2 

MOV AX, DX 

0020 

83 C0 01 

ADD AX, 1 

0023 

83 C0 02 

ADD AX, 2 

0026 

03 C3 

ADD AX, BX 

0028 

03 C1 

ADD AX, CX 

002A 

03 06 0000 

ADD AX, i 

002E 

83 E8 01 

SUB AX, 1 

0031 

2B C3 

SUB AX, BX 

0033 

05 1234 

ADD AX, 1234h 




As can be see from the table, the instruction sizes are not the same. Some instructions have 2 bytes, some 3 and some 4 bytes. For example, you can see that the instruction MOV AX, 1 is stored at address 0005. Since the size of this instruction is 3 bytes, the next instruction will be stored at address 0005+3=0008. As you can see, for the first seven instructions the first byte encodes the opcode and also the code for the register. The last two bytes encode the constant. Since the register is 16 bits, the constant size is also 16 bits and this is why 2 bytes are allocated. It can be observed that the least significant 2 bits are encoding the register. 

You can observe that when both the operands are registers that the instruction size is 2 bytes. Note the difference between the machine code for the instructions MOV AX, 1 and ADD AX, 1. Also, note that for the instruction ADD AX, i two bytes are allocated to store the address of variable i which is in this example 0000. In 8086 machines, an address requires 2 bytes. In order for one to completely understand the mapping between assembly instructions and machine code, it is required to know the various instructions formats and the syntax and semantics of each format. 

Control Unit

Now we need a digital circuit to control everything in our computer. So we must have a control unit
 that would perform the following:

· Coordinate the operation of the other units in the computer  

· Translate the program instructions into micro-operations to be performed by the different units. This is called decoding  

· Provide the control signals for other units to perform the different micro-operations required to execute each instruction.  

The ALU and registers make up the computer's data path
. The data path and control unit form the Central Processing Unit
 or CPU
.  The following figure shows a symbolic diagram of the basic components of a computer.

[image: image55.emf]
Program Execution: The Fetch-Execute Cycle

The machine language program that is stored in the computer’s memory as a sequence of instructions would be executed in the following manner: 

1. Each machine language instruction is first fetched from the memory and stored in an Instruction Register
 (IR). The address of the instruction to be fetched is stored in a register called Program Counter
 (PC) or simply PC. In some computers this register is called the Instruction Pointer
. 

2. After the instruction is fetched, the PC (or IP) is incremented to point to the address of the next instruction.

3. The fetched instruction is decoded (to determine what needs to be done) and executed by the CPU. The CPU also updates the PC or the IP with the address of the next instruction if there is a jump. 

The above sequence of fetch-execute-fetch-execute repeats till the computer is halted. 

[image: image56.emf]
Programming Languages [image: image57.png]



The program we wrote to calculate the average height was written in a natural language style that we normally use. But as explained before computers only understand programs in their own machine language. It is extremely impractical to ask programmers to write their programs in machine language. So what is the solution to this dilemma? The answer is in what are called high-level languages
 (HLL) and assembly language
.
High-Level Languages (HLL)  

HLLs are programming languages that look like natural language text. Their advantages are:

·  They make programming easier and more abstract, i.e. the programmer does not need to come up with the detailed machine instructions  

·  HLL programs are machine independent. They can be run on different hardware platforms (i.e. different computers with different instruction sets): 

1. To run a HLL program on a specific machine, it has to be translated to its machine language  

2.  This is done through the use of a compiler
. A Compiler is a program that translates a HLL program to a machine language program of a specific platform 

3.  The Machine language program produced by the compiler is usually referred to as the executable program
 

4.  Hence by using the appropriate compiler we can execute our HLL programs on any platform.
Mapping Between HLL and Machine Language

Translating HLL programs to machine language programs is not a one-to-one mapping   

· A HLL instruction (usually called a statement) will be translated to one or more machine language instructions  

· The number of mapped machine instructions depends on the efficiency of the compiler in producing optimized machine language programs from the HLL programs  

· Usually, machine language programs produced by compilers are not efficient (i.e. they contain many unnecessary instructions that increase processing and slow down execution).  

Data Typing in HLL and Machine Language

	High-Level Language
	Machine Language

	· Supports many primitive data types such as integers, real, strings, characters and Boolean 

· Allows the programmer to define new and complex data types using the primitive data types 

· HLL compilers strictly enforce data typing, preventing the programmer from making mistakes. 
	No enforcement of any data typing, instructions just operate on binary numbers. 


Assembly Language

The assembly language
 is a programming language that uses symbolic names to represent operations, registers and memory locations. Hence programs are still written in a natural language style. However, each assembly language instruction (or statement) would correspond to a single machine language instruction. This makes it easier for the programmer to produce efficient machine language programs.

Why Learn Assembly Language?

·  Writing assembly programms gives the computer designer the needed deep understanding of the instruction set and how to design one  

·  To be able to write compilers for HLLs, we need to be expert with the machine language. Assembly programming provide this experience  

·  Sometimes very efficient machine codes are required to do some specific functions and these can not be produced by HLL and compilers. In this case assembly language has to be used  

·  Sometimes we want to access specific memory addresses or I/O ports. This is very difficult to do using HLLs. In these cases Assembly language would be the better choice  

·  Embeded-controllers that find numerous applications nowadays usually contain special-purpose processors. Assembly programming is usually the only practical way to program these processors.  

Mapping Between Assembly Language and HLL

The mapping between HLL constructs and Assembly language instructions is many-to-many, as it was between HLL and machine language. The table below shows some examples of mapping between some HLL instructions (written in C language) and assembly language instructions (of the 8086 microprocessor):

Mapping between some C instructions and 8086 assembly language
	Instruction Class 
	C 
	Assembly Language 

	Data Movement 
	a = 5 
	MOV a, 5 

	Arithmetic/Logic 
	b = a + 5 
	MOV ax, a 
ADD ax, 5 
MOV b, ax 

	Control Flow 
	Goto LBL 
	JMP LBL 


The Assembler

The program that translates from assembly language to machine language is called an Assembler
. It allows the programmer to specify the memory locations for his data and programs and symbolically refer to them in his assembly code. It will translate these symbolic addresses to actual (physical) addresses in the produced machine code.

The Linker
 

This is the program that is used to link together separately assembled/compiled programs into a single executable code. This allows the programmers to develop different parts of a large program separately (some in HLL and others in Assembly depending on the best choice for that part), test them separately and ‘freeze’ them for future use. This produces modular programs and greatly enables the management of large programming projects.

Debugger
 and Monitor

These are tools that allow the assembly programmers to:

·  Display and alter the contents of memory and registers while running their code,  

·  Perform disassembly 
of their machine code (show the assembly language equivalent),  

·  Permit them to run their programs, stop (or halt) them, run them step-by-step or insert break points
.

Instruction Set Architecture (ISA)  [image: image58.png]



The collection of assembly/machine instruction set of the machine and the machine resources (memory and programmer-accessible registers) that can be managed with these instructions is called Instruction Set Architecture (ISA
) that can be managed with these instructions). An Assembly programmer must understand the ISA of the specific machine he is writing codes for in order to write correct programs.

Following figure shows a few examples of the ISA of several machines.
[image: image59.emf]
Interfacing the CPU to the Memory and I/Os  [image: image60.png]



The interfacing between the CPU, the main memory and the I/Os is accomplished by mainly using two types of components; Buses and Registers.

Buses:

·  A bus
 is a group of signals that interconnect several devices. They are like pathways over which information passes. 

·  Interconnected devices use the bus on a time-share basis (i.e. each device will get a time slot to use the bus to communicate with another device).  

·  Buses could be dedicated, i.e. connects only two devices and in this case they are called point-to-point connection.  

·  There are three types of buses in computer systems; 

1. Data Buses that carry data 

2. Address Buses that carry addresses of memory locations or I/O devices 

3. Control Buses that carry control signals used to establish the communication sequence and protocol between the CPU , memory and peripheral devices. 

· Buses may be serial or parallel depending on how they carry the information:

1. A serial bus carries information one bit at a time, 

2. A parallel bus carries information at several bits at a time.  

There are two major bus architectures for interconnecting the CPU to the other devices in the computer (memory and I/Os):

One-Bus Architecture
In this architecture, illustrated in the figure below, all the devices share a single bus. This bus is usually called the Backplane Bus. 

·  Advantages: Simplicity and ease of design. 

·  Disadvantages: The CPU cannot communicate with the memory and the I/Os at the same time. Also the I/Os are usually much slower than the memory, hence if there is an I/O activity, the CPU wont be able to access the memory for a long time.  

[image: image61.emf]
Two-Bus Architecture
in this architecture, illustrated in the following figure, there is a dedicated bus between the CPU and memory and another between the CPU and the I/O devices. This is more complex than the one-bus architecture but allows simultaneous memory and I/O activities, speeding up the computer operation considerably. 

[image: image62.emf]
In current computers, the CPU has three-buses; one for the I/Os, one for the main memory (called the front-side bus) and another for level-two cache (called the back-side bus) to speed up the operation even further. Next figure illustrates a three-bus architecture. 
[image: image63.emf]
An actual illustration of the Pentium bus system.

[image: image64.emf]
The CPU-Memory Interface

	[image: image65.emf]
	This figure shows a CPU-Memory Interface using a dedicated bus architecture approach. The memory word size s is not necessary the same as the CPU’s word size w. The CPU's word size is usually referred to as the width of the data path. The following components make up the CPU-Memory interface:
1. The Memory Address Register (MAR
): A CPU register that holds the address of the required memory word. The size of this register determines the maximum size of the system memory. For an m-bit MAR, the maximum memory size (i.e. addressable space) is 2m words. 

2. An m-bit Address bus: It transfers the contents of the MAR to the memory. 


3. The Memory Data Register (MDR
): A CPU register that holds the data word that is to be written to the memory or that has been fetched from the memory. Its width is equal to the data bus width, b-bits. 

4. A bi-directional b-bit Data bus: This bus transfers the data from the CPU (MDB) to the memory and vise versa. Note that b is not necessary equal to w or s. So data transfers might take more than a single cycle (if w > b). 

5. Several control lines: 

i. R/W signal: The CPU uses this signal to specify the type of memory operation (read or write). 

ii. REQUEST signal: The CPU asserts this signal to request a memory operation (while the R/W signal specifies the type of operation). 

iii. Complete: The memory asserts this signal when the operation is completed.

	Data Path, Data Bus, and Address Bus Sizes, Maximum Addressable and the Smallest Addressable Unit for Several Intel X86 Processors

	Processor 

Data Path Size 

Data Bus Size 

Address Bus Size 

Maximum Addressable Memory 

Smallest Addressable Unit 

8088 

16 bits 

8 bits 

20 bits 

One Megabyte 

8 bits 

8086, 80186, 80188 

16 bits 

16 bits 

20 bits 

One Megabyte 

8 bits 

80286 

16 bits 

16 bits 

24 bits 

Sixteen Megabytes 

8 bits 

80386, 80486 

32 bits 

32 bits 

32 bits 

Four Gigabytes 

8 bits 

Pentium 

32 bits 

64 bits 

32 bits 

Four Gigabytes 

8 bits 

Pentium Pro, II, III, IV 

32 bits 

64 bits 

36 bits 

64 Gigabytes 

8 bits 




Test on Overview of Computers  [image: image66.png]



1.   Computers are digital systems. 

[image: image67.wmf]True 
  [image: image68.wmf]False

2._________devices are needed to enter data into the computer. 

3.   In a memory write operation, data is ______in the memory. 

4.   Fetching a piece of data from the memory is called a ______operation. 

5.   The difference between a ROM and a RAM is that information in the ROM cannot be accessed in any order as with the RAM. 

[image: image69.wmf]True 
  [image: image70.wmf]False

6.   Cache is the fastest type of memory device used in computers. 

[image: image71.wmf]True 
  [image: image72.wmf]False

7.   Modern computers have large number of registers organized into one-dimensional arrays called register ______. 

8.   Registers used in computers have the highest memory capacity. 

[image: image73.wmf]True 
  [image: image74.wmf]False

9.   The machine language of a computer uses natural text to express instructions to the computer. 

[image: image75.wmf]True 
  [image: image76.wmf]False

10.   A computer instruction set is basically its machine language. 

[image: image77.wmf]True 
  [image: image78.wmf]False

11.   A HLL program will correspond to a machine language program with exactly the same number of instructions. 

[image: image79.wmf]True 
  [image: image80.wmf]False

12.   A HLL program written for one platform cannot run on a different platform. 

[image: image81.wmf]True 
  [image: image82.wmf]False

13.   A ______ is used to translate HLL programs to machine language. 

14.   Mapping between assembly language programs and machine language is one-to-many. 

[image: image83.wmf]True 
  [image: image84.wmf]False

15.   The computer breaks down machine instructions into smaller operations that are called ______. 
16.   The Opcode field of a machine language instruction specifies the specific operation to be performed by the computer. 

[image: image85.wmf]True 
  [image: image86.wmf]False

17.   The ______unit coordinates the operation of different units in the computer. 

18.   A computer's data path is made of: 

  [image: image87.wmf]RAM and and ALU 

  [image: image88.wmf]Input/Output Devices 

  [image: image89.wmf]Registers and ALU 

19.   The data path and control unit are called the ______. 
20.   The address of the instruction to be fetched is stored in a register called Instruction Register. 

[image: image90.wmf]True 
  [image: image91.wmf]False

21.   A one-bus architecture is more difficult to design than a two-bus-architecture, but achieves higher speed. 

[image: image92.wmf]True 
  [image: image93.wmf]False

22.   The CPU's word size is usually referred to as the width of the data path. 

[image: image94.wmf]True 
  [image: image95.wmf]False

23.   The CPU's address bus transfers the contents of the MDR register to the memory. 

[image: image96.wmf]True 
  [image: image97.wmf]False

24.   The 8086 had a 20-bit address bus. 

[image: image98.wmf]True 
  [image: image99.wmf]False

25.   The Pentium series processors have 32-bit address bus, which means that they can address a memory of size up to: 
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	Test Results

	Computers are digital systems. 
	T

	Input devices are needed to enter data into the computer. 

	In a memory write operation, data is stored in the memory. 

	Fetching a piece of data from the memory is called a read operation. 

	The difference between a ROM and a RAM is that information in the ROM cannot be accessed in any order as with the RAM. 
	F

	Cache is the fastest type of memory device used in computers. 
	F

	Modern computers have large number of registers organized into one-dimensional arrays called register files . 

	Registers used in computers have the highest memory capacity. 
	F

	The machine language of a computer uses natural text to express instructions to the computer. 
	F

	A computer instruction set is basically its machine language. 
	T

	A HLL program will correspond to a machine language program with exactly the same number of instructions. 
	F

	A HLL program written for one platform cannot run on a different platform. 
	F

	A compiler is used to translate HLL programs to machine language. 

	Mapping between assembly language programs and machine language is one-to-many. 
	F

	The computer breaks down machine instructions into smaller operations that are called micro-operations . 

	The Opcode field of a machine language instruction specifies the specific operation to be performed by the computer. 
	T

	The control unit coordinates the operation of different units in the computer. 

	A computer's data path is made of: 
	Registers and ALU 

	The data path and control unit are called the CPU . 

	The address of the instruction to be fetched is stored in a register called Instruction Register. 
	F

	A one-bus architecture is more difficult to design than a two-bus-architecture, but achieves higher speed. 
	F

	The CPU's word size is usually referred to as the width of the data path. 
	T

	The CPU's address bus transfers the contents of the MDR register to the memory. 
	F

	The 8086 had a 20-bit address bus. 
	T

	The Pentium series processors have 32-bit address bus, which means that they can address a memory of size up to: 
	4G words
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Objectives:
· Review Data (both numbers and characters) Representation in Computers.  

·  Review the basics of numbering systems and the conversion between different numbering systems.  

Introduction  [image: image105.png]



As mentioned before, computers only deal with binary data (0s and 1s), hence all data manipulated by computers must be represented in binary format. Machine instructions manipulate many different forms of data:
· Numbers: 

3. Integers: examples: 33, +128, -2827 …etc. 

4. Real numbers: examples: 1.33, +9.55609, -6.76E12, +4.33E-03 …etc. 

· Alphanumeric characters (letters, numbers, signs, control characters): examples: A, a, c, 1 ,3, ", +, Ctrl, Shift, …etc. 

· Images (still or moving): Usually represented by numbers representing the Red, Green and Blue (RGB) colors of each pixel in an image, 

· Sounds: Numbers representing sound amplitudes sampled at a certain rate (usually 20kHz).  

So in general we have two major data types that need to be represented in computers; numbers and characters.

Number Representation  [image: image106.png]



Numbering Systems  [image: image107.png]



· Numbering systems are characterized by their base number. For example the famous decimal system (base 10) and its 10 different digits, 

· In general a numbering system with a base r will have r different digits (including the 0) in its number set. These digits will range from 0 to r-1, 

· The most widely used numbering systems are listed in the table below: 

	Numbering System 
	Base 
	Digits Set 

	Binary 
	2 
	1 0 

	Octal 
	8 
	7 6 5 4 3 2 1 0 

	Decimal 
	10 
	9 8 7 6 5 4 3 2 1 0 

	Hexadecimal 
	16 
	F E D C B A 9 8 7 6 5 4 3 2 1 0 


The correspondence between numbers with different bases is illustrated below:

	Bin
	Oct
	Dec
	Hex

	0000
	00
	00
	0

	0001
	01
	01
	1

	0010
	02
	02
	2

	0011
	03
	03
	3

	0100
	04
	04
	4

	0101
	05
	05
	5


	Bin
	Oct
	Dec
	Hex

	0110
	06
	06
	6

	0111
	07
	07
	7

	1000
	10
	08
	8

	1001
	11
	09
	9

	1010
	12
	10
	A

	1011
	13
	11
	B


	Bin
	Oct
	Dec
	Hex

	1100
	14
	12
	C

	1101
	15
	13
	D

	1110
	16
	14
	E

	1111
	17
	15
	F

	10000
	20
	16
	10


· The base of a number is usually specified as a subscript, e.g.: 

1. (01000011)2, 

2. (71203)8, 

3. (FF078ABC)16, ...etc. 

· Or a letter indicating the base (d for decimal, b for binary, o for octal and h for hexadecimal) is appended to the number, e.g.: 

4. 01000011b, 

5. 71203o, 

6. FF078ABCh, ...etc. 

Conversion between different Bases[image: image108.png]


: Conversion to Decimal

In general a number An An-1 _ A2 A1 A0 in a system with base r is basically equal to: 
A0 + A1*r1 + A2*r2 + A3*r3 + _ + An*rn in decimal as illustrated by the next examples:

	 Examples on converting from different bases to Decimal

	Convert the following to Decimal: 

1. (1001001)2 

2. (203)8 

3. (FA07)16 

Solution:
1. (1001001)2 = 1 + 0*21 + 0*22 + 1*23 + 0*24 + 0*25 + 1*26 = 73d 

2. (203)8 = 3 + 0*81 + 2*82 = 131d 

3. (FA07)16 = 7 + 0*161 + 10*162 + 15*163 = 64007d 


Conversion Between Binary, Octal and Hexadecimal

Conversion from Octal and Hexadecimal to binary: Each octal digit can be replaced by its 3-bit equivalent binary number and each Hexadecimal digit can be replaced by its 4-bit binary number to form the binary equivalent. This process is illustrated in the Figures Below.
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Conversion from Binary to Octal and Hexadecimal: Reverse the process above; start from the least significant bit and replace each 3-bits by their Octal equivalent or each 4-bits by their Hexadecimal equivalent. If there are less than 3-bits (for Octal conversion) or less than 4-bits (for the Hexadecimal conversion), fill the most significant bits with 0s. Figure below illustrate this process
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Conversion between Octal and Hexadecimal: The easiest way to convert between Octal and Hexadecimal is to first convert to Binary and then reconvert to the other system.

	 Example on converting from Hexadecimal to Octal

	Converting (FA07)16 to Octal: 

First convert the hexadecimal number FA07h to binary. Then, convert the binary back to Octal
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Conversion from Decimal to Binary, Octal or Hexadecimal

To convert from decimal to any numbering system with base r : 

· The decimal number is divided by r, 

· Keeping the remainder aside, the result is further divided by r, and the new remainder is kept aside, 

· The new result is divided again by r, and so on till the result is less than r and this would be the last remainder, 

· The remainders make up the equivalent base-r number, with the last remainder being the most-significant digit and the first remainder being the least-significant digit. 

Examples:  Converting 122d to binary, octal and hexadecimal 
	

	First conversion to Binary: 

Dividend 

Quotient 

Remainder 

122 

61 

0 <--- LSB 

61 

30 

1 

30 

15 

0 

15 

7 

1 

7 

3 

1 

3 

1 

1 

1 

0 

1 <--- MSB 



Hence the result is:

1 

1 

1 

1 

0 

1 

0 

Second, the conversion to Octal: 

Dividend 

Quotient 

Remainder 

122 

15 

2 <--- LSD 

15 

1 

7 

1 

0 

1 <--- MSD 



Hence the result is:

1 

7 

2 

Notice that it took us only 3 steps to finish compared to 7 steps for the binary conversion.


Finally, the conversion to Hexadecimal: 

Dividend 

Quotient 

Remainder 

122 

7 

10 (i.e. A) 

7 

0 

7 



Hence the result is:

7 

A 

Notice that it took us only 2 steps to finish the conversion!.


An Important note

· It takes less steps to convert from decimal to hexadecimal, 

· So a quick way to convert from decimal to binary is to convert first to hexadecimal and then from hexadecimal to binary, 

· In the example above the 7A  would have been very easily converted to its binary equivalent: 1111010. 

Yet another method for converting decimal numbers to binary 

As one become more experienced with the powers of two, the decimal-to-binary conversion process could become direct and fast. First familiarize yourself with the powers of two listed in the table below: 
	Power 
	Decimal Equivalent 
	In English! 

	20 
	1 
	one 

	21 
	2 
	two 

	22 
	4 
	four 

	23 
	8 
	… 

	24 
	16 
	… 

	25 
	32 
	… 

	26 
	64 
	… 

	27 
	128 
	… 

	28 
	256 
	1/4 kilo 

	29 
	512 
	half-kilo 

	210 
	1,024 
	Kilo 

	211 
	2,048 
	two Kilos 

	212 
	4,069 
	4 Kilos 

	213 
	8,192 
	8 Kilos 

	214 
	16,384 
	16 Kilos 

	215 
	32,768 
	32 Kilos 

	… 
	… 
	… 

	220 
	1,048,576 
	Mega 

	221 
	2,097,152 
	2 Mega 

	… 
	… 
	… 

	230 
	1,073,741,824 
	Giga 

	231 
	2,147,483,648 
	2 Giga 

	… 
	… 
	… 

	240 
	1,024 Giga 
	Tera 

	… 
	… 
	… 


Now to convert a decimal number to binary, the procedure is very simple
1. Determine the highest possible power of two that is less or equal to the number. For example, the highest power of two in 122d is 64 and the highest power of two in 526d is 512 and so on. 

2. Put a 1 in the bit position corresponding to the highest power of two found above. So for a highest power of two of 64, we put 1 in the seventh bit position, and for a highest power of two of 512, we put a 1 in the 10th bit position. This is now our most significant bit. 

3. Subtract the highest power of two found in step 2 above from the number. 

4. Examine the remaining number: 
i. If it is larger or equal than the next power of two, then put a 1 in the next bit position and subtract this power of two from the number
ii. If it is less than the next power of two, put a 0 in the next bit position and repeat step 3 till all bit positions are filled.
The above process is best illustrated using an example: 

	 Example: Converting 76d to Binary

	1. The highest power of 2 less or equal to 76 is 64, hence the seventh (MSB) bit is 1: 

1 

. 

. 

. 

. 

. 

. 

2. Subtracting 64 from 76 we get 12. 

3. 12 is less than the next power of 2 which is 32, hence the sixth bit position is 0: 

1 

0 

. 

. 

. 

. 

. 

4. 12 is still less than the next power of 2 which is 16, hence the fifth bit position is 0: 

1 

0 

0 

. 

. 

. 

. 

5. 12 is greater than the next power of 2 which is 8, hence the fourth bit position is 1: 

1 

0 

0 

1 

. 

. 

. 

6. We subtract 8 from 12 and get 4, which will be compared to the next power of 2. 

7. 4 is equal to the next power of 2 which is 4, hence the third bit position is 1: 

1 

0 

0 

1 

1 

. 

. 

8. Subtracting 4 from 4 yield a zero, hence all the left bits are set to 0 to yield the final answer: 

1 

0 

0 

1 

1 

0 

0 




 Signed Numbers Representations  [image: image113.png]



Computers use binary format to represent all types of information. To represent signed numbers there are three options:

Signed Magnitude Representation

A sign bit is used to indicate the sign of the number, e.g. a 0 indicates a + sign and a 1 indicates a - sign (negative number). The rest of the number is just the magnitude in binary format. Examples: 
+9 is represented as 01001 
-9 is represented as 11001
Range: Using n bits, the range of numbers that can be represented is from -(2n-1 - 1) to +2n-1 - 1. Examples:

Using 8 bits, we can represent numbers in the range: -127 to +127.

Using 12 bits, we can represent numbers in the range: -2047 to +2047
Advantages: Simple (number representation is straight forward). 

Disadvantages: 

1. Has the problem of double representing the 0 (â€“0 and +0), 

2. Complicates the design of the logic circuits that handle signed-numbers arithmetic, 

3. This is because each of the sign and magnitude parts has to be processed separately, 

4. Also, the sign of both numbers have to be examined before the actual operation (addition or subtraction) is determined, 

5. Separate circuits are required to do the addition and subtraction operations. 

1's Complement Representation

Positive numbers are represented using normal binary equivalent while negative numbers are represented by the 1's complement (complement) of the normal binary representation of the magnitude. Examples:

+9 is represented as 01001 
-9 is represented as 10110 (obtained by complementing the binary representation of 9). 
Important Note: Negative numbers will always have a 1 in the MSB while positive numbers will have a 0 in the MSB
Range: Using n bits, the range of numbers that can be represented is from -(2n-1 - 1) to +2n-1 - 1.
Advantages: 

· Still relatively simple to represent the numbers, 

· Simpler Add/Subtract circuit design (subtracting a number from another involves complementing the subtracted and then adding it to the other number). 

Disadvantages: 

· Has the problem of double representing the 0 (0…000 and 11…111), 

· The Add/Subtract operations are still relatively complex, 
· This is because the last carry bit has to be examined to determine if an overflow
 has occurred, a further addition of a 1 is necessary (i.e. Addition/Subtraction is done in two-steps) or the output should be complemented. 

Overflow can occur when adding two numbers with the same sign (i.e. both positive or both negative) and the result is outside the range of possible numbers. Overflow can be detected by checking if the sign bit of the result is different from that of both operands. If the two operands have different signs, then overflow cannot occur and no need to check it.
	 Examples illustrating 1`s complement Add/Subtract operations

	Example 1: Adding 0111 + 0111 

The result is 1110 and the carry out is 0, hence an overflow has occurred (adding two positive numbers resulted in a negative number, -1 in this case). 
Example 2: Subtracting 0001 - 0111 

First the subtrahend is complemented and becomes 1000. Then it is added to the minuend and the result is 1001 with no end carry. The result represent â€“6 (the correct result) and no further addition is required. 
Example 3: Subtracting 0111 - 0001 

Again, the subtrahend is complemented and becomes 1110. Then it is added to the minuend and the result is 0101 with an end carry of 1. This carry has to be added to the previous result and yields 0110 (+6, the correct answer). 


2's Complement Representation

Positive numbers are represented using normal binary equivalent while negative numbers are represented by the 2's complement (complement) of the normal binary representation of the magnitude. The 2's complement of a binary number equals its 1's complement + 1. 

	 Examples of 2`s complement representation of signed numbers

	The easiest way to obtain the 2's complement of a binary number is by starting at the LSB, leaving all the 0s unchanged, look for the first occurrence of a 1. Leave this 1 unchanged and complement all the bits after it. 

+9 is represented as 01001 
To represent -9, first obtain the binary equivalent: 01001. Now leave the LSB 1 unchanged and complement all the remaining bits to get 10111, which represent -9 in 2's complement. 

Important Note: As with 1's complement, negative numbers will always have a 1 in the MSB while positive numbers will have a 0 in the MSB. 


Range: Using n bits, the range of numbers that can be represented is from -2n-1 to +2n-1 - 1 .
The -2n-1 is represented by the 1000â€¦000 code, which has no 2's complement, hence the unsymmetrical range. E.g. if 8 bits are used, the range of numbers that can be represented is from â€“128 to +127

Advantages: 

1. No double representation of 0 (the 2's complement of 0 is still 0), 

2. Simplest Add/Subtract circuit design (subtracting a number from another involves 2's complementing the subtracted and then adding it to the other number), 

3. Add/Subtract operations is done in one-step, the end carry is only examined to determine if an overflow has occurred (as shown in the example below), otherwise it is discarded. 

4. The end result is already represented in 2's complement (only if there is no overflow). 

That is why this is the most preferred method for signed-number representations in computers. 

	 Examples illustrating 2`s complement Add/Subtract operations

	Example 1: Adding 0111 + 0111 

The result is 1110 (-2), hence an overflow has occurred (adding two positive numbers resulted in a negative number). 
Overflow detection in 2's complement Add/Subtract operations: 

If the last two carries are not equal, an overflow has occurred

In example 1 above, the last carry out was 0 while the carry-before the last was 1, hence an overflow can be detected. 
Example 2: Subtracting 0001 - 0111 

First the subtrahend is 2's complemented and becomes 1001. Then it is added to the minuend and the result is 1010 with the last two carries being 0 (no overflow). The result represents â€“6 in 2's complement (the correct result) and no further operation is required.
Example 3: Subtracting 0111 - 0001 
Again, the subtrahend is complemented and becomes 1111. Then it is added to the minuend and the result is 0110 (+6, the correct result). Since the last two carries being 1 no overflow has occurred and no further operations are required. 


Disadvantages: 

· The unsymmetrical range, which is not a serious problem, 

· It is slightly more complex to obtain the 2's complement (it involves complementing and adding 1). However this can be accomplished very easily during the Add/Subtract operations (by making the first carry in 1 and complementing the subtrahend). 

Sign Extension

In many situations we need to move a signed-number from one location to another with larger number of bits. This has to be done while keeping both magnitude and sign correct. This procedure is called Sign-Extension
. For numbers represented in 1's or 2's complement the procedure is described below: 
	To move an n-bit signed number into an m-bit location with m>n: 

1. Put the n-bit number in the lowest-significance n-bits of the m-bit location, 

2. Fill all the remaining higher significance (m-n bits) with the sign bit (i.e. the nth bit). This ensures that both the magnitude and sign of the number are preserved. 

Examples on sign-extension: 

1. Represent the number 1101 (-3 in 2's complement or -2 in 1's complement) using 8-bits: 
Answer: Applying the procedure above we get: 11111101, which is -00000011 (i.e. -3) in 2's complement and -00000010 (i.e. -2) in 1's complement. Hence both the magnitude and sign were preserved. 

2. Represent the number 0101 (+5 in both1's and 2's complement) using 8-bits: 
Answer: Applying the procedure above we get: 00000101, which is still +5 in both 1's and 2's complement. 


Characters Representation  [image: image114.png]



Most computers represent characters using one of two types of binary codes; ASCII code or Unicode.

ASCII Code

· The ASCII code is the most popular binary code for character representation in computers, 

· 8-bit code, where 7-bits are used to represent the character and the 8th bit is used for error checking, 

· The ASCII character set is shown below. The row and column numbers are appended to produce the code in hexadecimal. E.g. the ASCII code for the letter A is 41, for B is 42, for the digit 0 is 30, for 1 is 31 

	The Charcter set of the ASCII Code

	    0   1   2   3   4   5   6   7   8   9   A   B   C   D   E   F

0  NUL SOH STX ETX EOT ENQ ACK BEL BS  HT  LF  VT  FF  CR  SO  SI

1  DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM  SUB ESC FS  GS  RS  US

2   SP  !   "   #   $   %   &   '   (   )   *   +   ,   -   .   /

3   0   1   2   3   4   5   6   7   8   9   :   ;   <   =   >   ?

4   @   A   B   C   D   E   F   G   H   I   J   K   L   M   N   O

5   P   Q   R   S   T   U   V   W   X   Y   Z   [   \   ]   ^   _

6   `   a   b   c   d   e   f   g   h   i   j   k   l   m   n   o

7   p   q   r   s   t   u   v   w   x   y   z   {   |   }   ~ DEL


The following is a more detailed description of the first 32 ASCII characters, often referred to as control codes.  
NUL (null)                   

SOH (start of heading)       

STX (start of text)          

ETX (end of text)            

EOT (end of transmission) - Not the same as ETB    

ENQ (enquiry)                

ACK (acknowledge)            

BEL (bell) - Caused teletype machines to ring a bell.  Causes a beep

             in many common terminals and terminal emulation programs.

BS  (backspace) - Moves the cursor (or print head) move backwards (left)

                  one space.

TAB (horizontal tab) - Moves the cursor (or print head) right to the next

                       tab stop.  The spacing of tab stops is dependent

                       on the output device, but is often either 8 or 10.

LF  (NL line feed, new line) - Moves the cursor (or print head) to a new

                               line.  On Unix systems, moves to a new line

                               AND all the way to the left.

VT  (vertical tab)           

FF  (form feed) - Advances paper to the top of the next page (if the

                  output device is a printer).

CR  (carriage return) - Moves the cursor all the way to the left, but does

                        not advance to the next line.

SO  (shift out) - Switches output device to alternate character set.            

SI  (shift in)  - Switches output device back to default character set.

DLE (data link escape)       

DC1 (device control 1)       

DC2 (device control 2)       

DC3 (device control 3)       

DC4 (device control 4)       

NAK (negative acknowledge)   

SYN (synchronous idle)       

ETB (end of transmission block) - Not the same as EOT  

CAN (cancel)                 

EM  (end of medium)  

SUB (substitute)             

ESC (escape) 

FS  (file separator)

GS  (group separator)

RS  (record separator)

US  (unit separator)   
Parity Bit

Data errors can occur during data transmission or storage/retrieval, hence we need a way to detect the occurrence of such errors. As mentioned before, the 8th bit in the ASCII code is used for error checking. This bit is usually referred to as the parity bit
. There are two ways for error checking: 

1. Even Parity: Where the 8th bit is set such that the total number of 1s in the 8-bit code word is even. E.g. the representation of the letter A (ASCII Code 41h) using even parity would be(the parity bit is marked with a Pon top of it): 

	P


	

	0 

1 

0 

0 

0 

0 

0 

1 




2. Odd Parity: The 8th bit is set such that the total number of 1s in the 8-bit code word is odd. Now the representation of the letter A using odd parity would be: 

	P


	

	1 

1 

0 

0 

0 

0 

0 

1 




Unicode

· ASCII code can represent up to 256 characters (if the MSB is not used for error checking), 

· This is not enough to uniquely represent all characters of all languages. That is why the Unicode was devised, 

· The Unicode is a 16-bit code that provides a unique number for every character, no matter what the platform, no matter what the program, no matter what the language, 

· Standard ASCII code (without the control characters) are represented in Unicode as they are with a (00)16 appended to the left. E.g. A is represented as 0041h, 
· The collapsible note below contains, as an example of Unicode, the Arabic character set. 
Each line below contains four fields separated by a semicolon, 

1. The first field gives the code 4-digit hexadecimal form, of an Arabic character, 

2. The second field gives a short schematic name for that character, abbreviated from the normative Unicode character name, 

3. The third field defines the joining type: R right-joining, D dual-joining, U non-joining, 
4. The fourth field defines the joining group 

The Arabic characters codes: 
0622; MADDA ON ALEF; R; ALEF

0623; HAMZA ON ALEF; R; ALEF

0624; HAMZA ON WAW; R; WAW

0625; HAMZA UNDER ALEF; R; ALEF

0626; HAMZA ON YEH; D; YEH

0627; ALEF; R; ALEF

0628; BEH; D; BEH

0629; TEH MARBUTA; R; TEH MARBUTA

062A; TEH; D; BEH

062B; THEH; D; BEH

062C; JEEM; D; HAH

062D; HAH; D; HAH

062E; KHAH; D; HAH

062F; DAL; R; DAL

0630; THAL; R; DAL

0631; REH; R; REH

0632; ZAIN; R; REH

0633; SEEN; D; SEEN

0634; SHEEN; D; SEEN

0635; SAD; D; SAD

0636; DAD; D; SAD

0637; TAH; D; TAH

0638; ZAH; D; TAH

0639; AIN; D; AIN

063A; GHAIN; D; AIN

0640; TATWEEL; C; 

0641; FEH; D; FEH

0642; QAF; D; QAF

0643; KAF; D; KAF

0644; LAM; D; LAM

0645; MEEM; D; MEEM

0646; NOON; D; NOON

0647; HEH; D; HEH

0648; WAW; R; WAW

0649; ALEF MAKSURA; D; YEH

064A; YEH; D; YEH

0671; HAMZAT WASL ON ALEF; R; ALEF

0672; WAVY HAMZA ON ALEF; R; ALEF

0673; WAVY HAMZA UNDER ALEF; R; ALEF

0674; HIGH HAMZA; U; 

0675; HIGH HAMZA ALEF; R; ALEF

0676; HIGH HAMZA WAW; R; WAW

0677; HIGH HAMZA WAW WITH DAMMA; R; WAW

0678; HIGH HAMZA YEH; D; YEH

0679; TEH WITH SMALL TAH; D; BEH

067A; TEH WITH 2 DOTS VERTICAL ABOVE; D; BEH

067B; BEH WITH 2 DOTS VERTICAL BELOW; D; BEH

067C; TEH WITH RING; D; BEH

067D; TEH WITH 3 DOTS ABOVE DOWNWARD; D; BEH

067E; TEH WITH 3 DOTS BELOW; D; BEH

067F; TEH WITH 4 DOTS ABOVE; D; BEH

0680; BEH WITH 4 DOTS BELOW; D; BEH

0681; HAMZA ON HAH; D; HAH

0682; HAH WITH 2 DOTS VERTICAL ABOVE; D; HAH

0683; HAH WITH MIDDLE 2 DOTS; D; HAH

0684; HAH WITH MIDDLE 2 DOTS VERTICAL; D; HAH

0685; HAH WITH 3 DOTS ABOVE; D; HAH

0686; HAH WITH MIDDLE 3 DOTS DOWNWARD; D; HAH

0687; HAH WITH MIDDLE 4 DOTS; D; HAH

0688; DAL WITH SMALL TAH; R; DAL

0689; DAL WITH RING; R; DAL

068A; DAL WITH DOT BELOW; R; DAL

068B; DAL WITH DOT BELOW AND SMALL TAH; R; DAL

068C; DAL WITH 2 DOTS ABOVE; R; DAL

068D; DAL WITH 2 DOTS BELOW; R; DAL

068E; DAL WITH 3 DOTS ABOVE; R; DAL

068F; DAL WITH 3 DOTS ABOVE DOWNWARD; R; DAL

0690; DAL WITH 4 DOTS ABOVE; R; DAL

0691; REH WITH SMALL TAH; R; REH

0692; REH WITH SMALL V; R; REH

0693; REH WITH RING; R; REH

0694; REH WITH DOT BELOW; R; REH

0695; REH WITH SMALL V BELOW; R; REH

0696; REH WITH DOT BELOW AND DOT ABOVE; R; REH

0697; REH WITH 2 DOTS ABOVE; R; REH

0698; REH WITH 3 DOTS ABOVE; R; REH

0699; REH WITH 4 DOTS ABOVE; R; REH

069A; SEEN WITH DOT BELOW AND DOT ABOVE; D; SEEN

069B; SEEN WITH 3 DOTS BELOW; D; SEEN

069C; SEEN WITH 3 DOTS BELOW AND 3 DOTS ABOVE; D; SEEN

069D; SAD WITH 2 DOTS BELOW; D; SAD

069E; SAD WITH 3 DOTS ABOVE; D; SAD

069F; TAH WITH 3 DOTS ABOVE; D; TAH

06A0; AIN WITH 3 DOTS ABOVE; D; AIN

06A1; DOTLESS FEH; D; FEH

06A2; FEH WITH DOT MOVED BELOW; D; FEH

06A3; FEH WITH DOT BELOW; D; FEH

06A4; FEH WITH 3 DOTS ABOVE; D; FEH

06A5; FEH WITH 3 DOTS BELOW; D; FEH

06A6; FEH WITH 4 DOTS ABOVE; D; FEH

06A7; QAF WITH DOT ABOVE; D; QAF

06A8; QAF WITH 3 DOTS ABOVE; D; QAF

06A9; OPEN KAF; D; GAF

06AA; SWASH KAF; D; SWASH KAF

06AB; KAF WITH RING; D; GAF

06AC; KAF WITH DOT ABOVE; D; KAF

06AD; KAF WITH 3 DOTS ABOVE; D; KAF

06AE; KAF WITH 3 DOTS BELOW; D; KAF

06AF; GAF; D; GAF

06B0; GAF WITH RING; D; GAF

06B1; GAF WITH 2 DOTS ABOVE; D; GAF

06B2; GAF WITH 2 DOTS BELOW; D; GAF

06B3; GAF WITH 2 DOTS VERTICAL BELOW; D; GAF

06B4; GAF WITH 3 DOTS ABOVE; D; GAF

06B5; LAM WITH SMALL V; D; LAM

06B6; LAM WITH DOT ABOVE; D; LAM

06B7; LAM WITH 3 DOTS ABOVE; D; LAM

06B8; LAM WITH 3 DOTS BELOW; D; LAM

06B9; NOON WITH DOT BELOW; D; NOON

06BA; DOTLESS NOON; D; NOON

06BB; DOTLESS NOON WITH SMALL TAH; D; NOON

06BC; NOON WITH RING; D; NOON

06BD; NOON WITH 3 DOTS ABOVE; D; NOON

06BE; KNOTTED HEH; D; KNOTTED HEH

06BF; HAH WITH MIDDLE 3 DOTS DOWNWARD AND DOT ABOVE; D; HAH

06C0; HAMZA ON HEH; R; TEH MARBUTA

06C1; HEH GOAL; D; HEH GOAL

06C2; HAMZA ON HEH GOAL; R; HAMZA ON HEH GOAL

06C3; TEH MARBUTA GOAL; R; HAMZA ON HEH GOAL

06C4; WAW WITH RING; R; WAW

06C5; WAW WITH BAR; R; WAW

06C6; WAW WITH SMALL V; R; WAW

06C7; WAW WITH DAMMA; R; WAW

06C8; WAW WITH ALEF ABOVE; R; WAW

06C9; WAW WITH INVERTED SMALL V; R; WAW

06CA; WAW WITH 2 DOTS ABOVE; R; WAW

06CB; WAW WITH 3 DOTS ABOVE; R; WAW

06CC; DOTLESS YEH; D; YEH

06CD; YEH WITH TAIL; R; YEH WITH TAIL

06CE; YEH WITH SMALL V; D; YEH

06CF; WAW WITH DOT ABOVE; R; WAW

06D0; YEH WITH 2 DOTS VERTICAL BELOW; D; YEH

06D1; YEH WITH 3 DOTS BELOW; D; YEH

06D2; YEH BARREE; R; YEH BARREE

06D3; HAMZA ON YEH BARREE; R; YEH BARREE

06D5; AE; U; 

06FA; SEEN WITH DOT BELOW AND 3 DOTS ABOVE; D; SEEN

06FB; DAD WITH DOT BELOW; D; SAD

06FC; GHAIN WITH DOT BELOW; D; AIN
Test on data representation  [image: image115.png]



1.   All data manipulated by computers must be in ______format. 

2.   Computers cannot process images because they have no way of representing pictures. 

  [image: image116.wmf]True 

  [image: image117.wmf]False 

3.   The decimal system has a base of 10, while the hexadecimal system has a base of: 

  [image: image118.wmf]2 

  [image: image119.wmf]8 

  [image: image120.wmf]16 

  [image: image121.wmf]4 

4.   One of the following numbers is illegal in base 4: 

  [image: image122.wmf]1234 

  [image: image123.wmf]3320 

  [image: image124.wmf]10000 

  [image: image125.wmf]111111 

5.   The decimal equivalent of the number (200)5 is : 

  [image: image126.wmf]125 

  [image: image127.wmf]1000 

  [image: image128.wmf]600 

  [image: image129.wmf]None of the above 

6.   The decimal equivalent of the number (200)3 is: 

  [image: image130.wmf]600 

  [image: image131.wmf]180 

  [image: image132.wmf]9 

  [image: image133.wmf]18 

7.   The binary equivalent of the number (700)16 is: 

  [image: image134.wmf]000000000111 

  [image: image135.wmf]11100000000 

  [image: image136.wmf]0111 

  [image: image137.wmf]111000000 

8.   The octal equivalent of the number (700)16 is: 

  [image: image138.wmf]1000 

  [image: image139.wmf]700 

  [image: image140.wmf]3400 

  [image: image141.wmf]7000 

9.   The octal equivalent of the number (1100010)2 is: 

  [image: image142.wmf]310 

  [image: image143.wmf]142 

  [image: image144.wmf]304 

  [image: image145.wmf]320 

10. Hexadecimal equivalent of the number (1100010)2 

  [image: image146.wmf]610 

  [image: image147.wmf]A4 

  [image: image148.wmf]62 

  [image: image149.wmf]None of the above 

11. The hexadecimal equivalent of the number (10)10: 

  [image: image150.wmf]A 

  [image: image151.wmf]16 

  [image: image152.wmf]10 

  [image: image153.wmf]None of the above 

12.   The binary equivalent of the number (20)10 is: 

  [image: image154.wmf]11001 

  [image: image155.wmf]10111 

  [image: image156.wmf]10101 

  [image: image157.wmf]10100 

13.   The signed-magnitude binary representation of the number +27 is: 

  [image: image158.wmf]00011011 

  [image: image159.wmf]11111011 

  [image: image160.wmf]11011000 

  [image: image161.wmf]None of the above 

14.   The signed-magnitude binary representation of the number -227 is: 

  [image: image162.wmf]11111111 

  [image: image163.wmf]10000000 

  [image: image164.wmf]01111111 

  [image: image165.wmf]None of the above 

15.   Using 8-bits signed-magnitude representation, the range of numbers that can be represented is: 

  [image: image166.wmf]-128 to +128 

  [image: image167.wmf]-255 to +255 

  [image: image168.wmf]-127 to +127 

  [image: image169.wmf]-256 to +256 

16.   Using the same number of bits, both the signed-magnitude and 1's complement representations will have the same range. 

  [image: image170.wmf]True 

  [image: image171.wmf]False 

17.   All signed-number representations suffer from the zero double representation problem. 

  [image: image172.wmf]True 

  [image: image173.wmf]False 

18.   The 1's complement representation of signed-numbers is the most widely used in computers. 

  [image: image174.wmf]True 

  [image: image175.wmf]False 

19.   The 2's complement representation of -34 is: 

  [image: image176.wmf]11100010 

  [image: image177.wmf]11011110 

  [image: image178.wmf]01100010 

  [image: image179.wmf]00100010 



20.   Overflow can occur when adding two numbers with the same sign. 

  [image: image180.wmf]True 

  [image: image181.wmf]False 

21.   A ______bit is added to data for error checking/detection. 

22.   The ______code is the most popular binary codes for character representation in computers. 

23.   The ______is a 16-bit code that can represent all the characters in all the languages of the world. 

24.   The binary data 0000000 with even parity becomes: 

  [image: image182.wmf]00000000 

  [image: image183.wmf]10000000 

  [image: image184.wmf]00000001 

  [image: image185.wmf]None of the above 

25.   The binary data 0000000 with odd parity becomes: 

  [image: image186.wmf]00000000 

  [image: image187.wmf]10000000 

  [image: image188.wmf]00000001 

  [image: image189.wmf]None of the above 
	  Test Results 



	

	All data manipulated by computers must be in binary format. 

Computers cannot process images because they have no way of representing pictures. 

F 

The decimal system has a base of 10, while the hexadecimal system has a base of: 

16 

One of the following numbers is illegal in base 4: 

1234 

The decimal equivalent of the number (200)5 is : 

None of the above 

The decimal equivalent of the number (200)3 is: 

18 

The binary equivalent of the number (700)16 is: 

11100000000 

The octal equivalent of the number (700)16 is: 

3400 

The octal equivalent of the number (1100010)2 is: 

142 

The hexadecimal equivalent of the number (1100010)2 is: 

62 

The hexadecimal equivalent of the number (10)10 is: 

A 

The binary equivalent of the number (20)10 is: 

10100 

The signed-magnitude binary representation of the number +27 is: 

00011011 

The signed-magnitude binary representation of the number -227 is: 

None of the above 

Using 8-bits signed-magnitude representation, the range of numbers that can be represented is: 

-127 to +127 

Using the same number of bits, both the signed-magnitude and 1's complement representations will have the same range. 

T 

All signed-number representations suffer from the zero double representation problem. 

F 

The 1's complement representation of signed-numbers is the most widely used in computers. 

F 

The 2's complement representation of –34 is: 

11011110 

Overflow can occur when adding two numbers with the same sign. 

T 

A parity bit is added to data for error checking/detection. 

The ASCII code is the most popular binary codes for character representation in computers. 

The Unicode is a 16-bit code that can represent all the characters in all the languages of the world. 

The binary data 0000000 with even parity becomes: 

00000000 

The binary data 0000000 with odd parity becomes: 

10000000
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Objectives:

· Introduce the different registers in the Intel's x86 family of microprocessors. 

· Show the differences between the registers of the old 16-bit microprocessors (such as the 8086) and those of the newer IA32 (32-bit) microprocessors (such as the Pentium family). 

Introduction[image: image191.png]



· As explained in the Overview of Computers unit, registers are a very important part of CPU because: 

1. Their very fast access, 

2. They are directly linked to the control unit and ALU, 

3. Hence instructions that utilize registers for operands' storage execute faster than instructions which utilize the main memory for operand storage. 

· Registers are connected to other units in the CPU through an internal data bus. This internal data bus is usually twice the size of the external data bus. 

· Intel's processors 8086, 8088, and 80286 had 16-bit registers, while latter generations (80386, 80486, Pentium, II, III, IV) have 32-bit registers. These are called IA32 (Intel-Architecture 32) and contain numerous improvements over the older generations. 

· The new IA32 processors maintain backward compatibility with the older x86 processors (i.e. programs that utilize older x86 16-bit registers will still run on newer IA32 microprocessors). 

Next, the different x86 registers are reviewed followed by the IA32 registers. 

X86 16-bit Registers [image: image192.png]



There are 4 types of registers in the x86 processors: 

1. Data Registers 

2. Segment Registers 

3. Pointer and Index Registers 

4. Status (FLAGS) Register 

Data Registers

[image: image193.png]


There are 4 16-bit general-purpose registers, which can be used by the programmer for arithmetic and data movement. In addition to being general-purpose, each of these registers has a special function within the CPU. Also each register can be addressed as either a 16-bit or 8-bit value. These registers (shown in the figure below) and their special functions are listed below: 
1. AX (accumulator): This is the accumulator
 register (it can hold an operand to an arithmetic operation and the result of the operation). As shown in the figure below, this register:

· Can be addressed as a 16-bit value as AX
· Its upper 8-bits can be addressed as AH (hence bit 0 in AH corresponds to bit 8 in AX and bit 7 in AH corresponds to bit 15 in AX)
· Its lower 8-bits can be addressed as AL (hence bit 0 in AL corresponds to bit 0 in AX and bit 7 in AL corresponds to bit 7 in AX)
· For example: If 1100110001101100 is moved to AX, then the value of AL would be: 

0 1 1 0 1 1 0 0
and the value of AH would be: 

1 1 0 0 1 1 0 0

2. BX (base register): This register can hold the address of a procedure or a variable. It can also perform arithmetic and data movement. Again as with the AX, this register can be addressed as a 16-bit value BX, as an 8-bit value BH corresponding to the higher 8-bits of BX, or as BL corresponding to the lower 8-bits of BX. 

3. CX (counter): This register acts as a counter for repeating or looping instructions. These instructions automatically repeat and decrement CX. Similar to AX and BX, it is possible to address the 16-bit value as CX, the upper 8-bits value as CH or the lower 8-bits as CL. 

4. DX (data): This register has a special role in multiply and divide operations. When multiplying, for example, it holds the upper 16-bits of the product. Again, the 16-bit value can be addressed as DX, the upper 8-bits value as DH or the lower 8-bits as DL. 
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Memory Segments

· Memory segmentation (i.e. partitioning into smaller segments) is necessary since the 20-bits memory addresses cannot fit in the 16-bits CPU registers (i.e. addresses of data and instructions can not be stored directly in the x86 registers) 

· Since x86 registers are 16-bits wide, a memory segment
 is made of 216 consecutive words (i.e. 64K words) 

· Each segment has a number identifier that is also a 16-bit number (i.e. we have segments numbered from 0 to 64K) 

· A memory location within a memory segment is referenced by specifying its offset from the start of the segment. Hence the first word in a segment has an offset of 0 while the last one has an offset of FFFFh 
	Segment 
	Physical
Address (hex) 

	
	… 

	
	10021 

	
	10020 

	End of Segment 2 
	1001F 

	
	1001E 

	
	… 

	
	10010 

	End of Segment 1 
	1000F 

	
	1000E 

	
	… 

	
	10000 

	End of Segment 0 
	0FFFF 

	
	0FFFE 

	
	… 

	
	… 

	
	00021 

	Start of Segment 2 
	00020 

	
	0001F 

	
	… 

	
	00011 

	Start of Segment 1 
	00010 

	
	0000F 

	
	… 

	
	00003 

	
	00002 

	
	00001 

	Start of Segment 0 
	00000 


· To reference a memory location its logical address
 has to be specified. The logical address is written as: 

Segment number:offset
For example, A43F:3487h means offset 3487h within segment A43Fh. 

· The logical address has to be translated to a 20-bit physical address
 that specifies the actual location of the word in the main memory. This is done as follows: 

1. The segment number is shifted 4-bits (or 1 hexadecimal digit)to the left. This equivalent to multiplying by 10h, i.e. a 0h is inserted at the LSD of the hexadecimal segment number 

2. The resulting 5-digit hexadecimal segment number is added to the offset to yield the 20-bits physical address 

Example: The logical address A43F:3487h is translated to a 20-bit physical address as follows: First the segment number is shifted one hexadecimal digit to the left and a 0 is inserted from the right. Then it is added to the offset to give the 20-bit physical address: 

[image: image196.png], A43FOh
3487h

A7877h




· There is a lot of overlapping between segments in the main memory (see table below). A new segment starts every 10h locations (i.e. every 16 locations), hence the starting address of a segment always has a 0h LSD. This is demonstrated in the table below: 
· Each 16 memory words are called a paragraph
 and an address that are divisible by 16 (i.e. ends with 0h) represents a paragraph boundary
 
· Due to segments overlapping logical addresses are not unique as shown in the example below: 
An example on translating a physical address to a logical address

The physical address A7877h can be represented by many logical addresses since it is common to numerous segments. If we just take the segments A781h, A782h, A783h, A784h, A785h, A786h and A787h, then the above physical address can be translated to logical addresses in these segments as: 

offset = physical address - segment number X 10h
So the logical addresses are: 

A781:0067h, A782:0057h, A783:0047h, A784:0037h, A785:0027h, A786:0017h, A787:0007h,
A physical address, though may be common to many segments, will have a unique offset within each of these segments as was shown in the example above. The next example also demonstrate this fact:

Example: What is the segment number where the physical address A7877h has an offset of CF17h ? 
The equation we use now is: 

segment number X 10h = physical address - offset
So the segment number for the above physical address and offset is: 

Segment number = (A7877h - CF17h)/10h = 9A960h/10h = 9A96h
Program Segments

· Machine language programs usually have 3 different parts. Each of these parts is stored in different memory segments: 

1. Instructions: This is the code part and is stored in the code segment
 

2. Data: This is the data part which is manipulated by the code and is stored in the data segment
 

3. Stack: The stack
 is a special memory buffer outside the CPU that is maintained by the CPU as a temporary holding area for addresses and data. It is organized as Last-In-First-Out (LIFO) buffer and is used by the CPU to implement procedure calls. This data structure is stored in the stack segment
 

· The segment numbers for the code segment, the data segment, and the stack segment are stored in the segment registers CS, DS, and SS, respectively 

· A fourth segment register, the ES, or extra segment is provided for programs that need to access a second data segment 

· Segment registers cannot be used in arithmetic operations 

· Program segments do not need to occupy the whole 64K locations. Due to segments' overlapping, program segments that are less than 64K word can be placed close together 

· At anytime, only the four memory segments specified by the segment registers are active (i.e. can be accessed). However, the program can alter the content of these registers to access different segments 

Pointer and Index Registers

· These registers contain the offsets
 of data and instructions 

· The offset refers to the distance of a variable, label, or instruction from its base segment 

· Are used with arrayed data (such as strings, arrays and other data structures containing multiple elements). They increase the processing speed of such data structures 

· Can be used in arithmetic and other operations 

The index registers are: 

1. SP (stack pointer): 

· Contains an assumed offset value of the top of the stack 

· Combined with the SS register form the complete logical address of the top of the stack 

· The stack is maintained as a LIFO with its bottom at the start of the stack segment (specified by the SS segment register) 

· The top of the stack (the location of the last data in the stack) is specified by the offset stored in the SP register 

2. BP (base pointer): 

· As it is with the stack pointer, this register can hold an offset from the SS register 

· It is usually used by subroutines to locate variables that were passed on the stack by a calling program 

· Unlike the SP register, the BP can be used to specify the offset of other program segments 

3. SI (source index): 

· Used in conjunction with the DS register to point to data locations in the data segment 

· Used with string movement instructions. It would point to the source string. 
4. DI (destination index): 

· Similar function to the SI 

· Used in conjunction with the ES register in string operations. In string movement instructions it points to the destination string 

5. IP (Instruction Pointer): 

· This is the register used for accessing instructions 

· While the CS register contains the segment number of the next instruction, the IP contains the offset of that instruction in the code segment 

· As was shown in the section on the fetch-execute cycle in the first unit, the IP register gets updated by the control unit every time an instruction is executed such that it will always point to the next instruction 

· Unlike other registers, the IP can not be manipulated by instructions (i.e. it cannot appear as an operand in any instruction) 

Status Register

Contains a group of status bits called flags
 that indicate the status of the CPU or the result of arithmetic operations. There are two types of flags: 
1. The status flags
 which reflect the result of executing an instruction. The programmer cannot set/reset these flags directly. 

2. The control flags
 enable or disable certain CPU operations. The programmer can set/reset these bits to control the CPU's operation. 

Summary of the x86 Flags

The 16-bit status (flag) register in the x86 processors looks like this (bit positions are specified at the op): 
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An x bit means an unidentified value. Details of the different Flags are below: 

· Control Flags: There are three control flags; 

1. The Direction Flag (D): Affects the direction of moving data blocks by such instructions as MOVS, CMPS and SCAS. The flag values are 0 = up and 1 = down and can be set/reset by the STD (set D) and CLD (clear D) instructions. 

2. The Interrupt Flag (I): Dictates whether or not system interrupts can occur. Interrupts are actions initiated by hardware block such as input devices that will interrupt the normal execution of programs. The flag values are 0 = disable interrupts or 1 = enable interrupts and can be manipulated by the CLI (clear I) and STI (set I) instructions. 

3. The Trap Flag (T): Determines whether or not the CPU is halted after the execution of each instruction. When this flag is set (i.e. = 1), the programmer can single step through his program to debug any errors. When this flag = 0 this feature is off. This flag can be set by the INT 3 instruction. 

· Status Flags: There are six status flags 

1. The Carry Flag (C): This flag is set when the result of an unsigned arithmetic operation is too large to fit in the destination register. This happens when there is an end carry in an addition operation or there an end borrow in a subtraction operation. A value of 1 = carry and 0 = no carry. 

2. The Overflow Flag (O): This flag is set when the result of a signed arithmetic operation is too large to fit in the destination register (i.e. when an overflow occurs). Overflow can occur when adding two numbers with the same sign (i.e. both positive or both negative). A value of 1 = overflow and 0 = no overflow. 

3. The Sign Flag (S): This flag is set when the result of an arithmetic or logic operation is negative. This flag is a copy of the MSB of the result (i.e. the sign bit). A value of 1 means negative and 0 = positive. 

4. The Zero Flag (Z): This flag is set when the result of an arithmetic or logic operation is equal to zero. A value of 1 means the result is zero and a value of 0 means the result is not zero. 

5. The Auxiliary Carry Flag (A): This flag is set when an operation causes a carry from bit 3 to bit 4 (or a borrow from bit 4 to bit 3) of an operand. A value of 1 = carry and 0 = no carry. 

6. The Parity Flag (P): This flags reflects the number of 1s in the result of an operation. If the number of 1s is even its value = 1 and if the number of 1s is odd then its value = 0. 

 IA32 Registers  [image: image198.png]



· The IA32 started with the 80386 processor, which also boasted a new 32-bit address bus 

· The Pentium series enhanced performance further by increasing the data bus to 64-bits 

· IA32 processors kept backward compatibility, i.e. they can still run machine programs written for old 16-bit x86 generations 

· To use the 32-bit register, on of the following assembler directives has to be specified: .386 or .486 or .586 

· The following changes were implemented in the IA32 registers: 

General Purpose Registers: 

1. There are 8 data registers now named R0 to R7, shown in Figure  below 
2. Eight 64-bit floating-point registers named FP0 to FP7 were added for holding 64-bit floating-point operands (see Figure below)
3. Registers R0 to R3 are also called EAX, ECX, EDX and EBX, respectively. These are the extended 32-bit version of the old x86 data registers 

4. The lower 16-bits of these four registers can still be referenced as AX, CX, DX and BX for backward compatibility with the older x86 architecture. Also, the lowest 8-bits can be referenced as AL, CL, DL and BL while bits 9-15 can be referenced as AH, CH, DH and BH. This illustrated in Figure below 
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Segment Register: 

1. Segment registers are still 16-bits wide, i.e. the physical memory can have up to 64K segments 

2. Two new data segment registers were added; FS and GS. So now a program can reference data in 4 different data segments 

3. The other segment registers kept their old x86 names (CS, SS, DS and ES). Figure below shows the IA32 segment registers. 
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Pointer and Index Registers: 

1. The Instruction Pointer register is now 32-bits wide and addressed as EIP (extended IP) allowing for a code segment size of up to 4G words 

2. The lower 16-bit of the EIP register are referenced as IP for compatibility with older x86 architecture 

3. Data registers R4 to R7 can be used as extended pointer and index registers named as; ESP (extended stack pointer), EBP (extended base pointer), ESI (extended source index) and EDI (extended destination index), respectively 

4. The lower 16-bits of these registers can still be referenced as SP, BP, SI, and DI for compatibility with the older x86 architecture. 

Status and Flags Register

	Flag Register:
This is an extended 32-bit (EFLAGS) register, with the lower 16-bits containing the regular x86 flags. Figure below shows the IA32 Pointer, Index and Flags registers.

In programming, many times the programmer or the developer need to monitor the kind of result produced from the execution of arithmetic instructions and then based on the status report the program will perform specific tasks. To fulfill that demand, Intel processors provide us the 32-bit register named EFLAGS consisting of several flags. Based on these flags, the CPU is directed to which sequence of instructions it should be executing.

The flags are grouped into:

· Status Flags

· Control Flags

· System Flags
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Status Flags

We can monitor the kind of result produced from the execution of arithmetic instructions by evaluating the status flags of the EFLAGS register. There are six status flags defined in the following tables:

	Name
	Stands for
	Meaning

	OF
	Overflow
	OF set to 1 if the result of signed number operation is out-of-range 

	SF
	Sign
	SF set to 1 if the leftmost (i.e. most significant) bit of the result is 1. 

	ZF
	Zero
	ZF set to 1 if the result is equal to 0. 

	AF
	Auxiliary Carry
	AF set to 1 if there is a carry out of/borrow to the least significant hexadecimal digit or bit#3 of the result. 

	PF
	Parity
	PF set to 1 if the rightmost (i.e. least significant) 8-bits of the result contain an even number of ones. 

	CF
	Carry Flag
	CF set to 1 if there is a carry out of the most significant bit of the result. This indicates that the result of unsigned number operation is out-of-range. 


Control Flag

There is only one control flag, named DF (Direction Flag). We use control Flag only for string instructions.

System Flag

In addition, because of its very complex architecture and its sophisticated capability, the Pentium processor provides us many additional flags to monitor and control the overall operations. These flags are useful for Operating System designer, Security management, and for supporting multimedia applications. They controls I/O, maskable interrupts, debugging, task switching, and virtual-8086 mode. However, most of these flags cannot be manipulated in real-mode programming.

· AC (Alignment Check mode, bit 18) 

· VM (Virtual-8086 mode, bit 17) 

· RF (Resume Flag, bit-16) 

· NT (Nested Task, bit 14) 

· IOPL (I/O Privilege Level, bits 12 and 13) 

· IF (Interrupt-Enable Flag, bit 9) 

· TF (trap Flag, bit 8) 

Overflow Flag and Carry Flag

Both are indicators of out-of-range condition. Overflow flag is used to evaluate an out-of-range condition of signed number operations whereas Carry flag is used in unsigned number operations. Since a binary number can represent an unsigned number or signed number, the processor computes both flags and the user checks the appropriate flag to check if the result is out of range or not. 

	Overflow Flag is set to 1 if both operands have the same sign and the result has a different sign. Otherwise, OF is reset to 0. Subtraction operation A - B can be performed as operation A + (-B). Logically, we can formulate the OF as:

OF = (NOT a AND NOT b AND c) OR (a AND b AND NOT c)

a is the sign bit of the first operand; b is the sign bit of the second operand; and c is the sign bit of the result.


The Pentium processor performs a subtraction operation A - B as an addition operation A + (-B). (-B) is obtained by finding the two's complement of B. There are four possible conditions happen due to arithmetic operations.

OF=0, CF=0 


OF=0, CF=1 


OF=1, CF=0 


OF=1, CF=1 
	Example: Addition 0Fh + 08h

	AL = 0Fh

0

0

0

0

1

1

1

1 

BL = 08h

0

0

0

0

1

0

0

0 

AL+BL=17h

0

0

0

0

1

0

1

1

1 

 CF=0, OF=0,Both operands and the result are positive.

 PF=1, ZF=0, SF=0, AF=1


	Example: Addition 0Fh + F8h

	AL = 0Fh

0

0

0

0

1

1

1

1 

BL = F8h

1

1

1

1

1

0

0

0 

AL+BL=07h

1

0

0

0

0

0

1

1

1 

 CF=1, OF=0,Operands have different sign bits.

 PF=0, ZF=0, SF=0, AF=1

 As a signed operation, 15 + (-8) = 7 (ok).

 As an unsigned operation, 15 + 248 = 263 > 255 (out-of-range).


	Example: Addition 4Fh + 40h

	AL = 4Fh

0

1

0

0

1

1

1

1 

BL = 40h

0

1

0

0

0

0

0

0 

AL+BL=8Fh

0

1

0

0

0

1

1

1

1 

 CF=0, OF=1, The result and operands have different sign bits.

 PF=0, ZF=0, SF=1, AF=0

 As a signed operation, 79 + 64 = 143 > 127 (out-of-range).

 As an unsigned operation, 143 < 255 (ok).


	Example: Addition F8h + 81h

	AL = F8h

1

1

1

1

1

0

0

0 

BL = 81h

1

0

0

0

0

0

0

1 

AL+BL=79h

1

0

1

1

1

1

0

0

1 

 CF=1, OF=1, Operands are negatives, the result is positive.

 PF=0, ZF=0, SF=0, AF=0

 As a signed operation, -8 + -127 = -135 < -128 (out-of-range).

 As an unsigned operation, 248 + 129 = 377 > 255 (out-of-range).


However, compare the above examples with the following examples:

	Example: Subtraction 0Fh - 08h

	AL = 0Fh

0

0

0

0

1

1

1

1 

BL = -08=F8h

1

1

1

1

1

0

0

0 

AL+BL=07h

0

0

0

0

0

0

1

1

1 

 CF=0 Compare it with the addition 0Fh + F8h, OF=0

 PF=0, ZF=0, SF=0, AF=0 (Why?)

 As a signed operation, 15 - 8 = 7 (ok).

 As an unsigned operation, 15 - 8 = 7 > 0 (ok).


	Example: Subtraction F8h - 7Fh

	AL = F8h

1

1

1

1

1

0

0

0 

BL = -7Fh = 81h

1

0

0

0

0

0

0

1 

AL+BL=79h

1

0

1

1

1

1

0

0

1 

 CF=0, OF=1

 PF=0, ZF=0, SF=0, AF=1 (Why?)

 As a signed operation, -8 -127 = -135 < -128 (out-of-range).

As an unsigned operation, because of no negative -8=248. Thus, 248 - 127 = 121 < 255. (Ok)




Flag Manipulation Instructions

Pentium accommodates with some instructions to manipulate the flags directly.

	Instructions 
	Usage 

	CLC 
	CF = 0 

	STC 
	CF = 1 

	CMC 
	To complement CF. If the previous CF is 0, then the result is 1. 


 Test on X86 Registers  [image: image203.png]



1.   Instructions that utilize registers for operands' storage execute much faster than instructions that utilize the main memory for operand storage. 

  [image: image204.wmf]True 

  [image: image205.wmf]False 

2.   Registers are connected to other units in the CPU through an internal _______. 

3.   Older x86 processors had register sizes of 20-bits. 

  [image: image206.wmf]True 

  [image: image207.wmf]False 

4.   Newer IA32 processors wont run old programs written for older x86 processors due to their different register sizes. 

  [image: image208.wmf]True 

  [image: image209.wmf]False 

5.   The ______register hold an operand to an arithmetic operation and the result of the operation. 

6.   The lower 8-bits of the AX register can be addressed as: 

  [image: image210.wmf]AH 

  [image: image211.wmf]BH 

  [image: image212.wmf]BL 

  [image: image213.wmf]AL 

7.   The ______register acts as a counter for repeating or looping instructions. 

8.   The extended AX (EAX) register in the Pentium processor is also named ______. 

9.   The BX register is used in multiplication operation to hold the upper 16-bits of the result. 

  [image: image214.wmf]True 

  [image: image215.wmf]False 


10.   Memory segmentation (partitioning) was necessary because the x86 registers were 16-bits and could not hold the 20-bit addresses of the main memory. 

  [image: image216.wmf]True 

  [image: image217.wmf]False 

11.   Since the x86 has an address bus of 20-bits, its memory is segmented into 1 M segments (i.e. 2 20). 

  [image: image218.wmf]True 

  [image: image219.wmf]False 

12.   A memory location within a memory segment is referenced by specifying its offset from the end of the segment. 

  [image: image220.wmf]True 

  [image: image221.wmf]False 

13.   Each logical address maps to a unique physical address. 

  [image: image222.wmf]True 

  [image: image223.wmf]False 

14.   Each logical address maps to a unique physical address. 

  [image: image224.wmf]True 

  [image: image225.wmf]False 

15.   The logical address F00F:1000h translates to the physical address: 

  [image: image226.wmf]1F00Fh 

  [image: image227.wmf]F10F0h 

  [image: image228.wmf]1000Fh 

  [image: image229.wmf]F100Fh 

16.   The physical address 0000Ah is common to: 

  [image: image230.wmf]one segment only 

  [image: image231.wmf]two segments 

  [image: image232.wmf]four segments 

  [image: image233.wmf]64K segments 

17.   The segment number where the physical address 0FFFFh has an offset of FFFFh is: 

  [image: image234.wmf]A123h 

  [image: image235.wmf]FFFFh 

  [image: image236.wmf]0000h 

  [image: image237.wmf]0FFFh 

18.   The segment number where the physical address 0FFFFh has an offset of 000Fh is: 

  [image: image238.wmf]A123h 

  [image: image239.wmf]FFF0h 

  [image: image240.wmf]0FF0h 

  [image: image241.wmf]0FFFh 

19.   Machine language programs are usually divided into three segments; code segment, ______segment and stack segment. 

20.   The CPU uses the stack segment to implement procedural calls. 

  [image: image242.wmf]True 

  [image: image243.wmf]False 

21.   The register that contains the segment number for the code segment is: 

  [image: image244.wmf]CS 

  [image: image245.wmf]BX 

  [image: image246.wmf]SS 

  [image: image247.wmf]DS 

22.   Memory segments are implemented such that they do not overlap to avoid mixing the different program segments. 

  [image: image248.wmf]True 

  [image: image249.wmf]False 


23.   If the contents of some of a CPU registers are as follows: 
	Register Name 
	Contents (hex) 

	AX 
	C023 

	BX 
	1000 

	CX 
	A628 

	DX 
	EF05 

	CS 
	7FF0 

	DS 
	1FF0 

	SS 
	1000 

	ES 
	11F0 

	SP 
	0020 

	IP 
	765F 

	Flags 
	1155 


	The contents of the AH register is: 
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24.   Referring to the table in question 23, the value of the sign flag is 0. 

  [image: image254.wmf]True 

  [image: image255.wmf]False 

25.   Referring to the table in question 23, the value of the carry flag is 0. 

  [image: image256.wmf]True 

  [image: image257.wmf]False 

26.   Referring to the table in question 23, the value of the zero flag is 1. 

  [image: image258.wmf]True 

  [image: image259.wmf]False 

27.   Referring to the table in question 23, the result of adding AL to BH would be: 
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28.   As a result of the operation in question 27 above, the contents of the flag bits S, Z, and C would be: 
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29.   Referring to the table in question 23, the physical address of the next instruction to be fetched from the main memory is:

  [image: image268.wmf]765F0h 

  [image: image269.wmf]8755Fh 

  [image: image270.wmf]7FF00h 

  [image: image271.wmf]A6280h 


30.   Referring to the table in question 23, the physical address of the top of the stack is:

  [image: image272.wmf]865F0h 

  [image: image273.wmf]8675Fh 

  [image: image274.wmf]7FF00h 

  [image: image275.wmf]10020h 

31.   This means that the number of words in the stack are:

  [image: image276.wmf]1FF0h 

  [image: image277.wmf]1000h 

  [image: image278.wmf]32 

  [image: image279.wmf]Non of the above 

32.   In the Pentium processor, data register R3 refers to the extended BX register. 

  [image: image280.wmf]True 

  [image: image281.wmf]False 

33.   In IA32 processors, the stack pointer register (SP) is stored in lower 16-bits of register R5. 

  [image: image282.wmf]True 

  [image: image283.wmf]False 

34.   In IA32 processors, the number of segment registers was increased to 6 registers, but their width remained 16-bits. 

  [image: image284.wmf]True 

  [image: image285.wmf]False 

	  Test Results 



	

	Instructions that utilize registers for operands' storage execute much faster than instructions that utilize the main memory for operand storage. 

T 

Registers are connected to other units in the CPU through an internal data bus . 

Older x86 processors had register sizes of 20-bits. 

F 

Newer IA32 processors wont run old programs written for older x86 processors due to their different register sizes. 

F 

The accumulator register hold an operand to an arithmetic operation and the result of the operation. 

The lower 8-bits of the AX register can be addressed as: 

AL 

The CX register acts as a counter for repeating or looping instructions. 

The extended AX (EAX) register in the Pentium processor is also named R0 . 

The BX register is used in multiplication operation to hold the upper 16-bits of the result4. 

F 

Memory segmentation (partitioning) was necessary because the x86 registers were 16-bits and could not hold the 20-bit addresses of the main memory. 

T 

Since the x86 has an address bus of 20-bits, its memory is segmented into 1 M segments (i.e. 2 20). 

F 

A memory location within a memory segment is referenced by specifying its offset from the end of the segment. 

F 

Each logical address maps to a unique physical address. 

T 

Each logical address maps to a unique physical address. 

F 

The logical address F00F:1000h translates to the physical address: 

F10F0h 

The physical address 0000Ah is common to: 

one segment only 

The segment number where the physical address 0FFFFh has an offset of FFFFh is: 

0000h 

The segment number where the physical address 0FFFFh has an offset of 000Fh is: 

0FFFh 

Machine language programs are usually divided into three segments; code segment, data segment and stack segment. 

The CPU uses the stack segment to implement procedural calls. 

T 

The register that contains the segment number for the code segment is: 

CS 

Memory segments are implemented such that they do not overlap to avoid mixing the different program segments. 

F 

If the contents of some of a CPU registers are as follows: 

Register Name 

Contents (hex) 

AX 

C023 

BX 

1000 

CX 

A628 

DX 

EF05 

CS 

7FF0 

DS 

1FF0 

SS 

1000 

ES 

11F0 

SP 

0020 

IP 

765F 

Flags 

1155 



The contents of the AH register is: 

1 

1 

0 

0 

0 

0 

0 

0 

Referring to the table in question 23, the value of the sign flag is 0. 

T 

Referring to the table in question 23, the value of the carry flag is 0. 

F 

Referring to the table in question 23, the value of the zero flag is 1. 

T 

Referring to the table in question 23, the result of adding AL to BH would be: 

0 

0 

1 

1 

0 

0 

1 

1 

As a result of the operation in question 27 above, the contents of the flag bits S, Z, and C would be: 

S 

Z 

C 

0 

0 

0 

Referring to the table in question 23, the physical address of the next instruction to be fetched from the main memory is:

8755Fh 

Referring to the table in question 23, the physical address of the top of the stack is:

10020h 

This means that the number of words in the stack are:

32 

In the Pentium processor, data register R3 refers to the extended BX register. 

T 

In IA32 processors, the stack pointer register (SP) is stored in lower 16-bits of register R5. 

F 

In IA32 processors, the number of segment registers was increased to 6 registers, but their width remained 16-bits. 

T
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Objectives:

· The syntax of an assembly language instruction 

· The structure of an assembly language program 

· Memory models 

· Program Segments 

· Instructions and Directives 

 Introduction  [image: image287.png]



A processor can directly execute a machine language program. Though it is possible to program directly in machine language, assembly language uses mnemonics to make programming easier. 

An assembly language program uses mnemonics to represent: 

· symbolic instructions and 

· the raw data that represent variables and constants. 

A machine language program consists of: 

· a list of numbers representing the bytes of machine instructions to be executed and 

· data constants to be used by the program. 

Assembly Language Syntax  [image: image288.png]



An assembly language program consists of statements. The syntax of an assembly language program statement obeys the following rules: 
· Only one statement is written per line 

· Each statement is either an instruction or an assembler directive 

· Each instruction has an opcode and possibly one or more operands 

· An opcode is known as a mnemonic 

· Each mnemonic represents a single machine instruction 

· Operands provide the data to work with. 

Program Statement:

The general format for an assembly language program statement is as follows: 


Name mnemonic operand(destination), operand(source)  ; comment
Name Field:

This field is used for: 

· instruction label: if present, a label must be followed by a colon (:) 


· procedure names 


· variable names. 


	Examples of Name Fields

	here:    MOV AX,0867H    ; Statement line with a label field
	

	         JNC here        ; Statement with opcode and one operand
	

	         INT 03H
	

	SUM PROC NEAR            ; Procedure definition 
	


Operation Field:

·  This field consists of a symbolic operation code, known as opcode 

·  The opcode describes the operation’s function 

·  Symbolic opcodes are translated into machine language opcode. 

Operand Field:

This field specifies data to be acted on. It may have one, two or no operands at all. 

	Examples of instructions with different operand fields

	
NOP       ; Instruction with no operand field 
	

	
INC AX    ; Instruction with one operand field
	

	
ADD AX, 2 ; Instruction with two operand field 
	


Comment Field:

· A semicolon marks the beginning of a comment 

· A semicolon in the beginning of a line makes it all a comment line 

· Good programming practice dictates the use of a comment on almost every line. 

Key rules for the use of comments:

· Do not say something that is obvious 

· Put instruction in context of program 

	Examples of good and bad Comments

	
MOV CX, 0  ; Move 0 to CX. (This is not a good comment.)
	

	
MOV CX, 0  ; CX counts terms, initially set to 0. (This is a good comment.) 
	


Assembler Directives:

Pseudoinstructions or assembler directives are instructions that are directed to the assembler. Assembler directives affect the generated machine code, but are not translated directly into machine code. Directives can be used to declare variables, constants, segments, macros, and procedures as well as supporting conditional assembly. 

In general, a directive: 

·  contains pseudo-operation code, 

·  tells the assembler to do a specific thing, and 

·  is not translated into machine code. 

Naming Conventions  [image: image289.png]



Assembly language imposes some rules on how names are assigned to labels, variables, procedures and macros. It is the assembler's function to translate those names into memory addresses. Note that naming conventions used in this course are related to the MASM 6.11 assembler used in the lab. 

Names:

A name is used to identify a label, a variable, a directive a procedure or a macro. Here are the general rules on the use of names: 

·  A name is between 1 and 31 characters in length 

·  A name may include letters, numbers and special characters, such as ? . @ _ $ % 
·  A name should not begin with a digit 

·  A name may begin with a letter or a special character 

·  If a period (.) is used, it must be the first character 

·  Names are not case sensitive. 

Below are examples of legal and illegal names. 
	Examples of legal names
	Examples of illegal names

	· COUNTER1 

· @character 

· SUM_TOTAL 

· $1000 

· Done?
· TEST
	· TWO WORDS 

· 2abc 

· A45.28 

· You&Me 

· A+B 


 Structure of an Assembly Language Program  [image: image290.png]



Program Structure:

A program has always the following general structure: 
	Structure of an Assembly Language Program

	
.model small

;Select a memory model

	
.stack stack_size
;Define the stack size

	
.data



	



; Variable and array declarations

	



; Declare variables at this level

	
.code

	
main proc

	 



; Write the program main code at this level

	
main endp

	
;Other Procedures

	



; Always organize your program 

	



; into procedures

	
end main

; To mark the end of the source file


Title directive:

The title directive is optional and specifies the title of the program. Like a comment, it has no effect on the program. It is just used to make the program easier to understant. 

The Model directive:

The model directive specifies the total amount of memory the program would take. In other words, it gives information on how much memory the assembler would allocate for the program. This depends on the size of the data and the size of the program or code. 

Segment directives:

Segments are declared using directives. The following directives are used to specify the following segments: 
· stack 

· data 

· code
Stack Segment:
· Used to set aside storage for the stack 

· Stack addresses are computed as offsets into this segment 

· Use: .stack followed by a value that inicates the size of the stack
Data Segments:
· Used to set aside storage for variables. 

· Constants are defined within this segment in the program source. 

· Variable addresses are computed as offsets from the start of this segment 

· Use: .data followed by declarations of variables or defintions of constants
Code Segment:

· The code segment contains executable instructions macros and calls to procedures. 

· Use: .code followed by a sequence of program statements.

Example: Here is how the "hello world" program would look like in assembly: 

	The hello world program in Assembly

	.model small
	

	.stack 200
	

	.data
	

	        greeting db 'hello world !',13,10,'$'
	

	.code

mov ax,@data

mov ds,ax

mov ah,9

mov dx,offset greeting

int 21h

mov ah,4ch

int 21h

end 
	


Memory Models  [image: image291.png]



The memory model specifies the memory size assigned to each of the different parts or segments of a program. There exist different memory models for the 8086 processor 

The .MODEL Directive

The memory model directive specifies the size of the memory the program needs. Based on this directive, the assembler assigns the required amount of memory to data and code. 

Each one of the segments (stack, data and code), in a program, is called a logical segment . Depending on the model used, segments may be in one or in different physical segments. 

In MASM 6.X, segments are declared using the .MODEL directive. This directive is placed at the very beginning of the program, or after the optional title directive. 

	 MODEL directive

	.MODEL memory_model
Where memory_model can be: 

· TINY 

· SMALL 

· COMPACT 

· MEDIUM 

· LARGE or 

· HUGE. 


TINY Model:

In the TINY model both code and data occupy one physical segment. Therefore, all procedures and variables are by default addressed as NEAR, by pointing at their offsets in the segment. On assembling and linking a source file, the tiny model automatically generates a com file, which is smaller in size than an exe file. 

SMALL Model:

In the SMALL model all code is placed in one physical segment and all data in another physical segment. In this model, all procedures and variables are addressed as NEAR by pointing to their offsets only. 

COMPACT Model:

In the COMPACT model, all elements of code (e.g. procedures) are placed into one physical segment. However, each element of data can be placed by default into its own physical segment. Consequently, data elements are addressed by pointing both at the segment and offset addresses. In this model, all code elements (procedures) are addressed as NEAR and data elements (variables) are addressed as FAR. 

MEDIUM Model:

The MEDIUM model is the opposite of the compact model. In this model data elements are treated as NEAR and code elements are addressed as FAR. 

LARGE Model:

In the LARGE model both code elements (procedures) and data elements (variables) are put in different physical segments. Procedures and variables are addressed as FAR by pointing at both the segment and offset addresses that contain those elements. However, no data array can have a size that exceeds one physical segment (i.e. 64 KB). 

HUGE Model:

The HUGE memory is similar to the LARGE model with the exception that a data array may have a size that exceeds one physical segment (i.e. 64 KB). 

The following table summarizes the use of models and the number and sizes of physical segments that are used with each of the models. 

	Memory Model 
	Size of Code 
	Size of Data 

	TINY 
	Code + Data < 64KB 
	Code + data < 64KB 

	SMALL 
	Less than 64KB 
	Less than 64KB 

	MEDIUM 
	Can be more than 64KB 
	Less than 64 KB 

	COMPACT 
	Less than 64KB 
	Can be more than 64KB 

	LARGE* 
	Can be more than 64K 
	Can be more than 64KB 

	HUGE** 
	Can be more than 64K 
	Can be more than 64KB 


 (*) For the LARGE model, the largest arrays size can not exceed 64 KB.(br) (**)For the HUGE model, an array may have a size greater than 64 KB and hence can span more than one physical segment. 

Use of memory models:

The amount of data that has to be manipulated and code that needs to be written are the mojor factors in determining the choice of an appropriate model. The following are guidelines to help chose the right model for a program. 

For a small fast program that operates on small quantities of data, the SMALL or TINY models are the most suitable ones. These models allow up to 64K of memory (i.e. one single physical segment), but the executable code is fast since only near references are used in the calculation of addresses. The only difference between these two models is that the TINY model generates a .COM module in which far references cannot be used, whereas the SMALL model generates a .exe module. 

For very long programs that require more than one code segment and operate on large amounts of data which would require more than one data segment, the LARGE and HUGE models are most appropriate. 

Instructions[image: image292.png]



Definition:

An instruction in assembly language is a symbolic representation of a single machine instruction. In its simplest form, an instruction consists of a mnemonic and a list of operands. 

· A mnemonic is a short alphabetic code that assists the CPU in remembering an instruction. This mnemonic can be followed by a list of operands 

· Each instruction in assembly language is coded into one or more bytes 

· The first byte is generally an OpCode, i.e. a numeric code representing a particular instruction 

· Additional bytes may affect the action of the instruction or provide information about the data needed by the instruction. 

Instruction Types:

There exist around 150 instructions for the 8086 processor. These instructions may be classified into different classes. The following table summarizes the different classes of instructions, together with examples of each class. 
	Instruction Type 
	Definiton 
	Examples 

	Data transfer instructions 
	Transfer information between registers and memory locations or I/O ports 
	MOV, XCHG, LEA,PUSH,POP 

	Arithmetic instructions 
	Perform arithmetic operations on binary or binary-coded-decimal (BCD) numbers 
	ADD, SUB, INC, DEC 

	Bit manipulation instructions 
	Perform shift, rotate, and logical operations on memory locations and registers 
	SHL, SHR, SAR, ROL 

	Control transfer instructions 
	Control sequence of program execution. Include jumps and procedure transfers 
	JL, JE, JNE, JGE 

	String handling instructions 
	Move, compare, and scan strings of data 
	OVSB, MOVSW, CMPS, CMPSB 

	Processor control instructions 
	Set and clear status flags, and change the processor execution state 
	STC, STD, STI, CLC 

	Interrupt instructions 
	Interrupt processor to service a specific condition 
	INT, INTO, IRET 

	Miscellaneous instructions 
	
	NOP, WAIT 


Instruction Semantics:

The following rules have to be strictly followed in order to write correct code. 

1 - Both operands have to be of the same size: 

	Instruction 
	Correct 
	Reason 

	MOV AX, BL 
	No 
	Operands of different sizes 

	MOV AL, BL 
	Yes 
	Operands of same sizes 

	MOV AH, BL 
	Yes 
	Operands of same sizes 

	MOV BL, CX 
	No 
	Operands of different sizes 


2 - Both operands cannot be memory operands simultaneously: 

	Instruction 
	Correct 
	Reason 

	MOV i , j 
	No 
	Both operands are memory variables 

	MOV AL, i 
	Yes 
	Move memory variable to register 

	MOV j, CL 
	Yes 
	Move register to memory variable 


3 - First operand, or destination, cannot be an immediate value: 

	Instruction 
	Correct 
	Reason 

	ADD 2, AX 
	No 
	Move register to constant 

	ADD AX, 2 
	yes 
	Move constant to register 
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Assembler directives are special instructions that provide information to the assembler. Assembler directives do not generate code. Segment directives, equ, assume, and end mnemonics are all directives. These are not valid 80x86 instructions. 

Directives may be divided into the following classes: 
· Pseudo-Opcode directive or Processor Code Generation Directives 

· Memory Model Directives 

· Segment Definition Directives 

· Segment Ordering Directives 

· Linkage Directives 

· Data Allocation Directives 

· Logical and Bit Oriented Directives 

· Macro Definition Directives 

· Program Listing and Documentation Directives 

· Conditional Assembly Directives 

· User Message Directives 

· Predefined Equates 

· Radix Specifiers 

· Other Operators and Directives
Pseudo-Opcode Directives:

A pseudo-opcode is a message to the assembler just like an assembler directive. However, a pseudo-opcode will emit object code bytes. Examples of pseudo-opcodes include byte, word, dword, qword, and tbyte. These instructions emit the bytes of data specified by their operands but they are not true 80X86 machine instructions. 

At this level only the most commonly used directives are briefly presented. 

Memory Model Directives:

These are already seen in the section related to models. The following table summarizes the main points about segment directives. 

	Directive 
	Effect 

	.MODEL model 
	defines memory model to be one of the following:
SMALL, COMPACT, MEDIUM, LARGE or HUGE; 
must be used prior to any other segment directive

	.CODE [name] 
	starts code segment; must follow .MODEL directive 

	.DATA 
	starts a near data segment for initialized data 
must follow .MODEL directive; 

	.STACK [size] 
	indicates start of stack segment named 'STACK'
with size indicating number of bytes to reserve. 


Table 6: Model and Segment directives 

Segment Definition Directives:

	Directive 
	Effect 

	name PROC [NEAR|FAR] 
	defines procedure; NEAR/FAR has .MODEL default 

	name ENDP 
	ends procedure 'name' 

	PUBLIC name[,name...] 
	makes symbol 'name', which could be a variable or

	END [name] 
	marks end of source module and sets program
start address (CS:IP) if 'name' is present a procedure available to other modules. 


Table 7: Segment Definition directives

Data Allocation Directives:

	Directive 
	Effect 

	[name] DB init[,init...] 
	define byte 

	[name] DW init[,init...] 
	define word (WORD, 2 bytes) 

	[name] DD init[,init...] 
	define double word (DWORD, 4 bytes) 

	[name] DF init[,init...] 
	define far word (FWORD, 386, 6 bytes) 

	[name] DQ init[,init...] 
	define quad word (QWORD, 8 bytes) 

	[name] DT init[,init...] 
	define temp word (TBYTE, 10 bytes) 

	count DUP(init[,init...]) 
	duplicate 'init' 'count' times; DUP can be 


Table 8: Data Allocation directives 

Predefined Equates:

These are available only if simplified segments are used. 

	Directive 
	Effect 

	@code 
	contains the current code segment 

	@codesize 
	0 for small and compact; 1 for large medium and huge 

	@datasize 
	0 for small and medium; 1 for compact ;2 for large 

	@data 
	contains segment of define by .DATA 

	@stack 
	contains segment of define by .STACK 


Table 9: Equates directives 

Radix Specifies:

	Directive 
	Effect 

	.RADIX expr 
	sets radix [2..16] for numbers (dec. default) 

	.RADIX B 
	binary data specifier 

	.RADIX Q 
	octal data specifier 

	.RADIX O 
	octal data specifier 

	.RADIX D 
	decimal data specifier (default) 

	.RADIX H 
	hex 


Macro Definition Directives:

	Directive 
	Effect 

	name MACRO [parm[,parm...]] 
	defines a macro and it's parameters 

	ENDM 
	terminates a macro block 

	LOCAL name[,name...] 
	defines scope symbol as local to a macro 

	EXITM 
	exit macro expansion immediately 

	REPT expr 
	repeats all statements through ENDM statement for 'expr' times 
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How to write an assembly language program:

These are the steps that should be followed for writing an assembly language program: 
· First, define the problem 

· Write the algorithm 

· Translate into assembly mnemonics 

· Test and Debug the program in case of errors

The translation phase consists of the following steps: 
· Define type of data the program will deal with 

· Write appropriate instructions to implement the algorithm

Problem:

In this example you are asked to write a program that calculates the average of two numbers. 

Write the algorithm:

· add maximum temp and minimum temp to get the sum 

· divide sum by 2 to get average 

Translate into Assembly:

· what is our data? 

· what are our initialization steps?

Here is the listing of the program as it should be given to the computer. It should of course first be assembled and linked. 

	Program that calculates the average of 2 numbers

	.model small
	

	.data


max_temp DB 92h       


min_temp DB 52h


avg_temp DB ?

.code

.startup


mov ax,@data          


mov ds,ax


mov al, max_temp      


add al, min_temp      


mov ah, 00h           


adc ah, 00h           


mov bl, 02h          


div bl               


mov avg_temp, al     

.exit

end                            
	


Debugging Tips:

As a general rule, no program is supposed to work as one would expect when it is run for the first time. Therefore, a debugging phase, in which you have to find and correct errors is necessary. Here are some tips to help you go through the debugging phase. 

·  Be sure to work out an algorithm first…not as you go along 

·  write and test sections of a larger program, rather than waiting until you think you’re done to do any testing 

·  make sure you coded according to a correct algorithm 

·  add a set of eyes or watches 

·  use a debugger such as the codeview that you use in the lab. 

·  single step through code 

·  strategically place breakpoints 
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Objectives:

This unit covers the essential concepts for working with simple data types in assembly-language programming. 

The following main points will be discussed: 

· Integer variables declaration. 

· Constant declaration. 

· Array declaration. 

· Offset directive. 

· SIZEOF and TYPE operators. 

Introduction  [image: image296.png]



This unit covers the essential concepts for working with simple data types in assembly-language programming. 

The following main points will be discussed: 

· Integer variables declaration. 

· Constant declaration. 

· Array declaration. 

· Offset directive. 

· SIZEOF and TYPE operators. 
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Declaring Integer Variables:

An integer is a whole number, such as 4 or 4,444. Integers have no fractional part. Integer variables can be initialized in several ways with the data allocation directives. 

Allocating Memory for Integer Variables:

When an integer variable is declared, the assembler allocates memory space for the variable. The variableâ€™s name becomes a reference to the memory space allocated to that variable. 

	The syntax is: [[name]] directive initializer 


Defining and Using Simple Data Types:

The following directives indicate the integer’s size and range of values: 

	Directive 
	Alternative Form 
	Number Type 
	Size(bytes) 
	Range 

	BYTE 
	DB (byte) 
	unsigned 
	1 
	0 to 255. 

	SBYTE 
	
	signed 
	1 
	-128 to +127. 

	WORD 
	DW 
	unsigned 
	2 
	0 to 65,535 (64K). 

	SWORD 
	
	signed 
	2 
	-32,768 to +32,767. 

	DWORD 
	DD 
	unsigned 
	4 
	0 to 4,294,967,295 (4 megabytes). 

	SDWORD 
	
	signed 
	4 
	-2,147,483,648 to +2,147,483,647. 

	FWORD 
	DF 
	48-bit integer 
	6 
	

	QWORD 
	DQ 
	8-byte integer 
	8 
	used with 8087-family 

	TBYTE 
	DT 
	80-bit integer 
	10 
	long integer 


	Byte Storage Order

	Note that the assembler stores integers with the least significant byte in the lowest address of the memory area allocated to the integer. However, assembler listings and most debuggers show the bytes of a word in the opposite order, i.e. high byte first. 


Data Initialization:

Variables can be initialized at declaration with constants or expressions that evaluate to constants. A ? in place of an initializer indicates that you do not require the assembler to initialize the variable. The assembler allocates the space but does not write in it. Variables may be declared and initialized in one step with the data directives. The following examples show different declarations and initializations: 

	Variable declarations and initializations

	integer
BYTE
16 


inegint
SBYTE
-16 


expression
WORD
4*3 


signedexp
SWORD
4*3 


empty

QWORD
? 


num

BYTE
1,2,3,4,5,6 


long

DWORD
4294967295 


lngnum

SDWORD
-2147433648


tb

TBYTE
2345t

 
	


Note that using a value that is outside the specified range can result either in an assembler error, or in assigning a wrong value. For example, the statement 

   byte1 DB 256 

causes an assembly time error. In general, the assembler can accept a value in the range -256 to +256. However, 8 bits are not sufficient for the values between -256 and -129. Therefore, the assembler converts the number into 2's complement representation using 16 bits and stores the lower byte. For example, 

   byte2 DB -200

stores 38H because the 2's complement representation of -200 is FF38H. 

For information on arrays and on using the DUP operator to allocate initializer lists, see “Arrays and Strings” in later unit. 

SIZEOF and TYPE operators:

The TYPE operator returns the size (in bytes) of a single element of a variable. For variables, it is 1, 2 or 4 for bytes, words and doublewords respectively. When applied to a label, the TYPE operator returns the value FFFFh for near labels, and FFFEh for far labels . The SIZEOF and TYPE operators, when applied to a type, return the size of an integer of that type. The size attributes associated with each data type are: 

	Data 
	Type Bytes 

	BYTE, SBYTE 
	1 

	WORD, SWORD 
	2 

	DWORD, SDWORD 
	4 

	FWORD 
	6 

	QWORD 
	8 

	TBYTE 
	10 


Example: This example illustrates the use of the TYPE operator. 

	The Type Operator

	
.data



var1
db
20h



var2
dw
1000h



var3
dd
?



var4
db
10, 20, 30, 40, 50



msg
db
“File not found”, 0


.code


L1:
mov ax, type var1
; AX = 0001

   

mov ax, type var2
; AX = 0002

  
 
mov ax, type var3
; AX = 0004

   

mov ax, type var4
; AX = 0001

   

mov ax, type msg

; AX = 0001

   

mov ax, type L1

; AX = FFFF


The data types SBYTE, SWORD, and SDWORD tell the assembler to treat the initializers as signed data. 
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In an assembly language program, constants are defined through the use of the EQU directive. These are the main points in using constant definitions: 

· The EQU directive is used to assign a name to a constant. 

· Use of constant names makes an assembly language easier to understand. 

· No memory is allocated for a constant. 

· Reference is made to a constant through immediate addressing mode. 

Example: The following shows examples on the declaration of constants. 

	Constant Declarations

	.data


LF  
EQU
0AH 


PROMPT 
EQU 
“Type your name”

MSG 
DB  
“Type your name”

MDG 
DB
PROMPT

.code


...


MOV DL, 0AH


MOV DL, LF


...
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Arrays and Strings:

An array is a sequential collection of variables, all of the same size and type, called "array elements". A string is an array of characters. For example, in the string “ABC” each letter is an element. You can access the elements in an array or string relative to the first element. 

Declaring and Referencing Arrays:

Array elements occupy contiguous memory locations. The program references each element relative to the start of the array. An array is declared by giving it a name, a type, and a series of initializing values or placeholders (?). 

The following example shows how to declare an array of bytes (b_array) and an array of words (w_array): 

	Array declaration

	b_array BYTE  1, 2, 3, 4

w_array WORD 0FFFFh, 789Ah, 0BCDEh


Initializer lists of array declarations can span multiple lines. The first initializer must appear on the same line as the data type, all entries must be initialized, and, if the array is to continue to the new line, the line must end with a comma. The following example shows legal multiple-line array declaration: 

	Multiple Line Byte Declaration

	big
BYTE
21, 22, 23, 24, 25,26, 27, 28,

            
10, 20, 30


An array may span more than one logical line, such as the array var1 in the example below, although a separate type declaration is needed in each logical line: 

	Multiple line array declaration

	var1 
BYTE 10, 20, 30


BYTE 40, 50, 60


BYTE 70, 80, 90


The DUP Operator:

The DUP operator is very often used in the declaration of arrays This operator works with any of the data allocation directives. 

In the syntax: 


count DUP (initialvalue [[, initialvalue]]...)

the count value sets the number of times to repeat all values within the parentheses. The initial value can be an integer, character constant, or another DUP operator, and must always appear within parentheses. For example, the statement allocates the integer value 1 five times for a total of 5 bytes.: 

	The DUP Operator

	barray
BYTE
5
DUP
(1)


The following examples show various ways for allocating data elements with the DUP operator: 

	Different uses of the DUP Operator

	array
 DWORD
10  DUP (1)



;10 doublewords initialized to 1

buffer
 BYTE
256 DUP (?)



;256-byte buffer

masks
 BYTE
20  DUP (040h, 020h, 04h, 02h)
;80-byte buffer with bit masks

threed
 DWORD
5   DUP (5 DUP (5 DUP (0)))

;125 doublewords initialized to 0
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Element referencing:

· Each element in an array is referenced with an index number. 

· The first element in an array is the element whose reference is zero. 

· The array index appears in brackets after the array name, (e.g. in array[9]) 

Element index vs. element position:

Assembly-language indexes differ from indexes in high-level languages. In high level languages the index number always corresponds to the element’s position. In C, for example, array[9] references the array’s tenth element, regardless of the size in bytes of each element. 

In assembly language, an element’s index refers to the number of bytes between the element and the start of the array. This distinction can be ignored for arrays of byte-sized elements, where an element’s position number matches its index. 

For example, the array wprime defined as: 


prime BYTE 1, 3, 5, 7, 11, 13, 17

gives the value 1 for prime[0], the value 3 for prime[1], and so forth. 

However, in arrays with elements larger than 1 byte, index numbers (except zero) do not correspond to an element’s position. 

Calculating the element's position

In order to determine the element’s index, the element’s position must be multiplied by its size. For instance, for the array wprime defined as follows: 


wprime WORD 1, 3, 5, 7, 11, 13, 17

wprime[4] represents the third element (5), which is 4 bytes from the beginning of the array. Similarly, the expression wprime[6] represents the fourth element (7) and wprime[10] represents the sixth element (13). 

In the following example the index is determined at run time. The element's position is multiplied by two (the size of a word element in bytes) by shifting it left: 

	Example 

	
mov si, cx

; CX holds position number


shl si, 1 

; Scale for word referencing





; Similar to: SI = SI x 2 


mov ax, wprime[si] 
; Move element into AX


As a general rule, the offset required to access an array element can be calculated as follows: 

	position of nth element of array = array[ (n - 1) * size of element ] 


Referencing array elements by distance, rather than position, is actually very consistent with how assembly language works. 

A variable name is a symbol that represents the contents of a particular address in memory.
Thus, if the array wprime begins at address DS:2400h, the reference wprime[6] means:


the value of the word variable contained in the DS 


segment at offset: 2400h + 6 = 2406h.

Note: The plus operator (+) can be used instead of brackets, as in: 

	wprime[9] 
wprime+9 


Note: When referencing the first element in an array, brackets are not needed. Thus, wprime and wprime[0] both refer to the first element of the array wprime. 
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Once integer variables have been declared in a program, they can manipulated in the assembly code section of the program. 

Assembly instructions require operands to be the same size. However, it may be required at some point to operate on data in a size other than that originally declared. This can be done with the PTR operator. For example, the PTR operator can be used to access the high-order word of a DWORD-size variable. The syntax for the PTR operator is: 


type PTR expression

where the PTR operator forces expression to be treated as having the type specified. An example of this use is: 

	PTR operator

	.DATA


num DWORD 0

.CODE


mov ax, WORD PTR num[0] ;Loads a word-size value from


mov dx, WORD PTR num[2] ;a doubleword variable
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The offset operator returns the number of bytes between the label and the beginning of its segment. Since it produces a 16-bit immediate value, the destination must be a 16-bit operand. After executin f the following instruction, the BX register contains the address of the variable count. BX may thus be used as a pointer to the count variable. 

	Example 1: The OFFSET operator

	
mov
bx, offset count
; Let BX point to count


	Example 2: The OFFSET operator

	.data


bList
db  10h, 20h, 30h, 40h


wList
dw  1000h, 2000h, 3000h

.code


mov
di, offset bList
; DI = 0000


mov 
bx, offset bList+1
; BX = 0001


mov 
si, offset wList+2
; SI = 0006


.....


The SEG operator returns the segment part of a label or variable’s address. It is usually used when a variable is in a segment other than the current data segment, such as an external variable. 
	Example 1: The SEG operator

	
MOV AX, SEG My_msg 
;Load AX with the data segment number 





;where the variable My_msg is declared.


MOV DS, AX 

;Let DS point to that data segment 


In the followig example, the variable array is an external variable. The DS register is made to point to the segment that contains the array variable for the temporary duration of the execution of the code that operates on the variable array. 

	Example 2: The SEG operator

	
push ds


; save DS


mov ax, seg array
; set DS to segment of array


mov ds, ax




mov bx, offset array
; get the array offset


...


; perform the array processing





; at this level.


pop ds


; restore DS


SIZEOF, LENGTHOF and TYPE operators  [image: image303.png]



When applied to an array, the LENGTHOF, SIZEOF, and TYPE operators return information about the length and size of the array and about the type of the initializers. 

The LENGTHOF operator:

The LENGTHOF operator returns the number of elements in an array. The following example illustrates the use of the LENGTHOF operator: 

	Example: LENGTHOF Operator

	.data


;declaration of arrays


array_1
WORD 
40 DUP (5)


num 
DWORD 
4, 5, 6, 7, 8, 9, 10, 11


warray 
WORD 
40 DUP (40 DUP (5))


;array array_1


larray
EQU 
LENGTHOF array

; 40 elements


;array num


lnum 
EQU 
LENGTHOF num 

; 8 elements


;array_1 warray


len 
EQU 
LENGTHOF warray 
; 1600 elements


The SIZEOF operator:

The SIZEOF operator returns the number of bytes used by the initializers in the definition of an array. The following example illustrates the use of the SIZEOF operator: 

	Example 2: SIZEOF Operator

	.data


;declaration of arrays


array_1
WORD 
40 DUP (5)


num 
DWORD 
4, 5, 6, 7, 8, 9, 10, 11


warray 
WORD 
40 DUP (40 DUP (5))


;array array_1


sarray
EQU 
SIZEOF array

; 80 bytes


;array num


snum 
EQU 
SIZEOF num 

; 32 bytes


;array_1 warray


siz 
EQU 
SIZEOF warray 

; 3200 bytes


The TYPE operator:

TYPE returns the size of the elements of an array. The following examples illustrate the use of the TYPE operator: 

	Example 3: TYPE Operator

	.data


;declaration of arrays


array_1
WORD 
40 DUP (5)


num 
DWORD 
4, 5, 6, 7, 8, 9, 10, 11


warray 
WORD 
40 DUP (40 DUP (5))


;array array_1


tarray 
EQU 
TYPE array

; 2 bytes per element


;array num


tnum 
EQU 
TYPE num 

; 4 bytes per element


;array_1 warray


typ 
EQU 
TYPE warray 

; 2 bytes per element
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Objectives:

· Read a character 

· Display a character 

· Display a string 

· Read a string 
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Input and Output in 8086 Assembly Language:

Each microprocessor provides instructions for Input and Output (I/O) with the devices attached to it, such as the keyboard and the screen. 

The 8086 provides the instructions IN for input and OUT for output. These instructions are a bit complicated to use, so we usually use the operating system to do I/O for us instead. 

In 8086 assembly language, operating system subprograms are called by a software interrupt mechanism. An interrupt signals to the processor to suspend its current activity and to pass control to an interrupt service program. 

A software interrupt is an interrupt generated by a program. The 8086 INT instruction generates such software interrupts. 

For I/O and some other operations, the interrupt number used is 21h. Thus, the instruction INT 21h transfers control to the operating system, to a subprogram that handles I/O operations. 

This subprogram handles a variety of I/O operations by calling appropriate subprograms. This means that a specific I/O operation must be indicated. The I/O operation to be carried out is specified in the AH register. An interrupt call has the following syntax: 


MOV AH, nn
; nn = specific function number


INT XX

; XX = interrupt number
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Reading a single character from the keyboard may be done in either one of two ways: 

· With Echo: function 01 in AH, or 

· Without Echo: function 08 in AH 

Reading a Character with Echo (Function 01H) 

The following code allows you to read a single character from the keyboard and have it echoed, or displayed, on the screen: 

	Reading a character with echo

	
MOV AH, 01H


INT 21H


;AL contains the ASCII code of the character read from the keyboard.


The ASCII code of the character read will be returned in the AL register. Note that if the character pressed does not have an ASCII code like the function keys (F1-F12) then a 00 will be stored in the register AL. 

Reading a Character without Echo (Function 08H) 

This function allows us to read a signle character from the keyboard. However, unlike function 01, the character will not be echoed, or shown, on the screen. This is useful when the user is aked to enter his password and it is not desirable to see what he is typing. Usually, the programmer displays a * after each key is pressed. 

The following code reads a single character without displaying it on the screen. 

	Reading a character without echo

	
MOV AH, 08H


INT 21H


;AL contains the ASCII code of the character read from the keyboard.


The ASCII code of the character read is returned in the AL register. 
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MASM uses DOS functions 02 and 06 to display a single character. DOS function 09 is used for the display of strings of characters. 

DOS Functions 02 and 06

Both functions are identical, except that function 02 can be interrupted by a control break (Ctrl-Break), while function 06 cannot. The ASCII code of the character to be displayed has to be stored in register DL. To display a single ASCII character at the current cursor position, use the following sequence of instructions: 

	Character Display

	MOV AH,  02H

;(OR:    MOV AH,  06H)

MOV DL,  Character Code

INT 21H


The Character code may be the ASCII code of the character taken from the ASCII table, or the character itself written between quotes. 

The following code displays number 2 on the screen using its ASCII code: 

	Display character 2

	MOV AH,  02H

MOV DL,  32H

INT 21H


The following code also displays number 2 on the screen: 

	This code also displays character 2

	MOV AH,  02H

MOV DL,  ‘2’
INT 21H
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Defining String Variables:

A string is an array of bytes, usually terminated by a '$' sign. A string of characters may be defined in three different ways. For instance, the following definitions are equivalent ways of defining a string "abc": 

	String definitions

	
version1 db "abc"
;string constant


version2 db ‘a’, ‘b’,’c’
;character constants


version3 db 97, 98, 99
;ASCII codes


The first version uses the method of high level languages and simply encloses the string in quotes. This is the preferred method. The second version defines a string by specifying a list of the character constants that make up the string. The third version defines a string by specifying a list of the ASCII codes that make up the string We may also combine the above methods to define a string as in the following example: 

	Combined definitions

	
message db "Hello world", 13, 10, ‘$’


In the above definition, the string message contains ‘Hello world’ followed by Return (ASCII 13), Line-feed (ASCII 10) and the ‘$’ character. This method is very useful if we wish to include control characters (such as Return) in a string. The string is terminated with the ‘$’ character because the DOS 09 for displaying strings expects the string to be terminated by the ‘$’ character. 
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String Output:

A string is a list of characters treated as a unit. In programming languages we denote a string constant by using quotation marks, e.g. "Enter first number". In 8086 assembly language, single or double quotes may be used. 

In order to display a string we must know where the string begins and ends. The beginning of string is given by its address, obtained using the offset operator. The end of a string may be found by either knowing the length of the string or by storing a special character at the end of the string which acts as a sentinel. 

Function 09:

MS-DOS provides subprogram number 9h to display strings which are terminated by the ‘$’ character. In order to use it we must: 
· Ensure the string is terminated with the ‘$’ character. 

· Specify the string to be displayed by storing its address in the dx register. 

· Specify the string output subprogram by storing 9h in ah. 

· Use int 21h to call MS-DOS to execute subprogram 9h.
The following code illustrates how the string ‘Hello world’, followed by the Return and Line-feed characters, can be displayed. 

	Displaying a string using function 09H

	Title "Display string using function 09H"

.model small

.stack 100h

.data

message db ‘Hello World‘, 13, 10, ‘$‘

.code

.startup 


; copy address of message to dx


mov dx, offset message 


mov ah, 9h 
; string output


int 21h 
; display string


mov ah, 4ch
; exit to DOS


int 21h

end


In this example, we use the .data directive. This directive is required when memory variables are used in a program. 

The offset operator allows us to access the address of a variable. In this case, we use it to access the address of message and we store this address in the dx register. 

Subprogram 9h can access the string message (or any string), once it has been passed the starting address of the string. 

Example: Write a program that prompts the user to enter a small letter through the keyboard. The program should read the letter without echo. The program displays then a message with the capital equivalent of the letter the user entered through the keyboard. 
	I/O instructions

	Title 'I/O instructions'

.model small

.data


mes1 db 'Enter a small case character: ','$'


mes2 db 'The character converted to capital case letter is: ','$'

.code


MOV AX, @DATA

; Assume Data segment


MOV DS, AX


MOV DX, OFFSET mes1
; Display message mes 1


MOV AH, 09H


INT 21H


MOV AH, 08H

; Read character without echo


INT 21H





; AL = Input Charatcer 


SUB AL, 20H

; convert character to capital 


MOV BL, AL

; Save character 



MOV DX, OFFSET mes2
; Display message mes 2


MOV AH, 09H


INT 21H


MOV DL, BL



MOV AH, 02H

; Display character


INT 21H


MOV AH, 4CH

; Terminate program and 


INT 21H


; Exit to DOS

end


Reading a String:

Reading a string is accomplished by Function 0AH INT 21H. DOS function 0AH will accept a string of text entered at the keyboard and copy that string into a memory buffer. DOS 0AH is invoked with DS:DX pointing to an input buffer, whose size should be at least three bytes longer than the largest input string anticipated. Before invoking DOS function 0AH, you must set the first byte of the buffer with the number of character spaces in the buffer. After returning from DOS function 0AH, the second byte of the buffer will contain a value giving the number of characters actually read form the keyboard (see table). 

	BL 
	AL 
	XX 
	XX 
	XX 
	XX 
	XX 
	XX 
	XX 
	XX 
	XX 
	XX 
	XX 
	XX 
	XX 
	XX 


where BL = Buffer Length and AL = Actual Length 

The following table summarizes string input and output functions: 

	Function 0AH 
	Read from Keyboard 

	Entry 
	AH = 0AH ; DX = address of keyboard input buffer
First byte of buffer contains the size of the buffer
(up to 255). 

	Exit 
	Second byte of buffer contains the number of characters
read. 
The string reading operation continues until the buffer is 
full, or a carriage return (CR = 0DH) is hit. 


Example: 

Here is an example that shows the use of function 0AH. The first part shows how to declare the buffer that will hold the string to be input thought the keyboard, in this case the string "hello". 
	Declaration part

	.data


buffer  db 8


        db 9 dup(?)




After this declaration, the buffer would look like: 

	08 
	XX 
	XX 
	XX 
	XX 
	XX 
	XX 
	XX 
	XX 
	XX 


If after the following code: 
	Read from keyboard the string “hello”

	
MOV AH, 0AH



INT 21H


the user enters the string "hello", the output will be: 

	08 
	05 
	68 
	65 
	6C 
	6C 
	6F 
	0D 
	XX 
	XX 


Conclusion:

The following table summarizes the main I/O functions. These functions are used to read a character or a string from the keyboard and display it on the screen. They are used to input data to a program, and display characters or strings, which could be the output of the program. 

	Function 
	Input in 
	Output in 
	Effect 

	01H 
	AH, 
	AL 
	Read a character with echo on the screen. 

	02H 
	AH 
	No output 
	Display a character on the screen. 

	06H 
	AH, 
	No output 
	Same as function 02 but interrupted by Ctrl + Break 

	08h 
	AH, Character in DL 
	AL 
	Read character without echo. 

	09H 
	AH 
	No output 
	Display a string terminated by a $ sign 

	0AH 
	AH 
	Offset in DX 
	Read a string of characters from the keyboard 


Basic Pentium Instructions

To allow you to write a simple program in Assembly Language, in this module you will learn briefly some very basic Pentium instructions in their simplest form.  These instructions are grouped into:

· Data Movement instructions 

· Basic Arithmetic instructions 

· Flow control instructions 

Pentium has hundreds machine instructions. Each instruction has its specific characteristics and behaviours. To write a program in Assembly Language, the programmers must understand those instructions very well. Therefore, it seems difficult to learn the instructions and even to keep in mind.

However, fortunately there is a way to dissolve the difficulty and to expedite the learning-time. In order to know the characteristic of each instruction, you have to be able to read the description of each instruction.

	All Pentium instructions are described by using the following format:

MNEMONIC 

Operand1 

, Operand2 

, Operand3 

Operand1, Operand2, and Operand3 are optional.

Operand may be in one of the following form:

reg 

r32 

r16 

r8 

Sreg 

mem8 

mem16 

mem32 

mem 

r/m8 

r/m16 

r/m32 

r/m 

imm 

Any general purpose register. It could be reg8, or reg16, or reg32. 

Either EAX, EBX, ECX, EDX, ESI, EDI, EBP, or ESP. 

Either AX, BX, CX, DX, SI, DI, BP, or SP. 

Either AL, AH, BL, BH, CL, CH, DL, or DH. 

Either CS, DS, ES, SS, FS, or GS. 

Memory address of 8-bit data. 

Memory address of 16-bit data. 

Memory address of 32-bit data. 

Memory address of either 8-bit, 16-bit or 32-bit data. 

Either r8 or mem8. 

Either r16 or mem16. 

Either r32 or mem32. 

Either reg or mem. 

Immediate(constant) value. 




Data Movement Instructions

	The followings are basic movement instructions:

Instruction 

Operands 

Notes 

mov 

Destination, Source
r/m, reg
reg, r/m
r/m16, Sreg
Sreg, r/m16
r/m, imm 

Data copy.
Source operand is copied into the destination. The content of destination is overwritten. After operations, the source remains the same.
CS cannot be destination.
The source and the destinations MUST be of the SAME size. 

movsx 

r16, r/m8
r32, r/m8
r32, r/m16 

Data copy with sign extension.

movzx 

r16, r/m8
r32, r/m8
r32, r/m16 

Data copy with zero extension 

lea 

r16, m16/m32
r32, m16/m32 

Store effective address for m in register 

xchg 

r/m, reg
reg, r/m 

Swap the contents of two operands 

bswap 

r32 

Swap bytes to convert little/big endian data in a 32-bit register to big/little endian form. 

xlatb 

  

AL = DS:[BX + unsigned AL]. 




	Example: To swap the content of 2 variables

	 .DATA

 
var1
dw 120

 
var2
dw 1000

 .CODE

 
. . .

 
xchg
AX, var1

 
xchg
AX, var2

 
xchg
AX, var1


Basic Integer Arithmetic Instructions

	Instruction 

	Operands 

	Notes 


	add 

	reg, r/m
r/m, reg
reg, imm
r/m, imm 

	Destination (( destination + source.

EFLAGS set based on result. First operand is used as source and overwritten as destination. If the operands are signed integers, the OF flag indicates an invalid result. If the operands are unsigned, the CF flag indicates a carry out of the destination.


	sub 

	reg, r/m
r/m, reg
reg, imm
r/m, imm 

	Destination (( destination - source.

EFLAGS set based on result.


	inc 

	r/m 

	Destination (( destination + 1.

EFLAGS set based on result, but it does not affect the carry flag (CF).


	dec 

	r/m 

	Destination (( destination â€“ 1.

EFLAGS set based on result, but it does not affect the carry flag (CF). 


	neg 

	r/m 

	It subtracts its operand from 0, which results in a two’s complement (integer) negation of the operand. EFLAGS set based on result. 


	cmp 

	reg, r/m
r/m, reg
r/m, imm 

	It subtracts the contents of destination from source and discards the result. Only the EFLAGS register is affected. 


			Condition 

	Signed Compare 

	Unsigned Compare 


			Op1 > Op2
Op1 ( Op2
Op1 = Op2
Op1 ( Op2
Op1 < Op2 

	ZF=0 and SF=OF
SF = OF
ZF = 1
ZF = 1 and SF((OF
SF (( OF

	CF=0 and ZF=0
CF = 0
ZF = 1
CF = 1 or ZF = 1
CF = 1 



	


	 Review Example

	Assume that the initial state of 80x86's registers and memory, just when your assembly language program starts running, is as follows:

Registers 

Physical address 

Memory content 

Physical address 

Memory content 

EAX = 18010H
EBX = 20H
ECX = 30H
EDX = 40H
ESI = 90100H
EDI = 10200H
EBP = 10H
ESP = 30H 

00101
...
02000
02001
02002
02003
02004
02005
02006
02007
02008
02009
0200A
0200B
0200C
0200D
0200E
0200F
02010
02011
02012
02013
02014
02015
02016
02017
02018
02019
0201A
0201B
0201C
0201D
0201E
0201F
... 

02
...
14
00
14
00
14
00
14
00
14
00
14
00
09
00
48
65
6C
6C
6F
0D
0A
24
1
2
3
4
5
FF
FF
A1
0
31
... 

02030
02031
...
02070
02071
02072
...
02100
02101
...
02120
02121
...
02130
02131
...
02140
02141
...
02150
02151
...
02200
02201
...
02210
02211
...
02220
02221
...
0222F
02230
02231
... 

F1
EC
...
4
2
9
...
FF
9
...
30
0
...
40
0
...
30
0
...
2
1
...
2
2
...
DE
A1
...
FF
FE
...
FC
FD
34
... 

Segment Register 

CS = 200H
DS = 200H
SS = 220H
ES = 300H 

All numbers are in hexadecimal format. Suppose that the following is a part of your assembly code. The assembler sets 0 as the offset address of table1.

آ·DATA 

  

table1 

dw 6 DUP(20), 9 

msg1 

db 'Hello', 13, 10, '$' 

var1 

LABEL WORD 

var2 

LABEL DWORD 

var3 

db 1, 2, 3, 4, 5 

What is the result produced by executing each of the following instructions or operations independently?
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movzx EBX, AX 
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movsx EBX, AX 
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bswap EAX 
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lea DX, [var1] 

[image: image314.png]



movsx AX, [msg1] 
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xchg SI, AX 
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xlatb 
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add EAX, [var2] 
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sub EBX, [var2] 
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cmp EBX, ECX 
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mov [var3], -100 
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mov [var2], -100 
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sub EAX, 3 




	SOLUTION

	movzx EBX, AX 

AX=8010H, EBX=00008010h. EFLAGS isn't change. 

movsx EBX, AX 

AX=8010h, EBX=FFFF8010h. EFLAGS isn't change. 

bswap EAX 

Initially, EAX=00018010h. Thus, EAX=10800100h. EFLAGS isn't change. 

lea DX, [var1] 

DX is assigned with the offset address of var1. DX = 22 = 0016h 

movsx AX, [msg1] 

msg1 is a label for a location in memory at offset address DS:0016h. MASM associates its size with a byte. The content of the memory at that location = ASCII code of 'H' = 72 = 48h. Thus, AX = 0048h. 

xchg SI, AX 

Initially, SI=0100h and AX=8010h. Thus, SI=8010h and AX=0100h. 

xlatb 

AL=10h, BX=20h. So, BX+AL=30h. Then, DS:[BX+AL] is DS:[30h] or the physical address is 200h*10h + 30h = 2030h. The content of memory at address 2030h is F1h. Thus, AL=F1h. 




Introduction to Flow Control Instructions

Most of high-level programming languages have special statements to control the flow of a program. These flow control statements are classified into two major groups:

· Branching statements such as if-else, switch, and goto. 

· Iteration statements such as for, while, and do-while. 

Pentium Assembly language supports these high-level programming language features in the simple but elegant forms.

These forms do not correspond directly to the flow control statement in high-level programming language. But, in fact using flow-control instuctions of Pentium Assembly language we may construct flow-control statements of high-level programming language in a more flexible way.
	Followings are general relation between flow-control instructions of Pentium assembly language and High-level programming language.

HLL 

Assembly Language 

if (op1 == op2) {
     statement1;
     statement2; }
statement3; 

;Assume op1 and op2 are words and AX is free 

mov AX, op1 

cmp AX, op2 

jnz  @1 

statement1 

statement2 

@1: 

statement3 

if(op1 != op2) {
     statement1;
     statement2;
} else {
     statement3; }
statement4; 

;Assume op1 and op2 are words and AX is free

mov AX, op1 

cmp AX, op2 

jz  @1 

statement1 

statement2 

jmp  @2 

@1: 

statement 3 

@2: 

statement4 

CX = 7;
while ( CX > 0) {
     statement1;
     CX --;
} 

mov  CX, 7 

@1: 

jcxz  @2 

statement1 

dec CX 

jmp @1 

@2: 




The CMP instruction and Conditional Jump instructions

In assembly language, when two numbers are compared, it is imperative to know that:

· A signed number can be Greater, Less, or Equal to another signed number. 

· An unsigned number can be Above, Below, or Equal to another unsigned number. 

As mentioned before that the CMP instruction compares the two operands by performing the subtraction Operand1 - Operand2 without modifying any of its operands and then based on this subtraction, one or more flags are altered.

That is the reason we usually use one or more conditional jump instructions immediately after CMP instruction.

The following table is a brief guidance how to select an appropriate conditional jump instructions.

	Condition 
	Equivalent condition 
	Signed jump 
	Unsigned jump 

	> 
	not ( 
	JG, JNLE 
	JA, JNBE 

	( 
	not < 
	JGE, JNL 
	JAE, JNB 

	< 
	not ( 
	JL, JNGE 
	JB, JNAE 

	( 
	not > 
	JLE, JNG 
	JBE, JNA 

	= = 
	ZF==1 
	JE, JZ 
	JE, JZ 

	! = 
	ZF==0 
	JNE, JNZ 
	JNE, JNZ 


	Example to display a string EEEEE

	 
mov  CX , 5

 
mov  AH , 02h

 
mov  DL , 'E'

 @1:
int  21H

 
dec  CX

 
jnz  @1


	Example to display a string ABCDEFG

	 
mov  AH , 02H

 
mov  DL , 'A'

 @1:
int  21h

 
inc  DL

 
cmp  DL , 'G'

 
jbe  @1


	Write a loop to display:

Z 

Y 

X 

W 

V 

U 

SOLUTION:
  

mov AH, 02H 

  

  

mov BL, 'Z' 

  

@2: 

mov DL, BL 

  

  

int 21H 

  

  

mov DL, 0DH 

; generate CR and LF 

  

int 21H 

  

  

mov DL, 0AH 

  

  

int 21H 

  

  

dec BL 

  

  

cmp BL, 'U' 

  

  

jae @2 

  




One use of XLATB is to filter out unwanted characters from a stream of text. Suppose we want to input a string of 20 characters from the keyboard but echo only those with ASCII values from 32 to 127 (i.e., only printable ASCII characters). We can set up a translation table, place a zero in each table position corresponding to a non-printable character, and place a one in each position corresponding to a printable character:
	Example: Character filtering

	 .DATA

 VALIDCHARS
DB  32  DUP(0)
; invalid characters: 0 - 31

 

DB  96  DUP(1)
; valid characters: 32 - 127

 

DB  128 DUP(0)
; invalid characters: 128 - 255

 .CODE


mov
AX, @Data


mov
DS, AX


. . .

 
mov
BX, OFFSET VALIDCHARS


mov
CX, 20

 @1:
MOV
AH, 08H

; input character, no echo

 
int
21H

 
mov
DL, AL

; save character in DL

 
xlatb


cmp
AL, 0

 
je
@1

; reject non-printable character

 
mov
AH, 02H

 
int
21H

 
loop
@1
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Not like high-level languages, a real assembly language has no notion of a data type. Data in memory are not self-identifying. The bits at a memory location have no inherent meaning â€“ the meaning is determined by how an instruction uses them. A doubleword in memory might be interpreted as an unsigned integer, a floating point number, a character, several characters, or part of an instruction.

The assembly language for a real computer exposes these details to the programmer. It is the responsibility of the programmer to assure, for example, that integer variables are added together using an integer add instruction, and that memory cells containing instructions are not interpreted as floating point operands.

Objectives  [image: image324.png]



Having read this module, the students should be able to
· Understand various Pentium addressing modes. 

· Use the various Pentium addressing modes in a program. 

Addressing Modes

An instruction acts on zero or more operands. The way an instruction accesses its operands is called its Addressing modes. We can classify the different addressing modes into four groups:

· immediate 

· register 

· memory 

· I/O port 

Operands may be implicit or explicit or both. 

· Implicit operands mean that the instruction by definition has some specific operands. These operands are NOT selected by the programmers.

	Example: Implicit operands

	 XLAT
; automatically takes AL and BX as operands

 AAM
; it operates on the contents of AX.


Explicit operands mean the instruction operates on the operands specified by the programmer.

	Example: Explicit operands

	 MOV AX, BX;   it takes AX and BX as operands

 XCHG SI, DI;  it takes SI and DI as operands


Implicit and explicit operands:

	Example: Implicit/Explicit operands

	 MUL BX; automatically multiply BX explicitly times AX     

       ; implicitly and save the result in DX:AX implicitly.


Many Pentium instructions have implicit operands. For instance, most of bit manipulation instructions update the EFLAGS register implicitly.

The location of an operand value in memory space is called the effective address (EA)
Simple addressing modes  [image: image325.png]



Register addressing mode

In this addressing mode, the operands may be: 

· reg32: 32-bit general registers: EAX, EBX, ECX, EDX, ESI, EDI, ESP, or EBP. 

· reg16: 16-bit general registers: AX, BX, CX, DX, SI, DI, SP or BP. 

· reg8 : 8-bit general regisers: AH, BH, CH, DH, AL, BL, CL, or DL. 

· Sreg : segment registers: CS, DS, ES, FS, or GS. There is an exception: CS cannot be a destination. 

For register addressing modes, there is no need to compute the effective address. The operand is in a register and to get the operand there is no memory access involved, so it doesn't make sense to talk about effective address here.

	Example: Register Operands

	 MOV AX, BX
; mov reg16, reg16

 ADD EAX, ESI
; add reg32, reg32

 MOV DS, AX
; mov Sreg, reg16


Immediate addressing mode

In this addressing mode, the operand is stored as part of the instruction. The immediate operand which is stored along with the instruction, resides in the code segment -- not in the data segment. This addressing mode is also faster to execute an instruction because the operand is read with the instruction from memory. Here are some examples: 

	Example: Immediate Operands

	 MOV AL, 20
; move the constant 20 into register AL

 ADD EAX, 5
; add constant 5 to register EAX

 MOV DX, offset msg
; move the address of message to register DX


Memory addressing mode  [image: image326.png]



Overview

Memory (RAM) is the main component of a computer to store temporarily data and machine instructions. In a program, programmers many times need to read from and write into memory locations.

The question is how do we specify exactly which memory location we want to access? The simple answer is to give the label of the desired memory variable.
	Example: Reading and writing memory locations

	 .

 TempVar
DW
?

 NextVar
DW
?

 .

 .

 

mov
AX, TempVar



sub
NextVar, AX

 .


The above fragment code will read an operand value from memory location TempVar and copy it to the register AX. And then, read an operand value from memory location NextVar, and subtract the content of AX from the memory variable NextVar
However, the programming problem is much more complex. Look at the following problem.

	Suppose you have an array of byte named ByteArray. It consists of 10 elements:

12, 34, 2, 5, 1 ,7, 13, 45, 98, 4

In memory, the location of ByteArray starts at offset 100 in the data segment.

To read the eighth byte, 45, which is at address 107, in Java we have to write:

byte d = ByteArray[7];

How can we do the same in assembly?


Fortunately, MASM provides us many different ways to handle the addressing of memory location. The simplest solution of the above problem is:
	Solution: Reading the eight byte of ByteArray

	 .

 .DATA

 ByteArray
BYTE
12, 34, 2, 5, 1 ,7, 13, 45, 98, 4

 .

 .CODE

 mov
AX, @Data

 mov
DS, AX

 mov
AL, ByteArray + 7 ; or mov AL, ByteArray[7]

 


MASM evaluates the last statement above as,

mov AL, [100+7]
Since ByteArray starts at offset 100, the offset of ByteArray and 7 are added together and used as a memory address. The instruction becomes

mov AL, [107]
	 IMPORTANT

	Everything between square brackets will be treated as an ADDRESS/REFERENCE.


16-bit Memory Addressing Modes

	There are 17 different ways to specify a memory address using 16-bit memory addressing modes:

Operand Type 

Pattern 

direct 
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[displacement] 

register indirect 
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[BX] 
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[SI] 
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[DI] 
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[BP] 

based 

[image: image332.png]



[BP + displacement] 
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[BX + displacement] 

indexed 
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[SI + displacement] 
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[DI + displacement] 

based-indexed 
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[BX + SI] 
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[BX + DI] 
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[BP + SI] 
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[BP + DI] 

based-indexed with displacement 
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[BX + SI + displacement] 
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[BX + DI + displacement] 
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[BP + SI + displacement] 

[image: image343.png]



[BP + DI + displacement] 

where displacement means any expression that produces a 16-bit constant value.


How can we keep in mind easily all above memory addressing modes?

	 16-bit memory addressing modes

	BX

  

SI

  

or 

+ 

or 

+ 

Displacement 

BP

  

DI

  

  

There are many different styles having the same meaning to write the above addressing modes:

[BP + 2], 2[BP], [BP][2], [BP]+2, 2+[BP] are the same

ByteArray[BX][SI]+1, [ByteArray + BX + SI + 1], [ByteArray][BX][SI][1], etc. are the same.


A displacement may be any of the following: 

· the offset address of a variable 

· a constant (positive or negative) 

· the offset address of a variable plus or minus a constant 

The syntax of an operand in Based and Indexed addressing modes is any of the following equivalent expressions: 

· [register+displacement] 

· [displacement+register] 

· [register]+displacement 

· displacement+[register] 

· displacement[register] 

In based-indexed addressing mode, the operand may be written in several ways; four of them are: 

· variable[base_register][index_register] 

· [base_register+index_register+variable+constant] 

· variable[base_register+index_register+constant] 

· constant[base_register+index_register+variable] 

Look back at the previous problem, all the following instructions refer exactly to the same memory location, [ByteArray+7].
	To load the eighth byte of ByteArray into AL

	.

 .DATA

 ByteArray
BYTE
12, 34, 2, 5, 1 ,7, 13, 45, 98, 4

 .

 .CODE

 mov
AX, @Data

 mov
DS, AX

 mov
AL, [ByteArray + 7]

 .

 mov
SI, OFFSET ByteArray+7

 mov
AL, [SI]

 .

 mov
BX, 7

 mov
AL, [ByteArray + BX]

 .

 mov
BX, OFFSET ByteArray

 mov
AL, [BX + 7]

 .

 mov
SI, 7

 mov
AL, [ByteArray + SI]

 .

 mov
BX, OFFSET ByteArray

 mov
DI, 7

 mov
AL, [BX + DI]

 .

 mov
SI, OFFSET ByteArray

 mov
BX, 7

 mov
AL, [SI + BX]

 .

 mov
BX, OFFSET ByteArray

 mov
SI, 6

 mov
AL, [BX + SI + 1]

 .

 mov
BX, 3

 mov
SI, 4

 mov
AL, [BX + ByteArray + SI]

 .


32-bit Memory Addressing

32-bit memory addressing modes are more powerful and more flexible than 16-bit addressing modes. Though, these modes are intended for accessing up to 1 Gigabytes RAM, still we can use it for real-mode programming. Using 32-bit addressing modes, we have no limitation to use any 32-bit general purposes registers, except that the register ESP cannot be used as an index register.

	Intel indulges our creativity for rich and flexible 32-bit memory addressing modes:

Operand Type 

Pattern 

direct 

[displacement] 

register indirect 

[base] 

based 

[base + displacement] 

indexed 

[Index*scale + displacement] 

base-indexed 

[base + Index + displacement] 

base-indexed with scale factor 

[base + index*scale + displacement] 

,where displacement means any expression that produces a 32-bit constant value.

However, please note in a real-mode programming, you have to ensure that the effective address (EA) MUST NOT exceed 64K.

Use only 32-bit registers and don't mix up the registers with 16-bit registers.


This is a format of 32-bit addressing modes:

	BASE 
	+ 
	(INDEX 
	* 
	SCALE) 
	+ 
	Displacement 

	  
	  
	  
	  
	  
	  
	  

	EAX
EBX
ECX
EDX
ESI
EDI
EBP
ESP


	+ 
	EAX
EBX
ECX
EDX
ESI
EDI
EBP


	* 
	1
 
2
 
4

8 


	+ 
	Displacement 


	Example: 32-bit memory operands

	 mov
AX, [EAX]

 mov
AL, [EBX + EBX]

 mov
CX, [EBX + EBP*1]
; EBX is a base register (use DS)

 mov
SI, [EBP + EBX*1]
; EBP is a base register (use SS)

 mov
AL, [ByteArray + EDX + ESI*8]

 mov
[ESP + EDX*4 + ByteArray + 7], AL


	Example: incorrect usage of 32-bit memory operands

	 mov
AX, [AX]

 mov
AL, [EBX + BX]

; Mix 16-bit reg with 32-bit reg.

 mov
CX, [EBX + ESP*1]
; ESP cannot be an index

 mov
SI, [EBP + EBX*3]
; Scale factor is invalid

 mov
AL, [ByteArray + EDX*4 + ESI*8]

 mov
[ESP + EDX + ECX], AL

	It is a good programming practice, if we always distinguish between index registers and base registers by using a scale factor.

So, it much prefers [EBX + ESP*1] form to [EBX + ESP] form.


Segment-override prefix

When we use memory addressing modes as operand type, the effective address will be a location in memory. As known before, in a real-mode programming a location in memory composed of 2 parts, the SEGMENT containing the operand and the OFFSET from the beginning of the segment to the operand.

By default, if we do not specify explicitly the segment part, the processor automatically selects a segment based on the simple rule mentioned in the following table.

To change the segment part, we have to specify the segment part explicitly by Segment-override prefix, like the following examples:

	Type of Addressing modes 
	Operand Type 
	Default segment used 

	16-bit 
	[BX], [SI], [DI] 
	DS 

	16-bit 
	[BP] 
	SS 

	32-bit 
	Either [EBP] or [ESP] register as the base 
	SS 

	32-bit 
	Otherwise 
	DS


	Valid example of segment-override prefix

	 mov
AX, ES:[SI]

 mov
EAX, SS:[DI]

 mov
CS:[EBX], AL

 mov
SS:[EBX + EBP*2 + 8], SI


However, we have to bear in mind that we cannot impose the rule on these 3 cases:

	Case 
	register used 

	Fetching instructions 
	The processor always uses CS register. 

	Destination of string instructions 
	Always using ES register. 

	All stack pushes and pops 
	Always refering to SS register. 


	 Review Example

	Assume that the initial state of 80x86's registers and memory, just when your assembly language program starts running, is as follows:

Registers 

Physical address 

Memory content 

Physical address 

Memory content 

EAX = 10010H
EBX = 20H
ECX = 30H
EDX = 40H
ESI = 90100H
EDI = 10200H
EBP = 10H
ESP = 30H 

00101
...
02000
02001
02002
02003
02004
02005
02006
02007
02008
02009
0200A
0200B
0200C
0200D
0200E
0200F
02010
02011
02012
02013
02014
02015
02016
02017
02018
02019
0201A
0201B
0201C
0201D
0201E
0201F
... 

02
...
14
00
14
00
14
00
14
00
14
00
14
00
09
00
48
65
6C
6C
6F
0D
0A
24
1
2
3
4
5
FF
FF
A1
0
31
... 

02030
02031
...
02070
02071
02072
...
02100
02101
...
02120
02121
...
02130
02131
...
02140
02141
...
02150
02151
...
02200
02201
...
02210
02211
...
02220
02221
...
0222F
02230
02231
... 

F1
EC
...
4
2
9
...
FF
9
...
30
0
...
40
0
...
30
0
...
2
1
...
2
2
...
DE
A1
...
FF
FE
...
FC
FD
34
... 

Segment Register 

CS = 200H
DS = 200H
SS = 220H
ES = 300H 

All numbers are in hexadecimal format. Suppose that the following is a part of your assembly code. The assembler sets 0 as the offset address of table1.

آ·DATA 

  

table1 

dw 6 DUP(20), 9 

msg1 

db 'Hello', 13, 10, '$' 

var1 

LABEL WORD 

var2 

LABEL DWORD 

var3 

db 1, 2, 3, 4, 5 

What is the result produced by executing each of the following instructions or operations independently?
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add BX, AX 
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inc WORD PTR [100h] 

[image: image346.png]



sub DL, [msg1+3] 

[image: image347.png]



mov DX, OFFSET var1 
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mov AX, [var1+1] 
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mov [table1+SI], SI 
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mov CX, OFFSET var3 
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sub SI, [DI + BX] 
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mov ESP, -9001 
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mov WORD PTR [EBP + EBX*1], 2 
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mov BYTE PTR [EBX + EBP*1], 3 
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mov [var2], -100 

[image: image356.png]



sub EAX, 3 




	SOLUTION

	add BX, AX 

AX=0010H, BX=0020h, BX=BX + AX = 0030h 

inc WORD PTR [100h] 

Segment=DS,physical address=DS:100h=2100h,A word value at [2100h]=09FFh. The result is 09FFh + 1 = 0A00h. So, [2100h]=0, [2101h]=0Ah. 

sub DL, [msg1+3] 

The location [msg1+3] is [0200Eh]. A byte value at [0200Eh]=48h. And DL=40h. Thus, DL= 40h - 48h = F8h. 




 Array manipulation  [image: image357.png]



Not like high level languages, Assembly language has no notion of an array at all. Arrays like variables are treated as a block of memory that could be alloted with a single directive, where the first element is given a label. 
· The array as the most important and most general data structure has the following properties:

· All elements must be the same size. The array is an homogeneous data structure. 
· The size of an array is fixed. The number of elements is fixed. 
· A label (address) is tied to the first element of the array. 
· Traversing each element of an array needs an index or indices and the label as the array's name. 
Array Declaration

With reference to the above properties, in assembly language to declare an array it requires:

· A label name, 

· The number of elements, 

· The size of each element, 

· The initial value of each element. 

 Example: A declaration of a ten-element array of byte-sized elements
table1 db 10 dup(0) 

Each element is initialized to be zero. Remember that there is no interpretation in Assembly language.
Example: A declaration of a ten-element array of word-sized elements
array1 
dw 12EFh, 2500, 4500, 0 

  

dw 6 dup(2) 
Traversing One-dimensional Array

To access every element of an array, we have to know the address of that element. Because all elements have the same size, the address of an element of the array can be formulated as:

	byte address of element i = starting address + size-of-element * i 

[image: image358.png]



It presumes that the first element of the array is indexed 0. 

[image: image359.png]



The size-of-element is the number of bytes in a single array element.

[image: image360.png]



If the size-of-element is either 1, 2, 4, or 8, the implementation of the formula is very straighforward using 32-bit memory addressing mode.




	To access the sixth element of table1:

	 mov AL, [table1 + 5]
; AL = table1[5]

 mov ESI, 5

 mov BYTE PTR [table1 + SI], 3
; table1[5] = 3

 mov BL, [table1 + ESI*1]
; BL = table1[5]


	To access the fifth element of array1:

	 add WORD PTR [array1 + 8], 10
; array1[4] = array1[4] + 10

 mov BX, 8

 sub [array1 + BX], CX

; array1[4] = array1[4] - CX

 mov ECX, 4

 mov [array1 + ECX*2], AX
; array1[4] = AX


Two-dimensional Arrays

Two or higher dimensional arrays are treated as the same as simple one-dimensional arrays.

	To declare the array M[rows][cols] of byte-sized elements,

[image: image361.png]



Calculate the number of elements in the array: number-of-elements = rows * cols 

[image: image362.png]



Then you may declare as: 

M db number-of-elements DUP(0) 

M db rows DUP( cols DUP(0)) 

M db cols DUP( rows DUP(0)) 




Note that those above declaration are equivalent. There is no distinction for the dimensions of the array.

	To declare the array var2d[8][9] of double-word-size elements,

var2d 

dd 72 DUP(0) 

var2d 

dd 8 DUP(9 DUP(0)) 

var2d 

dd 0, 0, 0, 69 DUP(0) 




Storage Order

As mentioned before that memory is organized as a one-dimensional array. Two-dimensional arrays must be treated as simple one-dimensional arrays. Then, in assembly language to declare two-dimensional arrays, we have to arrange the arrays as one-dimensional arrays.

To do this, we have to know how to organize all elements of an array. There are two different ways to organize the elements of two-dimensional array:

· Row-major order: 
The array is organized as a sequence of ROWS

· Column-major order: 
The array is organized as a sequence of COLUMNS

	 Example: An array organized as row-major order and column-major order

	Suppose the array size is 2 * 3:

(0,0) 

(0,1) 

(0,2) 

(1,0) 

(1,1) 

(1,2) 

The array stored in row-major order:

(0,0) 

(0,1) 

(0,2) 

(1,0) 

(1,1) 

(1,2)

Lower address 

  

  

  

  

Higher address

The array stored in column-major order:

(0,0) 

(1,0) 

(0,1) 

(1,1) 

(0,2) 

(1,2)

Lower address 

  

  

  

  

Higher address




Address Calculation

Assume the row and column index starts from 0. The general formula to calculate the byte address of the element [a, b] can be expressed as:

	 Row-major order

	Starting Address + Size-of-element * ( a * number-of-columns + b) 




	 Column-major order

	Starting Address + Size-of-element * ( b * number-of-rows + a) 




	 Example: Translating Java-like HLL into AL

	Java-like HLL 

Assembly Language 

int M[][] = new int[9][4];
 
M[2][3] = 7;

.DATA
M dd 9 DUP(4 DUP(0))
; The size-of-element = 4 bytes, because in Java int = 4 bytes
; a = 2, b = 3, number-of-columns = 4 ; Then, the offset of M[3][4] is 
; 4 * ( 2 * 4 + 3 ) = 44 .CODE
 
mov M[44], 7




	 Example: More about translating Java-like HLL into AL

	Java-like HLL 

Assembly Language 

int M[][] = new int[9][4];
 
for(int j=0; j<9; j++)
M[j][3] = 7;

.DATA
M dd 9 DUP(4 DUP(0))
; The size-of-element = 4 bytes, because in Java int = 4 bytes
; a = j, b = 3, number-of-columns = 4 ; Then, the offset of M[3][4] is 
; 4 * ( j * 4 + 3 ) = 4*(4*j) + 12 .CODE
 
mov ECX, 0
@1: cmp ECX, 9
jae @2
mov EAX, ECX
shl EAX, 4
mov M[EAX + 12], 0
inc ECX
jmp @1
@2: ...




In above example, A more efficient solution but possibly less clear is
	More efficient solution

	.DATA

M dd 9 DUP( 4 DUP(0))

 

.CODE


mov ECX, 0


mov EAX, 0

L1:
cmp ECX, 9


jae L2


mov M[EAX + 12], 0


add EAX, 16


inc ECX


jmp L1

L2:


END NOTES

� 	A programming language that uses symbolic names to conveniently represent operations, registers and memory locations. Each assembly instruction corresponds to a machine instruction.


� 	Computer programming languages that look like natural language text.


� 	The set of all instructions (in binary form) of the computer


� 	a command that instructs the computer what to do. execution


�   	A group of components, in this case digital circuits or blocks, that are integrated together to achieve a certain function    


� 	Information that are made of discrete units, where each unit is represented by symbols from a finite possible set of symbols. In computers, that set is usually the binary digits, 0 and 1


� 	A device that can store binary data and retrieve it for latter use


� 	The main memory device in the computer. Usually implemented by a RAM.


� 	A group of registers that are organized into a one-dimensional


� 	A digital circuit in the CPU that performs arithmetic and logical operations.


� 	see Arithmetic and Logic Unit..


� 	An abstract description of a solution to a problem represented by a sequence of steps


� 	A set of instructions when executed by the computer achieve a specific function/outcome


� 	A program that is stored in the memory so that it can be used repeatedly, manipulated, moved, deleted or have more instructions appended to it


� 	a command that instructs the computer what to do.


� 	The set of all instructions (in binary form) of the computer..


� 	(Operation code) An instruction field that specifies the particular operation that is to be performed by the instruction.


� 	Instruction fields that specify where to get the source and destination operands for the operation specified by the opcode.


� 	The unit that controls and coordinates the opration of other units in the computer.


� 	The ALU and the registers of the computer


� 	The data path combined with the control unit of a computer.


� 	Central Processing Unit.


� 	A register that stores the machine language instruction fetched from the memory.


� 	A register that holds the address of the next instruction to be fetched from the memory.


� 	Another name for the program counter register. or IP.


� 	Computer programming languages that look like natural language text.


� 	A programming language that uses symbolic names to conveniently represent operations, registers and memory locations. Each assembly instruction corresponds to a machine instruction.


� 	A program that translates a HLL program to a machine language program of a specific computer.


� 	A machine language program produced by a compiler or an assembler


� 	A programming language that uses symbolic names to conveniently represent operations, registers and memory locations. Each assembly instruction corresponds to a machine instruction.


� 	A program that translates from assembly language to machine language.


� 	A program that is used to link together separately assembled/compiled programs into a single executable code


� 	A program that enables the user to find errors in their assembly code


� 	The process of converting machine code to assembly language code


� 	Break points: Positions in the program that if are encountered during run time, the program will be halted so the programmer can examine the memory and registers contents and determine what went wrong


� 	Instruction Set Architecture : The collection of assembly/machine instructions of the machine and the machine resources (memory, general purpose registers, …etc.


� 	A group of signals that interconnect several devices


� 	A CPU register that holds the address of the required memory word


� 	A CPU register that holds the data word that is to be written to the memory or that have been fetched from the memory


� 	A condition that occur when the result of adding two signed0numbers is larger than the destination (I.e. outside the range)


� 	Moving a signed-number from one location to another with larger number of bits while keeping both magnitude and sign correct.


� 	An extra bit that is added to the data to make the total number of 1s either even (even parity) or odd (odd parity)


� 	A register that can be used to hold an operand to an instruction as well as the result of executing the instruction


� 	A partition of the main memory


� 	An address that specifies the location of a word as segment number:offset within the segment


� 	The actual address of a word in the main memory. It is a 20-bit address for original x86 processors and 32-bit address for IA32 processors


� 	A group of 16 memory words


� 	Addresses that are divisible by 16


� 	The memory segment that contains the code part of the program


� 	The memory segment that contains the data part of the program


� 	A special memory buffer outside the CPU maintained by the CPU as a temporary holding area for addresses and data. It is organised as Last-in-First-out (LIFO) buffer


� 	The memory segment that contains the stack


� 	Distances of a variable, label, or instruction from its base segment


� 	Status bits that indicate the status of the CPU


� 	Reflect the result of executing an instruction


� 	Enable or disable certain CPU operations
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