
C O E 3 0 5 L A B M A N U A L

 21

Flight 8086 Training Board

Objective
The aim of this lab experiment is to familiarize the students with Flight 8086 training
board.

Equipment
Flight 8086 training board, PC with Flight86 software, download cable.

Tasks to be Performed
 Connecting the 8086 training board to PC (using COM1 port)

 Study of different commands provided by the training board

 Program Entry, Execution and Debugging

 Assembling and disassembling of a program

 Displaying the contents of registers and memory locations

 Modifying the registers and memory contents

 Single-step execution and Breakpoint insertion

 Downloading & uploading a program file.

 Running simple programs to perform

1. Arithmetic operations

2. Finding the smallest/largest number from a given list of numbers

3. Searching for a given number in a list of numbers.

Experiment

1

C O E 3 0 5 L A B M A N U A L

 22

1.1 Background
The FLIGHT 86 Trainer System is designed to simplify the teaching of the 8086 CPU
and some of its commonly used peripherals. It can be linked to most PCs with a simple
serial line, so that code may be assembled and debugged in a supportive software
environment before being downloaded into the RAM on the board. The board itself
may then be linked to other peripheral devices. A block diagram of this mode of
operation is shown in Figure 1.1.

Figure 1.1: Block Diagram of the FLIGHT-86 Trainer System

Once downloaded, the code may be executed and examined in a system which is
accessible to the user. Data may be manipulated on the board and the effects viewed
on the PC. The software which handles this two-way transfer is supplied with the
board, in the form of a monitor program resident on the board in EPROM, and a disk
containing the "host" software for the PC.

1.2 Connecting the Training Board to PC
Figure 1.2 shows the FLIGHT-86 Trainer Board layout. The first step is to connect
the serial socket (P3) on the training board to COM1 in the PC using RS323 cable. Next,
connect the power cable to the power supply connector (P6). Finally, load the program
F86GO.BAT on the PC. This should run and report the amount of RAM and
EPROM on the FLIGHT-86 board, before returning the prompt as shown in
Figure1.3.

1.3 Commands Provided by Flight-86
A ‘-’ prompt on the screen means that the host is ready to accept a command. Table1.1
gives a summary of the commands that will be used during this experiment.

C O E 3 0 5 L A B M A N U A L

 23

Figure 1.2: Layout of the FLIGHT-86 Training Board

Loading FLIGHT86 host program, please wait...

FLIGHT86 Controller Board, Host Program Version 2.1

Press ? and Enter for help - waiting for controller board response...

ROM found at F000:C000 to F000:FFFF Flight Monitor ROM version 2.0

RAM found at 0000:0000 to 0000:FFFF

-

Figure 1.3: Starting Message of the FLIGHT-86 Training Board

C O E 3 0 5 L A B M A N U A L

 24

Table 1.1: Summary of some commands provided by FLIGHT-86

KEY PARAMETER DESCRIPTION

ESC Press the Escape button to stop the current
command

X Resets the training board

Q Terminates running of the board software
and returns control to the operating system

? [command letter] Help

R [register] Allows the user to display or change the
content of a register

M [W][segment:] address1 [address2] Allows the user to display or change one or
more memory locations

A [[segment:] address] Allows the user to write 8086 assembly
code directly into the training board

Z [[V] [segment:] address1 [address2]]

G [[segment:] address] Allows the user to execute code that has
been downloaded into RAM

B ? | R | S [segment:] address Allows the user to Display/Clear/Set break
points inside his code

S [R][[segment:] address] Allows the user to step through code one
instruction at a time

: [drive:\path] filename Loads an Extended Intel Hex file from disk
into the memory of the training board

1.4 The First Program

Assembling a Program (Command A)
The assemble command (A [segment:] address) allows you to type in 8086 assembly code,
and this code will be assembled and stored into the board memory. The following
example shows you how to write a simple program using this command

Example 1.1: Using the assemble command, write a program that will add the
content of two memory locations (words) and store the result in a third memory
location.

1. Start the line assembler at the desired address by entering A 0050:0100 (Note

that the origin address for user RAM on the FLIGHT-86 is 0050:0100)

2. The FLIGHT-86 responds by echoing the address 0050:0100

C O E 3 0 5 L A B M A N U A L

 25

3. Now enter the assembly code one instruction at a time hitting ENTER after
each instruction

4. Each time, the FLIGHT-86 responds by echoing the next address

5. When you are done exit from the line assembler by pressing ESC button

The screen will now look like

A 0050:0100
0050:0100 DW 0002
0050:0102 DW 0003
0050:0104 DW 0000
0050:0106 MOV AX,[0100]
0050:0109 ADD AX,[0102]
0050:010D MOV [0104], AX
0050:0111 INT 5
0050:0113
-

Disassembling a Program (Command Z)
You can examine what you have entered using the disassemble command. If you type
Z 0050:0100 0111, then the content of the memory locations between the addresses
0050:0100 and 0050:0111 will be disassembled as follows:

0050:0100 02 00 ADD AL, [BX+SI]
0050:0102 03 00 ADD AX, [BX+SI]
0050:0104 00 00 ADD [BX+SI], AL
0050:0106 A1 01 00 MOV AX,[0100]
0050:0109 03 06 02 01 ADD AX,[0102]
0050:010D 89 06 04 01 MOV [0104], AX
0050:0111 CD 05 INT 5

The HEX numbers between the addresses and the instructions represent the opcodes
of the disassembled instructions. Notice that memory words entered as DW directives
have been disassembled as ADD instructions with different parameters. This because
the values of these memory words are equivalent to the opcode of the ADD
instruction with the shown parameters.

Running a Program (Command G)
To run the above program enter G 0050:0100 and press the ENTER key. The
program will now run, load the word at address 0050:0100 into AX, add the content of
the word at address 0050:0102 to the content of AX, store the result into the word at
address 0050:0104, and terminate. Note that the instruction INT 5 is responsible for
terminating the program.

C O E 3 0 5 L A B M A N U A L

 26

Displaying/Modifying Memory Locations (Command M)
To test the result of the above program enter M W 0050:0104 and press the Enter key.
This will display the memory word at address 0050:0104 where the result of the above
program is stored. Exit from this command by pressing the ESC key.

Lets now change the content of the memory words stored at addresses 0050:0100 and
0050:0102. At the command prompt ‘-’, enter M W 0050:0100 and press the Enter key.
The content of the memory word at address 0050:0100 is displayed. To change the
content of this memory location, enter a HEX number (say 0005) and press the Enter
key. The content of the next memory location is displayed. Enter another HEX
number (say 0007) and press the Enter key. When the content of the next memory
location is displayed, press the ESC key to go back to the command prompt. These
steps are shown below:

-M W 0050:0100
0050:0100 0002 0005
0050:0102 0003 0007
0050:0104 0005
-

Now run the program again and test the content of the memory word at address
0050:0104.

Breakpoint Insertion (Command B)
This command is intended for debugging user code. A breakpoint is an INT 3
instruction inserted at an opcode position. The original opcode at this address is saved.
When the code is executed it runs normally, at full speed, until it reaches this location.
Then, original opcode is restored and the registers, address and first opcode byte are
displayed. The user may set another break point and continue with a G instruction.

As an example, enter the command B S 0050:010D and press the Enter key. This will
set a breakpoint at address 0050:010D in the previous program (i.e. a breakpoint is set
at the instruction MOV [0104], AX). Now, run the program using the command G
0050:0100. Notice that the program terminates and the message “Monitor breakpoint
at 0050:010D” is displayed. This means that the execution of the program stopped at
location 0050:010D. You can resume the execution of the program using the
command G, but let us first modify the content of register AX. At the command
prompt ‘-’, enter the command R AX and press the Enter key. This will display the
content of AX which is 000D (i.e. 0005+0007). Modify this value by entering 0001
next to 000D and press the Enter key then ESC to go back to the command prompt.
Now, continue the execution of the program from address 0050:010D using the
command G 0050:010D. Check the content of memory word at address 0050:0104.

C O E 3 0 5 L A B M A N U A L

 27

The previous steps are shown below:

-B S 0050:010D
-G 0050:0100
Monitor Breakpoint at 0050:010D
-R AX
AX 000C 0001
BX 0000
-G 0050:010D
User Break at 0050:0111
-M W 0050:0104
0050:0104 0001
0050:0106 00A1
-

Single-Step Execution (Command S)
This command is provided to allow the user to step through code one instruction at a
time for debugging purposes. The display will be the next instruction address and
opcode byte with, optionally, registers content. Once the command has started,
pressing the Enter key will execute the next instruction. As an example, enter the
command S R 0050:0100 and press the Enter key. This will execute the first
instruction and terminate with registers content shown on the screen. When you press
Enter again, the next instruction is executed. Continue pressing the Enter key until all
instructions in the program get executed, or press the ESC key to terminate the
command.

1.5 Writing a Program Using Assembler on a PC
In the pervious section, we have used the assemble command to write and load simple
assembly instructions into the board memory. However, for more sophisticated
applications, you need to write and assemble programs on a PC before downloading
them into the board memory. For this purpose, you need the following programs:

 MASM: as the assembler and linker

 EXE2BIN: to convert from and executable file into a binary file

 OBJECT86: to convert the binary file into an INTEL HEX file for
download to the FLIGHT-86

Example 1.2: Write a program to search for a given number in a list of numbers.
You should define the list as a sequence of memory bytes labeled with the letter A.
The number to be searched is passed through register DL. When the program
terminate, BX should contain the index of the number in the list if the number is
in the list.

C O E 3 0 5 L A B M A N U A L

 28

COMSEG SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS:COMSEG, DS:COMSEG, ES:COMSEG, SS:COMSEG
ORG 0100h
start:
 MOV AX, CS
 MOV DS, AX ; Set the data segment

 MOV BX, 0 ; Set BX to index of the 1st element in
 ; the list
L1: CMP BX, 8 ; if BX exceeds the indices of the list
 JZ L2 ; then end the search

 CMP DL, A[BX] ; if the number is found in the list
 JZ L2 ; then end the search
 INC BX ; else increment BX
 JMP L1
L2: INT 5 ; terminate the program
A DB 4
 DB 2
 DB 7
 DB 6
 DB 3
 DB 5
 DB 1
 DB 8
COMSEG ENDS
END start

Using any text editor on the PC enter the previous code. Notice that the code shown
in Bold is required for every program using MASM and can be thought of as a
template. Now, save this file as SEARCH.ASM. Using the Assembler, i.e. MASM,
assemble and link this file to produce SEARCH.EXE, and using EXE2BIN create
the binary code file SEARCH.BIN. Now, using OBJECT86, convert this binary file
to the Intel hex format file SEARCH.HEX. Finally load the HEX file into the board
memory using the command “:SEARCH.HEX”. Note, you may need to specify the
drive and the path of the file if it is not in the same directory as the F86GO software
(e.g. :C:\MyProjects\Search.hex).

To run this program, first load the required number into DX using the command R
DX. Next, run the program using the command G 0050:0100. Finally, use the
command RX BX to check result of the search (i.e. the value of BX represents the
index of the given number in the list). These steps are shown below.

-R DX
DX 0000 0003
SP 0500
-G 0050:0100
User Break at 0050:011A
-R BX
BX 0004
-

C O E 3 0 5 L A B M A N U A L

 29

Exercises
1.1. Modify the program in Example 1.1 to perform the four basic operations:

addition, subtraction, multiplication, and division. The required operation is
specified by loading DX with the appropriate value (i.e. 1 for addition, 2 for
subtraction, 3 for multiplication, and 4 for division).

1.2. Write a program to find the smallest number from a given list of numbers.
Load this program into the FLIGTH-86 and test it.

