
C O E 3 0 5 L A B M A N U A L

15

Testing the 80806
Microcomputer System

5.1 Introduction
By this experiment your system should include the following:

1. an 8086 microprocessor,

2. a clock generator with 15MHz crystal,

3. a fully demultiplexed bus system (74LS373 octal latches),

4. a memory system including two SRAM memory chips and two
EPROM memory chips each of size 8Kbytes,

5. decoders, and

6. simple I/O ports (switches, LEDs, tri-state buffer, and octal latch)

To find if the system is working properly, we will write a simple program (see Figure
5.1) that light LEDs one after another one at a time in a sequence from right to left.

 MOV AL, 01h ;set the LSB of register AL

L1: MOV CX, 0FFFFh ;load the counter CX with FFFFh

L2: OUT 00h, AL ;output AL to port 00h (output port)

 LOOP L2 ;repeat the operation until CX becomes 0

 ROL AL, 1 ;rotate AL one bit position to the left

 JMP L1 ;go back to L1

Figure 5.1: Test Program

Experiment

5

C O E 3 0 5 L A B M A N U A L

16

5.2 Equipment
 Use of a prototype-board that already includes an 8086 CPU operating in

minimum mode with clock generator and a fully demultiplexed data and
address buses in addition to two 8 Kbytes SRAM memories (6264) and two 8
Kbytes EPROM memories (2764),

 MS-DOS Debugger,

 EPROM Eraser,

 EPROM Programmer,

 Oscilloscope,

 Logic Probe, and

 Multimeter

5.3 Procedure
1. Use the MS-DOS debugger to find the machine code of the test

program as shown in Figure 5.2.

2. Take out the EPROMs from your system and label them as EVEN
BANK and ODD BANK.

3. Place the two chips in the EPROM eraser.

4. Load the machine code of the test program (see Figure 5.3) into the
EPROMs using the EPROM programmer (Load even bytes of the
machine code into the even back, and the odd bytes into the odd
bank).

5. Place the programmed EPROMs back on your prototype-board.

6. Make sure that the EVEN BANK chip is connected to the even byte
of the bus (D0-D7) and the ODD BANK chip is connected the odd
byte of the bus (D8-D15).

7. Connect your system to the power supply and check output displayed
on the LEDs.

C O E 3 0 5 L A B M A N U A L

17

C:\> Debug

-a 0000:0000

0000:0000

0000:0002

0000:0005

0000:0007

0000:0009

0000:000B

0000:000D

-

 MOV AL, 1

 MOV CX, FFFF

 OUT 0, AL

 LOOP 0005

 ROL AL, 1

 JMP 0002

-u 0000:0000

0000:0000

0000:0002

0000:0005

0000:0007

0000:0009

0000:000B

.

.

 B001

 B9FFFF

 E600

 E2FC

 D0C0

 EBF5

 .

 .

 MOV AL, 1

 MOV CX, FFFF

 OUT 0, AL

 LOOP 0005

 ROL AL, 1

 JMP 0002

 .

 .

Figure 5.2: Finding the machine code

Byte # 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Machine Code B0 01 B9 FF FF E6 00 E2 FC D0 C0 EB F5 FF

Figure 5.3: Machine code to be loaded into the EPROMs

Relative
Address

Machine
Code

Assembly
Code

C O E 3 0 5 L A B M A N U A L

18

5.4 Debugging the System
In case that your system is not functioning, you can carry out hardware testing of the
microcomputer system through general inspection and hardware debugging as
explained in the following steps:

Step 1: Visual inspection and testing:

1. Make sure that the VCC and GND you are using are appropriate. Use
oscilloscope to measure VCC on your system.

2. Identify the VCC and GND lines on your board and make sure all
chips receive them on the right pins. For this you may carry out visual
inspection to avoid applying reverse voltage on the chips.

3. Test all VCC and GND on all the chips using the Oscilloscope or a
Logic Probe.

4. Check the following signals using the Oscilloscope:

a. the Reset circuit at the input of 8086 CPU,

b. the CLK input of 8086 CPU, and

c. the ALE output of 8086 CPU.

5. Using a multimeter and the map of your design you need to check the
following:

a. all inter-connections between the address bus lines at output of octal
latches and the memories,

b. all inter-connections between the CPU and memories data lines, and

c. all control connections for Read/Write, chip-select, and all default
connections.

Step 2: Testing the logic operations of the system.

We expect the test program (Figure 5.1) to generate some pattern of chip select on the
EPROM memory because the program is stored there. Also this program is supposed
to write data to the I/O port, so we expect I/O write cycles on the control of output
port. One may consider that the system is working fine if the chip-select pattern and

C O E 3 0 5 L A B M A N U A L

19

I/O write cycles are observed in the right order. For this test we have to follow the
steps below:

1. Analyze the program and find out the expected chip-select pattern on
the EPROM and I/O write cycles.

2. Turn on your microprocessor system, and use the oscilloscope to
check memory and I/O read signals (i.e., chip-select of the EPROMs
and latch-enable of the I/O port).

3. If you do not see the expected pattern, then there is still a problem
with your system. In this case you need to do further investigation of
the system:

a. Check Reset, CLK, and ALE on the CPU. If an error is
found, then correct it and repeat the test.

b. Check the ALE signal on the control of the octal latches.

c. You may need to use the Logic Analyzer and set the triggering
condition to valid EPROM select, and then follow up the
timing step-by-step. Following a reset the CPU must generate
the bootstrap address. If it does not, then the starting
conditions are not OK. You better carefully check Reset,
CLK, and ALE on the CPU. If the above address is generated
but control is lost, then your address connections and data
connections from CPU to memories are likely to contain
some errors. You need to check them again and restart the
procedure.

Exercises
5.1. Write an assembly program that continuously reads one byte from

the input port, complement it and sent it to the output port. Test
this program on your system.

5.2. Write an assembly program to display an 8-bit counter on the
LEDs of your system.

5.3. Write an assembly program to add 2 four-bit numbers and display
the result on the LEDs of your system. The two numbers are
entered through the 8-DIP switch (i.e. each 4 switches represent
one number).

