
COE 205 Lab Manual Experiment No 6

Experiment No 6
Shift Rotate and Jump Instructions

Introduction:

In this experiment you will be introduced to the shift and rotate instructions. You will
also practice how to control the flow of an assembly language program using the
compare instruction, the different jump instructions and the loop instructions.

Objectives:

1- Shift Instructions.
2- Rotate Instructions.
3- Compare Instruction.
4- Jump Instructions.
5- Loop Instructions.

References:

- Lecture notes.

The Shift Operations:

The shift operations are used to multiply or divide a number by another number that is
a power of 2 (i.e. 2n or 2 –n). Multiplication by 2 is achieved by a one-bit left shift,
while division by 2 is achieved by a one-bit right shift. The Shift Arithmetic Right
(SAR) instruction, is used to manipulate signed numbers. The regular Right Shift
(SHR) of a signed number affects the sign bit, which could cause numbers to change
their sign. The SAR preserves the sign bit by filling the vacated bits with the sign of
the number. Shift Arithmetic Left (SAL) is identical in operation to SAR.

The rotate operations are very similar to the shift operations, but the bits are shifted
out from one end of a number and fed back into the other end to fill the vacated bits.
They are provided to facilitate the shift of long numbers (i.e. numbers of more than 16
bits). They are also used to reposition a certain bit of a number into a desired bit-
location. The rotate right or left instructions through the carry flag (RCL and RCR)
are similar to the regular rotate instructions (ROL and ROR), but the carry flag is
considered as a part of the number. Hence, before the rotate operation, the carry flag
bit is appended to the number as the least significant bit in the case of RCL, or as the
most significant bit in the case of RCR.

COE 205 Lab Manual Experiment No 6

A. Flags T
ype

Instruction

Example

Meaning OF SF ZF AF PF CF

SHL SHL AX,1 Shift AX left by 1 bit. Fill
vacated bit with 0.

* * * ? * *

SAL SAL AX,1 Shift AX left by 1 bit. Fill
vacated bit with 0.

* * * ? * *

SHR SHR NUM2,CL Shift NUM2 right by the
number of bits indicated in CL.
Fill vacated bits with 0.

* 0 * ? * *

Shift

SAR SAR NUM2,CL As SHR but fill vacated bits
with the sign bit.

* * * ? * *

ROL ROL BH,CL Same as SHL, but shifted bits
are fed back to fill vacated bits.

* - - - - *

RCL RCL BH,CL Same as ROL, but carry flag is
appended as MSB, and its
content is shifted with the
number.

* - - - - *

ROR ROR NUM1,1 Same as SHR, but shifted bits
are fed back to fill vacated bits.

* - - - - *

R
otate

RCR RCR NUM1,1 Same as ROR, but carry flag is
appended as LSB, and its
content is shifted with the
number.

* - - - -

Table 6. 1: Summary of the Shift and Rotate Instructions of the 8086

Microprocessor

Compare instruction:

The compare instruction is used to compare two numbers. At most one of these
numbers may reside in memory. The compare instruction subtracts its source operand
from its destination operand and sets the value of the status flags according to the
subtraction result. The result of the subtraction is not stored anywhere. The flags are
set as indicated in Table 6. 2.

Instruction Example Meaning

If (AX = BX) then ZF � 1 and CF � 0
If (AX < BX) then ZF � 0 and CF � 1

CMP

CMP AX, BX

If (AX > BX) then ZF � 0 and CF � 0

Table 6. 2: The Compare Instruction of the 8086 Microprocessor

Jump Instructions:

The jump instructions are used to transfer the flow of the process to the indicated
operator. When the jump address is within the same segment, the jump is called intra-
segment jump. When this address is outside the current segment, the jump is called
inter-segment jump. An overview of all the jump instructions is given in
Table 6. 3. Table 6. 4 lists the possible addressing modes used with the jump
instructions. Whereas,
Table 6. 5 gives examples on the use of such instructions.

COE 205 Lab Manual Experiment No 6

Type Instruction Meaning (jump if) Condition
Unconditional JMP unconditional None

 JA jnbe above (not below or equal) CF = 0 and ZF = 0
 JAE jnb above or equal (not below) CF = 0
 JB jnae below (not above or equal) CF = 1
 JBE jna below or equal (not above) CF = 1 or ZF = 1
 JE jz equal (zero) ZF = 1
 JNE jnz not equal (not zero) ZF = 0
 JG jnle greater (not lower or equal) ZF = 0 and SF = OF
 JGE jnl greater or equal (not lower) SF = OF
 JL jnge lower (not greater or equal) (SF xor OF) = 1 i.e. SF ≠ OF
 JLE jng lower or equal (not greater) (SF xor OF or ZF) = 1

Comparisons

JCXZ loop CX register is zero (CF or ZF) = 0
 JC Carry CF = 1 Carry
 JNC no carry CF = 0
 JNO no overflow OF = 0 Overflow
 JO overflow OF =1
 JNP jpo no parity (parity odd) PF = 0 Parity Test
 JP jpe parity (parity even) PF = 1
JNS no sign SF = 0 Sign Bit
JS sign SF = 1
JZ zero ZF = 1 Zero Flag
JNZ non-zero ZF = 0

Table 6. 3: Jump Instructions of the 8086 Microprocessor

Label
Pointer

Range Addressing
Mode

Specified By Encoded As Directive

Short +127/-128
bytes
IP � IP +
Offset

Immediate Word Differentially* SHORT

Immediate Word Differentially

Register Word Absolute address

Near Intra-segment
IP � Address

Memory Word Absolute address

NEAR
PTR

Immediate Double Word Absolute address

Far Inter-segment
IP �
Address
CS �
Segment

Memory Double Word Absolute address

FAR PTR

*Differentially = Difference between current and next address.

Table 6. 4: Jump Instructions and Addressing Modes

COE 205 Lab Manual Experiment No 6

Instruction Example Meaning
JMP JMP FAR PTR [BX] IP � [BX], CS �[BX+2]
JNZ JNZ END If (ZF=0) Then IP � Offset of END
JE JE FIRST If (ZF=1) Then IP � Offset of FIRST
JC JC SECOND If (CF=1) Then IP � Offset of SECOND

Table 6. 5: Examples of Jump Instructions of the 8086 Microprocessor

The LOOP Instructions:

The LOOP instruction is a combination of a DEC and JNZ instructions. It causes
execution to branch to the address associated with the LOOP instruction. The
branching occurs a number of times equal to the number stored in the CX register. All
LOOP instructions are summarized in Table 6. 6.

Instruction Example Meaning
LOOP LOOP Label1 If (CX≠0) then IP � Offset Label1
LOOPE
LOOPZ

LOOPE Label1 If (CX≠0 and ZF = 0) then IP � Offset Label1

LOOPNE
LOOPNZ

LOOPNZ
Label1

If (CX≠0 and ZF = 0) then IP � Offset Label1

Table 6. 6: Summary of the LOOP Instructions.

The Loop Program Structure, Repeat-Until and While-Do:
B. Like the condionnal and unconditionnal jump instructions which can be used
to simulate the IF-Then-Else structure of any programming language, the Loop
instructions can be used to simulate the Repeat-Until and While-Do loops. These are
used as shown in the following (
Table 6. 7).

Structure Repeat-Until While-Do

Code

 ; Repeat until CX = 0
 -
 MOV CX, COUNT
Again: -
 -
 -
 -
 -
 -
 LOOP Again
 -
 -

; While (CX ≠ 0) Do
 -
 MOV CX, COUNT
Again: JZ Next
 -
 -
 -
 -
 -
 LOOP Again
Next: -
 -

Table 6. 7: The Loop Program Structure.

COE 205 Lab Manual Experiment No 6

Pre Lab Work:

1. Complete program 6.1, according to the given guidelines.
2. Check on some values and see if it is working properly.
3. Comment on the program, trying to understand how conversion is done.
4. Write program 6.2 and make sure it contains no errors.
5. Do the modifications given in the guidelines. This will be program 6.3.
6. Bring your work to the lab.

Lab Work:

1- Show program 6.1 and your comments to your lab instructor.
2- Run program 6.2 using CodeView.
3- See what is the effect of such program on NUM1.
4- Run program 6.3, and see the effect on NUM1 after displaying NUM2.
5- Modify program 6.2, using program 6.1, such that you enter an 8-bit

binary number from the keyboard, and invert swap the high and the low
nibbles of the number, and finally display it. Call this program 6.4.

6- Show all your work to the instructor, and submit it at the end of the lab
session.

Lab Assignment:

Write a program that prompts the user to enter an 8 bit binary number, between 0 and
255. The program then inverts all bits according to the figure below. This program is
useful in Signal Processing for the calculation of the Fast Fourier Transform (FFT).
The operation is called Decimation (in time or frequency), and the bit manipulation is
called bit shuffling i.e. rearrangement of bits.

 Bit (i) � Bit (7- i) for i = 0 – 7

Figure 6. 1: Bit Shuffling

 7 6 5 4 3 2 1 0

COE 205 Lab Manual Experiment No 6

TITLE “Experiment 6, Program 1”
; This program adds 2 binary numbers and prints the result in binary format

.MODEL SMALL
.STACK 200
.DATA

CRLF DB 0DH, 0AH, '$'
 PROMPT1 DB 'Enter the first 8-bit binary number: ','$'
 PROMPT2 DB 'Enter the second 8-bit binary number: ','$'
 PROMPT3 DB 'The sum of the two numbers in binary is: ','$'
 NUM1 DW ?
 NUM2 DW ?

.CODE
.STARTUP
 ; DISPLAY PROMPT1
 ; READ AND CONVERT THE FIRST NUMBER

CALL READ

 MOV NUM1,BX ; READ FROM STACK

 MOV DX, OFFSET CRLF
 MOV AH, 09H
 INT 21H
 ; DISPLAY PROMPT2

; READ AND CONVERT THE SECOND NUMBER
 CALL READ
 MOV NUM2,BX ; READ FROM STACK

MOV BX, NUM1
 ADD BX, NUM2 ; ADD THE TWO NUMBERS
 ;DISPLAY PROMPT3
 CALL RESULT
.EXIT

;***
; PROC READ A NUMBER AND CONVERT IT TO BINARY
READ PROC NEAR
 MOV BX, 0000
 MOV CX, 0008
 MOV AH, 01H
L1: INT 21H

SUB AL, 30H
 SHL BL, 1
 OR BL, AL
 LOOP L1
 XOR BH, BH
 RET
READ ENDP
END

COE 205 Lab Manual Experiment No 6

;***
; PROC. DISPLAY RESULT
RESULT PROC NEAR

MOV CX, 0008 ; DISPLAYING
 CLC
NEXT: RCL BL, 1
 JNC BIT_0
 MOV DL, '1'
 MOV AH, 02H
 INT 21H

JMP LAST
BIT_0: MOV DL, '0'
 MOV AH, 02H
 INT 21H
LAST: LOOP NEXT
 RET
RESULT ENDP

;***
;***
 TITLE “PROGRAM 2 EXPERIMENT 6”
; This program shows how to manipulate a two-digit numbers

.MODEL SMALL
.STACK 200
.DATA

NUM1 DB ?
NUM2 DB ?

.CODE
.STARTUP
 ; READ NUMBER NUM1
 MOV AL, NUM1
 AND AL, 0FH
 MOV CL, 04H
 SHL AL,CL
 MOV BL, AL

MOV AL, NUM1
 AND AL, 0F0H
 MOV CL, 04H
 SHR AL, CL
 OR BL, AL
 MOV NUM2, BL
 ; DISPLAY NUMBER NUM1
 ; CONVERT NUM2 TO BINARY
 ; DISPLAY NUMBER NUM2
.EXIT
END

	Experiment No 6
	Shift Rotate and Jump Instructions
	
	
	
	
	
	
	
	Type
	If (AX < BX) then ZF (0 and CF (1

	Type
	
	JNO

	Short
	JMP

	JNZ END
	Instruction
	
	
	
	LOOP
	
	Like the condionnal and unconditionnal jump instructions which can be used to simulate the IF-Then-Else structure of any programming language, the Loop instructions can be used to simulate the Repeat-Until and While-Do loops. These are used as shown in t
	Like the condionnal and unconditionnal jump instructions which can be used to simulate the IF-Then-Else structure of any programming language, the Loop instructions can be used to simulate the Repeat-Until and While-Do loops. These are used as shown in t

