
Basic Computer Organization

Chapter 2

S. Dandamudi

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 2

Outline

• Basic components of a
computer system

» Processor
» Memory
» I/O
» System bus

• The processor
∗ Pentium processor details

» Pentium Registers

• The memory
∗ Basic memory operations
∗ Types of memory
∗ Storing multibyte data

• Pentium memory
architecture
∗ Real mode

∗ Protected mode

• Input/output
∗ Basic I/O operations

∗ Memory-mapped I/O

∗ Isolated I/O

• Performance: Effect of
data alignment

» Use bubble sort example

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 3

Basic Components of a Computer System

I/O

CPU

ADDRESS BUS

DATA BUS

CONTROL BUS

MEMORY

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 4

The Processor

• Processor can be thought of executing the fetch-
decode-execute cycle forever

» Fetch an instruction from the memory

» Decode the instruction
– Find out what the operation is

» Execute the instruction
– Perform the specified operation

Fetch Decode Execute Fetch Decode Execute Fetch

execution cycle

time

. . .

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 5

The Pentium Processor

• Pentium registers
∗ Pentium has ten 32-bit registers and six 16-bit registers

» Internal to the processor

» Provide faster access

∗ These registers are grouped into
» General registers

– Data registers

– Pointer registers

– Index registers

» Control registers

» Segment registers

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 6

The Pentium Processor (cont’d)

• Data registers
∗ Four 32-bit registers

∗ Can be used as
– Four 32-bit register (EAX, EBX, ECX, EDX)
– Four 16-bit registers (AX, BX, CX, DX)
– Eight 8-bit registers (AH, AL, BH, BL, CH, CL, DH, DL)
– A valid combination of these

15 8 7 0

AH

BH

CH

DH

AL

BL

CL

DL

AX Accumulator

BX Base

CX Counter

DX Data

31 16

16-bit registers

EDX

ECX

EBX

EAX

32-bit registers

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 7

The Pentium Processor (cont’d)

• Pointer and index registers
∗ Four registers

» Two registers in each
group

∗ Can be used as either 16- or
32-bit registers

• Pointer registers
∗ Used to maintain stack

• Index registers
∗ Can be used as general-

purpose data registers

∗ Play special role in string
operations

Index Registers

Pointer Registers

0

0

Source Index

Destination Index

Stack Pointer

Base Pointer

SP

BP

DI

SI

15

1631

1631

15

EBP

ESI

EDI

ESP

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 8

The Pentium Processor (cont’d)

• Control registers

F F
D

11
1 02

1
4

1
5

1
6

1
3

1
9

O

1 1
7

2
0

2
1

2
2

3
1

IO
PL

1

T
R
F

V
M

A
F

8

D F
N

P

V
I
F

T
F
S

F
V Z A

C
I II

F

Flags Register

100

0123456789

0 0

FLAGS

EFLAGS

Instruction Pointer

EIP IP

0 0 0 0 0 0 0 00

Status Flags

CF = Carry Flag

PF = Parity Flag

ZF = Zero Flag

SF = Sign Flag

OF = Overflow Flag

AF = Auxiliary Carry Flag

System Flags

NT = Nested Task

RF = Resume Flag

VM = Virtual 8086 Mode

AC = Alignment Check

VIP = Virtual Interrupt Pending

ID = ID Flag

Control Flags

DF = Direction Flag TF = Trap Flag

IF = Interrupt Flag

VIF = Virtual Interrupt Flag

15 01631

IOPL = I/O Privilege Level

C
F

P
F

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 9

The Pentium Processor (cont’d)

• Segment registers
∗ Necessary to support segmented memory organization

of Pentium

CS

DS

SS

ES

Code Segment

Data Segment

Stack Segment

15 0

Extra Segment

FS

GS

Extra Segment

Extra Segment

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 10

The Pentium Processor (cont’d)

• System clock
» System clock provides timing signal to synchronize the

operations of the whole system

∗ Clock period = length of time taken by one clock cycle
clock period = 1/clock rate

∗ Example: A 200 MHz clock yields a clock period of

1/(200 * 106) = 5 ns

1

0

clock
cycle

time

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 11

Intel 80X86 Family Processors

• 8086 in 1979
∗ 20-bit address bus (1MB)

∗ 16-bit data bus

∗ No floating-point
coprocessor

• 80286 in 1982
∗ 24-bit address bus (16MB)

∗ 16-bit data bus
∗ No floating-point

coprocessor

∗ Memory protection
capabilities

• 80386 in 1985
∗ First 32-bit processor

∗ 32-bit address bus (4GB)

∗ 32-bit data bus
∗ No floating-point

coprocessor

• 80486 in 1989
∗ Improved version of 386

∗ 32-bit address bus (4GB)

∗ 32-bit data bus
∗ Includes floating-point

coprocessor and internal
cache

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 12

Intel 80X86 Family Processors (cont’d)

• Pentium in 1993
∗ Enhanced version of 486

∗ 32-bit address bus (4GB)

∗ 64-bit data bus

∗ All internal registers are 32-bit wide
» Still a 32-bit processor

» All instructions operate on at most 32-bit operands

∗ Several versions
» Some versions are stripped down for under $1000 PC market

» Some enhanced with MMX technology

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 13

Memory

• Memory can be viewed as
an ordered sequence of
bytes

• Each byte of memory has
an address
∗ Memory address is

essentially the sequence
number of the byte

∗ Such memories are called
byte addressable

∗ Number of address lines
determine the memory
address space of a processor

Address

(in hex)

322 -1

2

1

0 00000000

00000001

00000002

(in decimal)

Address

FFFFFFFD

FFFFFFFE

FFFFFFFF

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 14

Memory (cont’d)

• Two basic memory operations
» Read operation (read from memory)
» Write operation (write into memory)

• Access time
» Time needed to retrieve data at addressed location

• Cycle time
» Minimum time between successive operations

MEMORY

UNIT

Address

Read

Write

Data

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 15

Memory (cont’d)

• Steps in a typical read cycle
» Place the address of the location to be read on the address bus

» Activate the memory read control signal on the control bus

» Wait for the memory to retrieve the data from the addressed
memory location

» Read the data from the data bus

» Drop the memory read control signal to terminate the read
cycle

∗ A simple Pentium memory read cycle takes 3 clocks
– Steps 1&2 and 4&5 are done in one clock cycle each

∗ For slower memories, wait cycles will have to be
inserted

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 16

Memory (cont’d)

• Steps in a typical write cycle
» Place the address of the location to be written on the address

bus

» Place the data to be written on the data bus

» Activate the memory write control signal on the control bus

» Wait for the memory to store the data at the addressed location

» Drop the memory write control signal to terminate the write
cycle

∗ A simple Pentium memory write cycle takes 3 clocks
– Steps 1&3 and 4&5 are done in one clock cycle each

∗ For slower memories, wait cycles will have to be
inserted

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 17

Memory (cont’d)

• Some properties of memory
∗ Random access

» Accessing any memory location takes the same amount of time

∗ Volatility
» Volatile memory

– Needs power to retain the contents

» Non-volatile memory

– Retains contents even in the absence of power

• Basic types of memory
∗ Read-only memory (ROM)

∗ Read/write memory (RAM)

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 18

Memory (cont’d)

• Read-only memory (ROM)
» Cannot be written into this type of memory

» Non-volatile memory

» Most are factory programmed (i.e., written)

∗ Programmable ROMs (PROMs)
» Can be written once by user

– A fuse is associated with each bit cell

– Special equipment is needed to write (to blow the fuse)

» PROMS are useful

– During prototype development

– If the required quantity is small

�Does not justify the cost of factory programmed ROM

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 19

Memory (cont’d)

∗ Erasable PROMs (EPROMs)
» Can be written several times

» Offers further flexibility during system prototyping

» Can be erased by exposing to ultraviolet light

– Cannot erase contents of selected locations

�All contents are lost

∗ Electrically erasable PROMs (EEPROMs)
» Contents are electrically erased

» No need to erase all contents

– Typically a subset of the locations are erased as a group

– Most EEPROMs do not provide the capability to
individually erase contents of a single location

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 20

Memory (cont’d)

• Read/write memory
» Commonly referred to as random access memory (RAM)

» Volatile memories

∗ Two basic types
» Static RAM (SRAM)

– Retains data with no further maintenance

– Typically used for CPU registers and cache memory

» Dynamic RAM (DRAM)

– A tiny capacitor is used to store a bit

– Due to leakage of charge, DRAMs must be refreshed to
retain contents

– Read operation is destructive in DRAMs

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 21

Memory (cont’d)

∗ SRAM versus DRAM
» SRAMs are expensive but faster

– Typical access time in 10-20 ns range

– Cost in $200-400 per MB

» DRAMs are cheaper but slower

– Typical access time in 50-100 ns range

– Cost in $30-100 per MB

– Typically used as main memory

�Due to the cost advantage

�Cache memory is used to handle the slow access time
of DRAM

– A wide variety of implementations are available

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 22

Storing Multibyte Data

(b) Little endian byte ordering (c) Big endian byte ordering

Address

101

100

Address

101

100

(a) 16-bit data

1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1

1 0 0 1 1 0 0 0

1 0 1 1 0 1 1 1

1 0 1 1 0 1 1 1

1 0 0 1 1 0 0 0

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 23

Storing Multibyte Data (cont’d)

• Little endian
» used by Intel 80x86 processors

• Big endian
» used by Motorola 680x0 processors

• PowerPC supports both byte orderings
» Big endian is the default

• Not a problem when working with same type of
machines

» Need to convert the format if working with a different machine

» Pentium provides two instructions for conversion
– xchg for 16-bit data
– bswap for 32-bit data

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 24

Pentium Memory Architecture

• Two modes
∗ Real mode

» Uses 16-bit addresses

» Supports segmented memory architecture

» Provides backward compatibility

– To run 8086 programs

∗ Protected mode
» Native mode of Pentium

» Uses 32-bit addresses

» Supports segmentation and paging

– Paging is useful to implement virtual memory

• Our focus is on the segmented memory architecture

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 25

Real Mode Memory Architecture

• Real mode memory architecture
∗ Pentium operates like a faster 8086 processor

∗ The 8086 has
» 20 address lines (can address 1 MB)

» All registers are 16-bit wide

∗ Memory is organized as segments of (up to) 64 KB
– Due to 16-bit registers (216 = 64 K)

∗ Two components are required to specify a location
» Segment base address (segment start address)

» Offset within a segment

» Both are 16-bit numbers

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 26

Real Mode Memory Architecture (cont’d)

∗ 16-bit segment base address restricts segments to start
at addresses that are multiple of 16

– Segments can only start at addresses 0, 16, 32, 48, ...

Physical address

11000

11450

Offset
(450)

Segment base

(1100)

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 27

Real Mode Memory Architecture (cont’d)

• Logical address consists of two 16-bit components
segment:offset

• Physical address is a 20-bit number

• Translation from logical to physical address:
» Append four least significant zeros to the segment base address

– Just add a zero when using hex numbers

» Add the offset value

• Example: Translate logical address 1100:450
 11000 (add zero to segment address)
+ 450 (offset value)

 11450 (20-bit physical address)

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 28

Real Mode Memory Architecture (cont’d)

19 0

Segment Register

ADDER

20-bit Physical Memory Address

Offset Value

0

0 0 0 0

0 0 0 0

19 15

34

16

19 0

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 29

Real Mode Memory Architecture (cont’d)

Multiple logical addresses can map to the same physical address

120A9

Segment base

Segment base
(1200)

Offset (A9)

(20A9)
Offset

(1000)

Segment 2Segment 1

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 30

Real Mode Memory Architecture (cont’d)

Six segments of the memory system in real mode

CODE

STACK

CS

SS

DS

ES

FS

GS

DATA

DATA

DATA

DATA

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 31

Real Mode Memory Architecture (cont’d)

Various ways of placing segments in the memory

(a) Adjacent (b) Disjoint (c) Partially overlapped (d) Fully overlapped

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 32

Protected Mode Architecture

• In protected mode, Pentium supports
∗ More sophisticated segmentation

» Segmentation can be made invisible (flat model)

∗ Paging for virtual memory
» Paging can be turned off

Segment
Translation

Logical
Address Linear

Address

Page
Translation

32-bit
Physical
Address

32-bit

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 33

Protected Mode Architecture (cont’d)

• Uses 16-bit segment registers
» Real or protected mode, segments registers are 16-bit wide

• Segment register provides an index into a segment
descriptor table

» Does not provide segment start address as in the real mode

• Segment register provides:
» 13-bit index value into a segment descriptor table (INDEX)

– Can select one of 213 = 8192 descriptors

» 1-bit table indicator (TI)
– Local (1) or global (0) descriptor table

» 2-bit requestor privilege level (RPL)
– Privilege level provides protected access

�Smaller the RPL ==> higher the privilege

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 34

Protected Mode Architecture (cont’d)

031

Segment
Descriptor

BASE ADDRESS

LIMIT

ACCESS RIGHTS

031

+

SEGMENT SELECTOR

TI RPLINDEX

15 3 1 02

OFFSET

32-bit Base Address

DESCRIPTOR TABLE

LINEAR ADDRESS

Protected mode segment translation

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 35

Protected Mode Architecture (cont’d)

• Segment registers have two parts:
» Visible part

– This is the 16-bit part we talked about
» Invisible part

– Stores the segment descriptor associated with the index

�Keeps the base address, size, access rights etc.

CS

SS

DS

ES

FS

GS

Segment Selector

Visible Part Invisible Part

Segment Selector

Segment Selector

Segment Selector

Segment Selector

Segment Selector

Segment Base Address, Size, Access Rights, etc.

Segment Base Address, Size, Access Rights, etc.

Segment Base Address, Size, Access Rights, etc.

Segment Base Address, Size, Access Rights, etc.

Segment Base Address, Size, Access Rights, etc.

Segment Base Address, Size, Access Rights, etc.

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 36

Protected Mode Architecture (cont’d)

• Segment descriptor provides attributes of a
segment

» 32-bit base address
» 20-bit segment size
» Control and status information

1
1

LIMIT
19:16/

D

3

B

2
4

2
1

2
2

2
13 0

1
9

1
6

1
5

2
4

1
3

1
2

D
P
L

1

V
L

A

BASE ADDRESS 15:00 SEGMENT LIMIT 15:00

BASE 31:24 BASE 23:16TYPE0G

0151631

078

P S

+0

+4

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 37

Protected Mode Architecture (cont’d)

• Segment descriptor tables
∗ One global descriptor table (GDT)

– Available to all tasks within the system

– Typically used for operating system code and data

∗ Local descriptor table (LDT)
– Can be several LDTs

�Each contains descriptors for code, data, stack, ...

– A segment cannot be accessed by a program unless there
is a descriptor for the segment either in the current LDT or
GDT

∗ One Interrupt descriptor table (IDT)
– Used in interrupt processing

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 38

Protected Mode Architecture (cont’d)

• Segmentation models
∗ Flat model

» Segmentation can be made invisible
– Use a single segment of 4 GB size

» Useful for programming environments such as UNIX

∗ Multisegment model
» Uses capabilities of segmentation to the full extent
» There can be up to six active segments
» A program can have more than six segments
» A segment that is not active can be made active

– By loading its selector into a segment register
– Processor automatically gets the segment descriptor into

the “invisible” part of the segment register

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 39

Protected Mode Architecture (cont’d)

Segments in a multisegment model

LIMITACCESS

BASE ADDRESS

LIMITACCESS

BASE ADDRESS

LIMITACCESS

BASE ADDRESS

LIMITACCESS

BASE ADDRESS

LIMITACCESS

BASE ADDRESS

LIMITACCESS

BASE ADDRESS

CS

SS

DS

ES

FS

GS

CODE

STACK

DATA

DATA

DATA

DATA

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 40

Mixed Mode Operation

• Real mode
» Default: 16-bit model

• Protected mode
» Default: 32-bit model

• Default size is indicated by D/B bit of the segment
descriptor

• We can mix 16- and 32-bit data and addresses in
either real or protected mode

» Pentium provides two size override prefixes

– One for data and one for addresses

– But, there is a performance penalty

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 41

Default Segment Register Association

• Instruction fetch
» CS segment register

» IP or EIP provides offset

• Stack operations
» SS segment register
» SP or ESP provides the offset for operations like pop and

push

» BP or EBP provide the offset for other operations

• Data
» DS segment register

» Offset: depends on the addressing mode

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 42

Input/Output

• I/O controller provides the necessary interface to
I/O devices

» Takes care of low-level, device-dependent details

» Provides necessary electrical signal interface

CONTROL BUS

DATA BUS

ADDRESS BUS

STATUS

COMMAND

DATA

I/O CONTROLLER

I/O DEVICE

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 43

Input/Output (cont’d)

• Processor and I/O interface points for exchanging
data are called I/O ports

• Two ways of mapping I/O ports
∗ Memory-mapped I/O

» I/O ports are mapped to the memory address space

– Reading/writing I/O is similar to reading/writing memory
�Can use memory read/write instructions

» Motorola 68000 uses memory-mapped I/O

∗ Isolated I/O
» Separate I/O address space
» Requires special I/O instructions (like in and out in Pentium)

» Intel 80x86 processors support isolated I/O

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 44

Input/Output (cont’d)

• Pentium I/O address space
∗ Provides 64 KB I/O address space

∗ Can be used for 8-, 16-, and 32-bit I/O ports

∗ Combination cannot exceed the total I/O address space
» can have 64 K 8-bit ports

» can have 32 K 16-bit ports

» can have 16 K 32-bit ports

» A combination of these for a total of 64 KB

∗ I/O instructions do not go through segmentation or
paging

» I/O address refers to the physical I/O address

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 45

Performance: Effect of data Alignment

CPU MEMORY

. . .

. . .

1 3 5

2 4 6

byte address

byte address

7

0

16-bit wide data bus
(bits 0 - 15)

even-numbered
addressed bytes

odd-numbered
addressed bytes

(bits 0 - 7)

(bits 8 -15)

Lower half

Upper half

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 46

Performance: Effect of data Alignment
(cont’d)

Number of elements

S
or

t t
im

e
(s

ec
on

ds
)

0

5

10

15

20

25

30

1000 2000 3000 4000 5000 6000 7000 8000

word-al
igned

un
ali

gn
ed

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 47

Performance: Effect of data Alignment
(cont’d)

• Data alignment
∗ Soft alignment

» Data is not required to be aligned

– Data alignment is optional

�Aligned data gives better performance

» Used in Intel 80X86 processors

∗ Hard alignment
» Data must be aligned

» Used in Motorola 680X0 and Intel i860 processors

1998

To be used with S. Dandamudi, “Introduction to Assembly Language Programming,” Springer-Verlag, 1998.

 S. Dandamudi Introduction: Page 48

Performance: Effect of data Alignment
(cont’d)

• Data alignment requirements for byte addressable
memories
∗ 1-byte data

» Always aligned

∗ 2-byte data
» Aligned if the data is stored at an even address (i.e., at an

address that is a multiple of 2)

∗ 4-byte data
» Aligned if the data is stored at an address that is a multiple of 4

∗ 8-byte data
» Aligned if the data is stored at an address that is a multiple of 8

