
FUZZIFIED SIMULATED EVOLUTION ALGORITHM FOR COMBINATIONAL DIGITAL
LOGIC DESIGN TARGETING MULTI-OBJECTIVE OPTIMIZATION

Sadiq M. Sait, Mostafa Abd-El-Barr, Uthman Al-Saiari, Bambang A. B. Sarif

Computer Engineering Department
KFUPM, Dhahran-31261

{sadiq, mostafa, saiarios, sarif}@ccse.kfupm.edu.sa

ABSTRACT
In this paper, we employ fuzzified Simulated Evolution (SimE)
algorithm for combinational digital logic design targeting
area, delay and power as objectives. This technique is con-
sidered to be an evolutionary technique in logic design com-
pared to conventional technique which uses deterministic
algorithms for logic design. The performance of the pro-
posed algorithm is evaluated using selected ISCAS’85 bench-
mark circuits. The results obtained using the proposed al-
gorithm are compared to those obtained using SIS.

1. INTRODUCTION

Design of digital circuits requires knowledge of large col-
lections of domain-specific rules. The process of imple-
menting a digital circuit in hardware involves transform-
ing the original logical specification into a form suitable for
the target technology, optimizing the representation with re-
spect to a number of user defined constraints (i.e., timing,
fan-in/out, power, etc.), and finally carrying out technology
mapping onto the target technology [1].

In designing a complex system, circuit designers usu-
ally have to tradeoff one design objective for another. For
example, often a designer tries to find a possibly faster cir-
cuit compared to a given previously designed one. How-
ever, the number of gates used and power dissipation are
strongly related to delay. Thus, in seeking a faster circuit,
one may end up having a complex system or a system that
has higher power dissipation. Logic synthesis attempts to
provide an answer to this problem. The purpose of logic
synthesis tools is to aid circuit designers reaching an opti-
mal tradeoff. Several logic synthesis algorithms are found
in the literature [2, 3, 4, 5, 6].

Circuit designers use logic synthesis tools to create dig-
ital systems of arbitrary complexity. By using a top-down
approach they tend to work in a space of lower dimensional-
ity in which they are expert. However, this method of work-
ing is somewhat constrained both by the training and expe-
rience of the designer and by the amount of domain-specific
knowledge known to the designer.

On the other hand, evolutionary algorithms may allow
designers to define the search space of circuit design in a
way that is natural to both the problem and the implementa-
tion. Evolutionary algorithms have tendency to search for a
solution to the circuit design problem in a much larger, and
often richer, design space beyond the realms of the tradi-
tional hardware search space. Evolutionary algorithms can
thus help explore the search space regions needed to reach
designs that are beyond the scope of conventional methods.
It may therefore be possible to use evolutionary algorithms
to obtain novel designs that are difficult to discover by con-
ventional heuristics.

Furthermore, evolutionary design approaches do not as-
sume a prior knowledge of any particular design domain.
They can be used in domains where little knowledge is avail-
able or where such knowledge is costly to obtain. It is often
possible to evolve hardware that is too complex in its struc-
ture for human to design.

The first work in evolutionary design of digital circuits,
Designer Genetic Algorithms (DGA), was proposed in [7].
Later, the work of Thompson [8] that produced a tone dis-
criminator circuit without input clock showed the emergence
of a new way of designing circuits. In a recent development,
much attention is given to the evolutionary design of arith-
metic circuits as they provide the essential building blocks
needed for larger DSP applications. Such effort has resulted
in the development of arithmetic circuits that range from a
simple sequential adder to the more complex 3-bit multi-
plier. The work of Miller [9, 1] claimed to build some arith-
metic circuits that cannot be produced by human designer’s
conventional methods. Coello [10, 11] proposed a similar
approach to evolve a circuit, which they claimed was better
than that of Miller’s. A complete review and taxonomy of
the field could be found in [12, 13]. Unfortunately, these
published work tries to find the optimized circuits in terms
of gate count only. Nevertheless, power consumption has
become one of the major criteria in modern circuit design.

The Simulated Evolution (SimE) algorithm is a general
search strategy for solving a variety of combinatorial opti-
mization problems [14, 15]. The SimE algorithm starts from

an initial assignment, and then, following an evolution-based
approach, it seeks to reach better assignments from one gen-
eration to the next. A cost function called goodness mea-
sure is used by SimE algorithm in order guide the algo-
rithm in the search space. In this paper, fuzzified Simulated
Evolution (SimE) algorithm for combinational digital logic
design targeting area, power and delay optimization is pro-
posed. The results from the fuzzified Simulated Evolution
(SimE) algorithm using selected ISCAS’85 benchmark cir-
cuits are compared to the results of a conventional logic de-
sign technique using SIS as our synthesis tool.

2. PROBLEM FORMULATION AND CIRCUIT
ENCODING

Evolutionary computation views the problem of logic de-
sign as a search task. The methodology explores a solution
space larger than that of the desired function, but gradually
pulls the specification of the circuit towards the target truth
table. However, the design space of digital circuits is huge.
There are 2n (C2n

1) possible solutions that satisfy 2n−1 out
of 2n truth table’s pattern for an n inputs single output func-
tion. In addition to that, the number of possible structures
representing each of these solutions is many. These differ-
ent structures represent different design objectives and/or
constraints. Exploring the whole search space is impracti-
cal. Therefore, the size of the search space explored by the
algorithm has to be reduced.

In this paper, we use the structure proposed in [7]. Each
cell of the n × m matrix contains the information of the
gate type and its corresponding inputs. However, unlike the
fixed interconnection rules used in [7], we allow the output
of each cell in column j to be connected to any of the cells
in column j + 1 (j > 0, j + 1 < m). Thus, it is possible
that cell(i, k), 0 < i < n, 0 < k < m, is not connected to
any of the cells in column k + 1.

Each cell of the matrix is considered to be an individ-
ual. The collection of all individuals of the matrix repre-
sents a solution. Each cell of the circuit matrix is encoded
in a triplet of inputs and gate type, as illustrated in Figure 1.
The first two numbers are for the inputs (input1, input2) and
the third indicates the gate type. A gate at position (i, j),
where i is the column number and j is the row number, can
only be connected to the one at ((i − 1), j ′) and j ′ can be
any row of the previous column.

Input 1 Input 2 Gate type

Fig. 1. Representation of an individual in matrix.

Table 1 lists different types of gates and their functions,
along with their code for the gene encoding.

Gate ID Inputs Gate Output
0 a, b WIRE1 a
1 a, b WIRE2 b
2 a, b NOT1 a

3 a, b NOT2 b
4 a, b AND a · b
5 a, b OR a + b
6 a, b XOR a ⊕ b

7 a, b NAND a · b
8 a, b NOR a + b

9 a, b XNOR a ⊕ b

Table 1. Gate types, Gate ID, and its corresponding
Boolean function.

Consider the example shown in Figure 2. Cell(2,2) whose
attribute is (0,3,4) is an AND gate (according to Table. 1).
The first input of the AND gate of this cell is connected to
the output of cell(0,1), which is a WIRE, and the second
input is connected to the output of cell(3,1). Note that, the
first column of the matrix that contains primary inputs is not
shown in the figure.

0,4,1

0,3,4
2,3,6

XOR

AND

Fig. 2. Example of a circuit and its encoding

3. COST FUNCTION FORMULATION

The cost function or the fitness of a solution consists of two
parts: functional fitness and objective fitness.

3.1. Functional Fitness

The functional cost measure is the correctness of the ob-
tained logic circuit in matching the truth table of the re-
quired function. In this work, we proposed functional cost
measure called Multilevel Logic Based Goodness Measure
and it is based on the assumption that the higher the level of
a gate in a multilevel logic circuit, the more minterms are
covered at the output of that gate. Therefore, the goodness
of a gate is affected by the number of minterms covered at
its output and the level where the gate is located. Figure
3 illustrates this assumption. Since the number of inputs

of the circuit is 4, there are 16 patterns that should be gen-
erated at the output correctly. Initially, these patterns are
distributed among the levels of the circuit evenly and pro-
gressively. Also, it is assumed that the initial number of
levels is 4 since there are 4 columns in the search matrix.
Therefore, a logic gate located at the second level should
cover 8 patterns while a logic gate located at the first level
should cover 4 patterns.

In general, for n inputs (2n patterns) circuit, to have a
goodness of 1 at a cell in level i, there should be �(2n/n)i�
correct patterns produced at this cell. Thus, the multilevel
logic goodness measure is formulated as follows:

gi =
ρ

�2n/n�j
where gi is the goodness of cell i, j is the level number or
column number, n is the number of inputs of the required
circuit and ρ is the number of matching patterns at the out-
put of cell i compared to the intended truth table.

Number of Minterms covered increases

16 Minterms should be covered for a 4
inputs circuit

4
Minterms

8
Minterms

12
Minterms

16
Minterms

Fig. 3. Multilevel logic goodness assumption.

3.2. Objective Fitness

In this work, we are targeting area, delay and power. These
are computed as follows. The cost for area of VLSI circuits
is stated as follows.

Costarea =
∑

i∈G,i�=WIRES

A(gi) (1)

Where A(gi) is the area of gate g(i).
The propagation delay of signals in VLSI circuit con-

sists of two elements, switching delay of gates and intercon-
nect delay. If a path π consists of n gates {v1, v2, ..., vn},
then, the delay Tπ along π is expressed by the following

equation:

Tπ =
n−1∑

i=1

(CDi + ((LFi + Ri) × Ci))

Where CDi is the switching delay of the cell driving gate
vi. LFi is the load factor of the driving block, R i is the
interconnect resistance of net vi, and Ci is the load capac-
itance of cell i given by Equation 2. Since the value of R i

is constant, it can be neglected. The overall circuit delay
is determined by the delay along the longest path (the most
critical path).

The total capacitance Ci of gate i consists of the inter-
connect capacitance at the output node of gate i and the sum
of the capacitances of the input nodes of the gates driven by
gate i.

Ci = Cr
i +

∑

j∈Mi

Cg
j (2)

Where Cg
j is the capacitance of the input node of a gate j

driven by gate i and C r
i represents the interconnect capaci-

tance at the output node of cell i.
The total power consumption can be approximated by

the following equation [16].

Pt �
∑

i∈M

1
2
· Ci · V 2

DD · f · Si · β (3)

Where Pt is the total power consumption, VDD is the supply
voltage, Si is the switching probability at the output node of
cell i, i.e., the average number of transitions per clock cycle
at the output of gate i, f is the clock frequency and β is a
technology dependent constant.

The cost of the overall power consumption in VLSI cir-
cuits can then be estimated as follows.

Costpower =
∑

i∈M

Si · Ci (4)

The objective fitness (Fo) is the measure of the quality
of solution in terms of optimization of area, delay and power
consumption. It contains two aspects: constraints satisfac-
tion and multi objective optimization. In this paper, fuzzy
logic is used to represent the cost function for area, delay
and power. In order to build the membership function, the
lower bound and upper bound of the cost function must be
determined [17].

In order to guide the search intelligently, the maximum
value must be carefully estimated. For this purpose, SIS
tool [5] is used to estimate the minimum area and minimum
delay of the target circuits.

The estimated lower bound of maximum area (called
targetarea) is associated with a specific degree of member-
ship called target membership (µtarget). The shape of the
membership function is depicted in Figure 4

1

t
µ

µ

area

minimum area target area

Fig. 4. Membership function for area as optimization ob-
jective

The membership function for delay and power are built
using similar rules. These three membership functions will
be aggregated into one unit (the objective fitness) using OWA
operator [18].

4. PROPOSED SIMULATED EVOLUTION (SIME)

Assume there are a set L of |L| distinct locations and a
set M of n elements of all logic gates as in Table 1 where
|L| ≤ n. SimE algorithm proceeds as follows. Initially, a
population1 is created at random from all populations satis-
fying the environmental constraints of the problem. There-
fore, L locations (cells) of set L will be filled randomly by
different logic gates. The algorithm has one main loop con-
sisting of three basic steps, Evaluation, Selection, and Al-
location. The algorithm evaluates every location (cell) of
the set L using the Multilevel Logic Based Goodness Mea-
sure. Some cells will be selected by the Selection step ac-
cording to their goodness. If a cell has high goodness, it
has less probability being selected. Next, in Allocation step,
selected cells will be assigned different gate types in order
to improve their goodness. The three steps are executed in
sequence until the population average goodness reaches a
maximum value, or no noticeable improvement to the pop-
ulation goodness is observed after a number of iterations.
Another possible stopping criterion could be to run the al-
gorithm for a prefixed number of iterations (see Figures 5
and 6).

5. EXPERIMENTS AND RESULTS

In this section, comparison of the proposed algorithm with
an existing conventional technique is given. For this pur-
pose, SIS tools is used. However, SIS does not consider ca-

1In SimE terminology, a population refers to a single solution. Individ-
uals of the population are components of the solution; they are the movable
elements.

ALGORITHM Simulated Evolution(E, ,L, Stopping-Criteria);
INITIALIZATION ;
Repeat

EV ALUATION
SELECTION
ALLOCATION

Return (BestSolution);
End Simulated Evolution.

Fig. 5. Simulated Evolution algorithm.

1 2 k

K+1 2k

L2k

L locations

1 k2

2kK+1

n2k

Set of Logic gates (M)
consist of n elements

1 2 k

K+1 2k

L2k

Assign n’ elements selected from M
to L locations

Fig. 6. Representation of digital logic design problem.

pacitance load in their delay calculation and does not have
power optimization. Therefore, the results obtained from
SIS are in the form of netlist file. These netlist file will
be used as input to the cost function calculation procedures
of the proposed algorithm to determine the area, delay and
power of the circuits.

5.1. Area Optimization

The results from SIS are the area optimized circuits ob-
tained by executing rugged.script script, mapped for area
minimization. Both SIS and the proposed algorithm use the
same gate library.

Table. 2 shows the results for delay optimization for
both techniques. The table shows that the highest improve-
ments are obtained at cm82a and mul3 circuits by 58.25%
and 51.63 % respectively.

SIS Proposed Algorithm % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

mul2 18225 6.587026 5.561531 12636 3.56 4.66 44.23 84.98 19.35
mul3 112752 43.385843 37.745321 74358 13.14 21.65 51.63 230.23 74.38

cm42a 40824 8.864164 13.648234 40824 8.86 13.64 0.00 0.00 0.00
cm82a 39609 19.539984 14.879328 25029 11.84 9.24 58.25 64.98 61.12

b1 10206 3.225844 3.994219 11215 2.91 2.78 -8.93 10.85 43.68
c17 9963 3.559452 3.64207 9963 3.55 3.64 0.00 0.00 0.00

con1 31590 8.637996 11.21212 30233 6.90 14.23 4.49 25.19 -21.21
majority 14823 6.276723 5.405396 13851 4.57 5.06 7.02 37.32 6.93

Table 2. Comparison with SIS in area optimization

SIS Proposed Algorithm % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

mul2 25272 4.331142 7.157387 12636 3.56 4.66 100 21.66 53.59
mul3 174231 31.663494 47.161334 74358 13.14 21.65 51.63 230.23 74.38

cm42a 43740 8.46137 12.233066 40824 8.86 13.64 0 0 0
cm82a 64638 19.011371 18.936375 28552 9.34 9.1 38.73 109.21 63.51

b1 10206 3.225844 3.994219 11215 2.91 2.78 -8.93 10.85 43.68
c17 9963 3.559452 3.64207 9963 3.55 3.64 0 0 0

con1 31590 8.637996 11.21212 30233 6.9 14.23 4.49 25.19 -21.21
majority 14823 6.276723 5.405396 13851 4.57 5.06 7.02 37.32 6.93

Table 3. Comparison with SIS in delay optimization

5.2. Delay Optimization

For delay optimization, the results from SIS are obtained by
executing delay.script script, mapped for delay minimiza-
tion. Both the proposed algorithm and SIS used the same
gate library for the experiments. The test cases used are
the same circuits used for area optimization in the previous
section.

Table. 2 shows the results for delay optimization for
both techniques. It can be seen that the results obtained
from SimE algorithm for area and delay optimization are
the same except cm82a improved in the delay with larger
area. The table shows that the highest improvements are
obtained at cm82a and mul3 circuits.

6. CONCLUSION

In this paper, the use of Simulated Evolution (SimE) algo-
rithm in logic design is being proposed. A goodness mea-
sure to guide SimE algorithm through the search space of
digital logic design is suggested. Comparison of the pro-
posed approach with SIS is shown. The proposed approach
has shown better results in most cases compared to SIS con-
sidering area optimization and delay optimization.

7. REFERENCES

[1] J. F. Miller, D. Job, and Vassilev V. K., “Principles
in the Evolutionary Design of Digital Circuits - Part
I,” Journal of Genetic Programming and Evolvable
Machines, vol. 1, no. 1, pp. 8–35, 2000.

[2] R. Brayton, G. D. Hachtel, C. T. McMullen, and A.L.
Sangiovanni-Vincentelli, Logic Minimisation Algo-
rithms for VLSI Synthesis, Kluwer Academic Pub-
lisher, 1984.

[3] R. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli,
and A. Wang, “MIS: A Muliple-Level Logic Opti-
misation System,” IEEE Trans. on Computer-Aided
Design, vol. CAD-6, pp. 1062–1081, Nov. 1987.

[4] R. Brayton, G. D. Hachtel, and A. L. Sangiovanni-
Vincentelli, “Multilevel Logic Synthesis,” Proceeding
of the IEEE, vol. 78, pp. 264–300, Feb. 1990.

[5] E. M. Sentovic, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton, and A. L. Sangiovanni-Vincentelli, “SIS: A
System for Sequential Circuit Synthesis,” Technical
Report UCB/ERL M92/41, University of California,
Berkeley, May 1992.

[6] D. Bostick et al., “The Boulder Optimal Logic Design
System,” Proceeding of the International Conference
on CAD, pp. 62–65, Nov. 1987.

[7] Sushil J. Louis, Genetic Algorithms as a Computa-
tional Tool for Design, Ph.D. thesis, Department of
Computer Science, Indiana University, Aug 1993.

[8] Adrian Thompson, “Silicon Evolution,” Proceedings
of the First Annual Conference on Genetic Program-
ming, pp. 444–452, MIT Press, 1996.

[9] J. F. Miller, T. Fogarty, and P Thomson, “Designing
Electronic Circuits Using Evolutionary Algorithms.
Arithmetic Circuits: A Case Study,” Genetic Al-
gorithms and Evolution Strategy in Engineering and
Computer Science, John Wiley and Sons, Chichester,
pp. 105–131, 1998.

[10] C. A. Coello, A. D. Christiansen, and A. H. Aguirre,
“Towards Automated Evolutionary Design of Combi-
national Circuits,” Computers and Electrical Engi-
neering, Pergamon Press, vol. 27, no. 1, pp. 1–28, Jan.
2001.

[11] Coello Coello, Carlos A. and Hernndez Aguirre, Ar-
turo,, “Evolutionary Multiobjective Design of Com-
binational Logic Circuits,” Proceedings of the Sec-
ond NASA/DoD Workshop on Evolvable Hardware,
pp. 161–170, Jul 2000.

[12] R. S. Zebulum, M. A. Pacheco, and Marley Vellasco,
“Evolvable Systems in Hardware Design: Taxonomy,
Survey and Applications,” Evolvable System: From
Biology to Hardware. Proceeding of the First Inter-
national Conference, ICES 96 Tsukba, Japan, Lecture
Notes in Computer Science, vol. 1259, pp. 344–358,
Oct. 1997.

[13] R. S. Zebulum and M. A. Pacheco and Maria Vellasco,
Evolutionary Electronics: Automatic Design of Elec-
tronic Circuits and Systems by Genetic Algorithms,
CRC Press, 2002.

[14] J. F. Miller and P. Thomson, “A Developmental
Method for Growing Graphs and Circuits,” Fifth Inter-
national Conference on Evolvable Systems: From Bi-
ology to Hardware, vol. 2606, pp. 93–104, Mar 2003.

[15] R. M. Kling and P. Banerjee, “ESP: A New Standard
Cell Placement Package using Simulated Evolution,”
Proceeding of 24th Design Automation Conference,
pp. 60–66, 1987.

[16] Srinivas Devadas and Sharad Malik, “A Survey of
Optimization Techniques Targeting Low Power VLSI
Circuits,” 32nd ACM/IEEE Design Automation Con-
ference, 1995.

[17] S. Sait and H. Youssef, Iterative Computer Algorithms
with Applications in Engineering: Solving Combina-
torial Optimization Problems, IEEE, 1999.

[18] Ronald R. Yager, “On Ordered Weighted Averaging
Aggregation Operators in Multicriteria Decision Mak-
ing,” IEEE Transaction on Systems, MAN, and Cyber-
netics, vol. 18, no. 1, January 1988.

