
COMBINATIONAL LOGIC CIRCUITS DESIGN THROUGH ANT COLONY
OPTIMIZATION ALGORITHM

Mostafa Abd-El-Barr, Sadiq M. Sait, Bambang A. B. Sarif, Uthman Al-Saiari

Computer Engineering Department
KFUPM, Dhahran-31261

fmostafa, sadiq, sarif, saiariosg@ccse.kfupm.edu.sa

ABSTRACT

With the increasing demand for high quality, more efficient
and less area circuits, the problem of circuit design has be-
come a multi-objective optimization problem. Therefore,
there should evolve new methodologies for designing logic
circuits. The new paradigm is expected to radically change
the synthesis procedures in a way that can help discovering
novel designs and/or more efficient circuits. In this paper,
a multiobjective optimization of logic circuits based on a
modified Ant Colony (ACO) algorithm is presented. The re-
sults obtained using the proposed algorithm are compared to
those obtained using SIS in terms of area, delay and power.

1. INTRODUCTION

In conventional logic design, circuit designers begin with a
precise specification in the form of truth tables or Boolean
expressions. These expressions are manipulated by apply-
ing logic synthesis algorithms, such as factorization and ker-
nel extraction to minimize circuit representations. There-
fore, the outcome of logic synthesis algorithms will always
be in the space of all logically correct representations. These
will be either in two-level, or multi-level or Reed Muller
representation.

Iterative heuristics work on a larger space that may not
represent the desired function. Through the process of as-
semble and test, candidate solutions are built and evaluated.
At the end, the optimum solution could evolve from this
process.

The first work in evolutionary design of digital circuits,
Designer Genetic Algorithms (DGA), was proposed in [1].
Later, the work of Thompson [2] that produced a tone dis-
criminator circuit without input clock showed the emergence
of a new way of designing circuits. In a recent development,
much attention is given to the evolutionary design of arith-
metic circuits as they provide the essential building blocks
needed for larger DSP applications. Such effort has resulted
in the development of arithmetic circuits that range from a
simple sequential adder to the more complex 3-bit multi-

plier. The work of Miller [3, 4] claimed to build some arith-
metic circuits that cannot be produced by human designer’s
conventional methods. Coello [5, 6] proposed a similar ap-
proach to evolve a circuit, which they claimed was better
than that of Miller’s. A complete review and taxonomy of
the field could be found in [7, 8]. Unfortunately, these pub-
lished work tries to find the optimized circuits in terms of
gate count only. Nevertheless, power consumption has be-
come one of the major criteria in modern circuit design.

Ant Colony Optimization (ACO) algorithm [9] is a new
meta-heuristic algorithm with a combination of distributed
computation, auto-catalysis (positive feedback) and construc-
tive greedy heuristic in finding optimal solutions for combi-
natorial problems. Unlike Genetic Algorithms (GAs), which
is a blind search heuristic, ACO is an optimization of co-
operating agents (ants) algorithms. In this paper, a multi-
objective evolutionary logic design based on Ant Colony
Optimization (ACO) is proposed. The goal is to find op-
timized circuits in terms of area, delay and power.

2. ANT COLONY OPTIMIZATION ALGORITHM

The ACO algorithm has been inspired by behavior of real
ants. It was observed that real ants were able to select the
shortest path between their nest and food resource, in the
existence of alternate paths between the two. The search is
made possible by an indirect communication known as stig-
mergy amongst the ants. While traveling their way, ants de-
posit a chemical substance, called pheromone, on the ground.
When they arrive at a decision point, they make a probabilis-
tic choice, biased by the intensity of pheromone they smell.
This behavior has an autocatalytic effect because of the very
fact that choosing a path will increase the probability that it
will be chosen again by future ants. When they return back,
the probability of choosing the same path is higher (due to
the increase of pheromone). New pheromone will be re-
leased on the chosen path, which makes it more attractive
for future ants. Shortly, all ants will select the shortest path.

In ACO algorithm, the optimization problem is formu-
lated as a graph G = (C;L), where C is the set of com-

ponents of the problem, and L is the possible connection
or transition among the elements of C. The solution is ex-
pressed in terms of feasible paths on the graph G, with re-
spect to a set of given constraints.

3. PROPOSED APPROACH

Consider the Boolean function f = xyz + xyz + xyz.
Figure 1 shows a graph of some possible paths connect-
ing literal x to the intended function f . Assume that the
ants start the tour from literal x. The ant will traverse the
paths by selecting the edges through a probabilistic process.
Assume that the goal is to find the shortest path to repre-
sent function f . Therefore, the ants that found the path
x ! (x + y) ! (x + y)(xy � z) would return the best
representation for function f .

x

xy

yx +

yx ⊕

yx zyx

zxy

yx yzx

zxy ⊕

zyx)(+

))((zxyyx ⊕+

zyx)(⊕ zxyzyx +⊕)(

yzx)(⊕

xzy)(⊕

…..

Fig. 1. Some of the possible paths in the function f .

The number of paths in Figure 1 is more than eleven.
Traversing all possible paths is however, impractical. We
need to modify the ACO algorithm to handle this huge search
space.

3.1. Circuit Encoding and Representation

A circuit is modelled as a matrix M of size n � m. The
content of matrix M is dynamically filled. There are 10
types of gate available. Table 1 shows these gates.

Gate ID Inputs Gate Output
0 a; b WIRE1 a
1 a; b WIRE2 b
2 a; b NOT1 a
3 a; b NOT2 b
4 a; b AND a � b
5 a; b OR a+ b
6 a; b XOR a� b
7 a; b NAND a � b
8 a; b NOR a+ b
9 a; b XNOR a� b

Table 1. Gate types used

Consider the example shown in Figure 2. Cell(2,2) whose
attribute is (0,3,4) is an AND gate (according to Table. 1).
The first input of the AND gate of this cell is connected to
the output of cell(0,1), which is a WIRE, and the second
input is connected to the output of cell(3,1). Note that, the
first column of the matrix that contains primary inputs is not
shown in the figure.

0,4,1

0,3,4
2,3,6

XOR

AND

Fig. 2. Example of a circuit and its encoding

3.2. Fitness Function Calculation

The fitness of a solution contains two parts, namely func-
tional fitness and objective fitness.

3.2.1. Functional Fitness

The functional fitness deals with the functionality of the so-
lution, i.e., how good the solution is in satisfying the truth
table of the intended Boolean function. Several functional
fitness (Ff) function calculation are reported in the litera-
ture [8]. The most commonly used one is the ratio of the
number of hits to the length of the truth table. This can be
formulated as follows.

NH =
Number of hits

Length of truth table

The number of hits is defined as the number of correct
matchings between the output patterns obtained from the
solution and the truth table of the intended function. The
solution has to be ’inverted’ if the value of R is less than
0.5. Therefore, the formulation below is applied.

Ff = MaxfNH; 1�NHg (1)

3.2.2. Objective Fitness

The objective fitness (Fo) is the measure of the quality of
solution in terms of optimization objectives such as area,
delay, gate count and power consumption. It contains two
aspects: constraints satisfaction and multi objective opti-
mization. In this paper, fuzzy logic is used to represent the

cost function for area, delay and power. In order to build the
membership function, the lower bound and upper bound of
the cost function must be determined [10].

In order to guide the search intelligently, the maximum
value must be carefully estimated. For this purpose, SIS tool
[11] is used to estimate the minimum area and minimum
delay of the target circuits.

The estimated lower bound of maximum area (called
targetarea) is associated with a specific degree of member-
ship called target membership (�target). The shape of the
membership function is depicted in Figure 3

1

t
µµµµ

µµµµ

a r e a

m i n i m u m a r e a t a r g e t a r e a

Fig. 3. Membership function for area as optimization ob-
jective

The membership function for delay and power are built
using similar rules. These three membership functions will
be aggregated into one unit (the objective fitness) using OWA
operator [12].

3.2.3. Overall Fitness Calculation

The overall fitness is then can be formulated as follows.

Fit = Wf � Ff + (1�Wf) � Fo (2)

Where Wf is the weight for functional fitness. The value of
these weights must be chosen intelligently. The value ofWf

must be large enough in order to have better functionality of
the circuit, because at the end functionally correct circuits
are the only solutions accepted. However, it should not be
too large in order to get better quality solutions in terms of
design objectives.

3.3. Solution Construction

At first, matrix M is filled with randomly generated cells.
Then, each ant will traverse the matrix. These ants originate
from a dummy cell called nest (see Figure 4), and traverse
each state (a cell in a column) until it reaches the last column
or a cell that has no successor.

The selection edges to traverse is determined by a stochas-
tic probability function. It depends on the pheromone value

nest

S(0,0) S(0,1) S(0,m-1)

S(1,0) S(1,1) S(1,m-1)

.....

S(n-1,0) S(n-1,1) S(n-1,m-1)

Fig. 4. Nest cell and matrix M for ant to be traversed.

(�) and heuristic value (�) of the edge (or the next cell). The
probability of selecting next node is formulated below:

pkij(t) =
[�ij(t)]

� � [�ij]
�

P
l2@k

i

[�il(t)]� � [�il]�
(3)

The value of � and � imply the preference of the search,
whether it depends more on pheromone value or heuristic
value respectively. Every newly created cell will be given
an initial and small amount of pheromone value. This value
will be updated every iteration by the ant.

The heuristic value (�) depends on the distance of Ff

values between cells. The distance d between cells is then
formulated as follows.

d = Ff (i+ 1)� Ff (i) (4)

� = d+ 0:5 (5)

The addition of 0.5 in the calculation of � is meant to
normalized the value of � into [0,1]. A decrease in func-
tional fitness means that the value of � is in the range of
[0,0.5), while an increase of functional fitness makes the
value of � in the range of (0.5, 1]

When all ants finish their tour, pheromone update is per-
formed. The pheromone update is performed using the fol-
lowing equation:

�(t) = (1� �) � �(t) + � � Fit(t) (6)

where Fit(t) denotes the overall fitness of the solution that
the ants built, � is pheromone evaporation rate and � is a
constant.

When all ants finish their movement, the matrix M is
checked to see which cells of the matrix that are worth to
be kept. The cells that are not included in the best solu-
tion in the current iteration will be removed. These empty
cells will be then filled up again in the beginning of the next
iteration. If it has not reached the maximum iteration, the
procedure will be cycled again. Otherwise, the best solution
is returned.

SIS Proposed Algorithm % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

majority 13851 4.57 5.06 14823 6.28 5.41 6.56 27.18 6.48
xor8 20655 5.90 9.32 27945 27.69 10.82 26.09 78.70 13.89
xor9 23328 8.84 10.65 33048 33.25 12.65 29.41 73.40 15.83
add2 24300 11.48 9.96 29889 17.22 11.38 18.70 33.31 12.48
mul2 12636 3.56 4.66 18225 6.59 5.56 30.67 45.94 16.21
add3 49086 21.96 18.474 42282 24.99 15.68 -16.09 12.13 -17.79
mul3 59292 15.03 17.541 112752 43.39 37.75 47.41 65.36 53.53

Table 2. Comparison with SIS in area optimization

SIS Proposed Algorithm % ImprovementCircuit
Area Delay Power Area Delay Power Area Delay Power

majority 16038 4.19 5.02 18711 7.53 5.40 14.29 44.34 7.11
xor8 20655 5.90 9.32 32805 9.53 11.65 37.04 38.11 20.04
xor9 27216 8.84 11.48 41067 15.42 14.15 33.73 42.64 18.85
add2 31347 8.957 11.463 50787 11.77 14.63 38.28 23.90 21.64
mul2 18225 2.96 5.99 25272 4.33 7.16 27.88 31.57 16.30
add3 53703 12.979 21.484 118827 19.20 35.21 54.81 32.40 38.98
mul3 74358 13.138 21.645 174231 31.66 47.16 57.32 58.51 54.10

Table 3. Comparison with SIS in delay optimization

4. EXPERIMENTS AND RESULTS

In this section, comparison of the proposed algorithm with
an existing conventional technique is given. For this pur-
pose, SIS tools is used. However, SIS does not consider ca-
pacitance load in their delay calculation and does not have
power optimization. Therefore, the results obtained from
SIS are in the form of netlist file. These netlist file will
be used as input to the cost function calculation procedures
of the proposed algorithm to determine the area, delay and
power of the circuits.

4.1. Area Optimization

The results from SIS are the area optimized circuits ob-
tained by executing rugged.script script, mapped for area
minimization. Both SIS and the proposed algorithm use the
same gate library.

Table. 2 shows the results for area optimization for both
techniques. The table shows that the highest improvements
are obtained at 8-bit and 9-bit odd parity circuits. The parity
circuits consist of XOR (XNOR) gates only. Unfortunately,
SIS is unable to perform XOR decomposition. Thus, the
parity circuits obtained by SIS will require larger area as
compared to the ones obtained by the proposed algorithm.

For multiple-output circuits, the improvement in area
varies. The highest improvements are observed at multiplier
circuits circuits.

4.2. Delay Optimization

For delay optimization, the results from SIS are obtained by
executing delay.script script, mapped for delay minimiza-
tion. Both the proposed algorithm and SIS used the same
gate library for the experiments. The test cases used are
the same circuits used for area optimization in the previous
section.

As can be seen from the table above, in contrast with
area optimization, the results of delay optimization is very
positive. The reason behind this is the following. ACO
can be easily modeled as a shortest path finding problem.
Since delay can be said proportional to the length of the
path, ACO algorithm, which is the basic of the proposed
algorithm, provides a good solution for delay optimization
problem.

5. CONCLUSION

In this paper, we have proposed an ACO-based evolution-
ary logic design technique. Comparison of the proposed
approach with SIS is shown. The proposed approach has
shown that it is capable of producing optimized combina-
tional circuits and has shown some promising results.

6. REFERENCES

[1] Sushil J. Louis, Genetic Algorithms as a Computa-
tional Tool for Design, Ph.D. thesis, Department of
Computer Science, Indiana University, Aug 1993.

[2] Adrian Thompson, “Silicon Evolution,” Proceedings
of the First Annual Conference on Genetic Program-
ming, pp. 444–452, MIT Press, 1996.

[3] J. F. Miller, T. Fogarty, and P Thomson, “Designing
Electronic Circuits Using Evolutionary Algorithms.
Arithmetic Circuits: A Case Study,” Genetic Al-
gorithms and Evolution Strategy in Engineering and
Computer Science, John Wiley and Sons, Chichester,
pp. 105–131, 1998.

[4] J. F. Miller, D. Job, and Vassilev V. K., “Principles
in the Evolutionary Design of Digital Circuits - Part
I,” Journal of Genetic Programming and Evolvable
Machines, vol. 1, no. 1, pp. 8–35, 2000.

[5] C. A. Coello, A. D. Christiansen, and A. H. Aguirre,
“Towards Automated Evolutionary Design of Combi-
national Circuits,” Computers and Electrical Engi-
neering, Pergamon Press, vol. 27, no. 1, pp. 1–28, Jan.
2001.

[6] Coello Coello, Carlos A. and Hernndez Aguirre, Ar-
turo,, “Evolutionary Multiobjective Design of Com-
binational Logic Circuits,” Proceedings of the Sec-
ond NASA/DoD Workshop on Evolvable Hardware,
pp. 161–170, Jul 2000.

[7] R. S. Zebulum, M. A. Pacheco, and Marley Vellasco,
“Evolvable Systems in Hardware Design: Taxonomy,
Survey and Applications,” Evolvable System: From
Biology to Hardware. Proceeding of the First Inter-
national Conference, ICES 96 Tsukba, Japan, Lecture
Notes in Computer Science, vol. 1259, pp. 344–358,
Oct. 1997.

[8] R. S. Zebulum and M. A. Pacheco and Maria Vellasco,
Evolutionary Electronics: Automatic Design of Elec-
tronic Circuits and Systems by Genetic Algorithms,
CRC Press, 2002.

[9] M. Dorigo, M. Maniezzo, and A. Colorni, “The Ant
Systems: An Autocatalytic Optimizing Process,” Re-
vised 91-016, Dept. of Electronica, Milan Polytechnic,
1991.

[10] S. Sait and H. Youssef, Iterative Computer Algorithms
with Applications in Engineering: Solving Combina-
torial Optimization Problems, IEEE, 1999.

[11] E. M. Sentovic, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton, and A. L. Sangiovanni-Vincentelli, “SIS: A
System for Sequential Circuit Synthesis,” Technical
Report UCB/ERL M92/41, University of California,
Berkeley, May 1992.

[12] Ronald R. Yager, “On Ordered Weighted Averaging
Aggregation Operators in Multicriteria Decision Mak-
ing,” IEEE Transaction on Systems, MAN, and Cyber-
netics, vol. 18, no. 1, January 1988.

