
EXPERIMENT 10

10. Design of a 4-bit Arithmetic Unit 

10.1 Objectives: 
The objectives of this lab are: 

 To design a 4-bit Arithmetic Unit (AU) 
 To experimentally check the operation of the AU 

10.2 Overview 
 An Arithmetic Unit is a combinational circuit that performs arithmetic micro-
operations on a pair of n-bit operands (ex. A[3:0] and B[3:0]). The operations 
performed by an AU are controlled by a set of function-select inputs. In this lab you 
will design a 4-bit AU with 2 function-select inputs: Select S1 and S0 inputs. The 
functions performed by the AU are specified in Table  10.1. A block diagram is given 
in Figure  10.1 

 

Table  10.1: Functions of AU. 
S1 S0  C0 FUNCTION OPERATION 
0 0 0 A Transfer A  
0 0 1 A + 1 Increment A by 1 
0 1 0 A + B Add A and B 
0 1 1 A + B + 1 Increment the sum of A and B by 1 
1 0 0 A + B' A plus one's complement of B 
1 0 1 A – B Subtract B from A (i.e. B' + A + 1) 
1 1 0 A' + B B plus one's complement of A 
1 1 1 B – A B minus A (or A' + B + 1)  

 

 
Figure  10.1: Block diagram of the 4-bit AU. 
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 We will be using two’s complement system of notation while dealing with 
arithmetic operations in our AU. This has a number of advantages over the sign and 
magnitude representation such as easy addition or subtraction of mixed positive and 
negative numbers. Recall that the two’s complement of a n-bit number N is defined as: 

2n - N = (2n - 1 - N) + 1 
 The last representation gives us an easy way to find two’s complement: take the 
bit wise complement of the number and add 1 to it. As an example, to represent the 
number -5, we take two’s complement of 5 (=0101) as follows, 

 

5 0 1 0 1 --> 1 0 1 0  (bit wise complement) 

         + 1 

   1 0 1 1  (two’s complement) 

 Numbers represented in two’s complement lie within the range 
- (2n-1) to + (2n-1 - 1). For a 4-bit number this means that the number is in the range of 
-8 to +7. There is a potential problem we still need to be aware of when working with 
two's complement, namely overflow and underflow as is illustrated in the examples 
below, 

      0 1 0 0 (=carry Ci) 
 +5  0 1 0 1 
 +4 + 0 1 0 0 
 +9  0 1 0 0 1 = -7! 

Also, 
      1 0 0 0 (=carry Ci) 
 -7  1 0 0 1 
 -2 + 1 1 1 0 
 -9  1 0 1 1 1 = +7! 

 Both calculations give the wrong results (-7 instead of +9 or +7 instead of -9) 
which is caused by the fact that the result +9 or -9 is out of the allowable range for a 4-
bit two’s complement number. Whenever the result is larger than +7 or smaller than -8 
there is an overflow or underflow and the result of the addition or subtraction is 
wrong. Overflow and underflow can be easily detected when the carry out of the most 
significant stage (i.e. C4 ) is different from the carry out of the previous stage (i.e. C3). 
In our lab, the inputs A and B have to be presented in two’s complement to the inputs 
of the AU. 

10.3 Design strategies 
 When designing the AU we will follow the principle "Divide and Conquer" in 
order to use a modular design that consists of smaller, more manageable blocks, some 
of which can be re-used. Instead of designing the 4-bit AU as one circuit we will first 
design a one-bit AU, also called a bit-slice. These bit-slices can then be put together to 
make a 4-bit AU. 
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10.4 Pre-Lab 
 Read section 7-7 (the arithmetic/logic unit) of you text book (pp. 360-365). 
 Give the truth tables for the Xi and Yi functions with inputs S1, S0 and Ai, and 

S1, S0 and Bi, respectively. Fill out the Table  10.2. Notice that in definition 
Table  10.1 of the AU, the variable C0 acts as the Carry input. Depending on the 
value of C0, one performs the function on the odd or even entries of the 
definition table I. As an example the first entry is "transfer A" (for C0=0) while 
the second one is "A+1" (for C0=1); similarly for A + B and A + B + 1, etc. 

Table  10.2: Truth Tables for the A and B Logic Circuits. 

S1 S0 Ai 
Xi 

(A Logic) S1 S0 Bi 
Yi 

(B Logic) 
0 0 0  0 0 0  
0 0 1  0 0 1  
0 1 0  0 1 0  
0 1 1  0 1 1  
1 0 0  1 0 0  
1 0 1  1 0 1  
1 1 0  1 1 0  
1 1 1  1 1 1  

 Give the K-map for Xi and Yi functions. Find the minimum realization for Xi 
and Yi. 

 Draw the logic diagram for Xi and Yi. 
 Design the circuit that detects over- or underflow. 
 Bring the multiplexed seven-segment display macro design to the lab. 

10.5 In-lab: 
1. Build a macro for logics A and B. this macro should have four inputs (S1, S0, 

Ai, and Bi) and two outputs (Xi and Yi). Call it bit-slice. 
2. You need two 4-bit (FD4CE) registers to store the values A and B. 
3. You need four instances of the macro you built in step 1. 
4. You need four full adders. You can build your own or fined one in the Xilinx 

library. 
5. Connect four switched (SW1, SW2, SW3, and SW4) to the inputs of the two 

4-bit registers (D3, D2, D1, and D0) respectively. 
6. Use SW5 to enable one of the registers and disable the other. 
7. Use a button switch (BTN1) as a clock for the two registers. 
8. Connect the outputs of the registers to the proper inputs of the bit-slice macro. 
9. Connect the outputs of the bit-slice macros to the full adder as in Figure  10.2. 

 

 
Figure  10.2: Schematic Block Diagram of the Arithmetic Unit. 
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10. Use the switches (SW6, SW7, and SW8) for the control signals S1, S0, and Cin 
respectively. 

11. Import the multiplexed seven-segment display macro you built earlier and 
connect the outputs of the register A to the most left display and the output of 
register B to the second left display. Connect the outputs of the adder to the 
right most display as in Figure  10.3. 

12. Use three LEDs for over-flow, carry-out, and sing signals. 
13. Download you design and demonstrate it to the lab instructor. 

 

 
Figure  10.3: Overall System, Including the 4-Bit AU and Display Units. 


