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Abstract Simulated Evolution (SimE) is an evolutionary metaheuristic that has pro-
duced results comparable to well established stochastic heuristics such as SA, TS and
GA, with shorter runtimes. However, for optimization problems with a very large set
of elements, such as in VLSI cell placement and routing, runtimes can still be very
large and parallelization is an attractive option for reducing runtimes. Compared to
other metaheuristics, parallelization of SimE has not been extensively explored. This
paper presents a comprehensive set of parallelization approaches for SimE when
applied to multiobjective VLSI cell placement problem. Each of these approaches
are evaluated with respect to SimE characteristics and the constraints imposed by
the problem instance. Conclusions drawn can be extended to parallelization of SimE
when applied to other optimization problems.

Keywords Optimization · Parallel algorithms · Evolutionary metaheuristic ·
Simulated evolution · VLSI cell placement · Cluster computing

Mathematics Subject Classifications (2000) 90C27 · 68T20 · 68W10 · 68W40 ·
68W20 · 68U07

1 Introduction

Simulated evolution (SimE), proposed by Kling and Banerjee [1], belongs to the
class of general purpose stochastic metaheuristics. It has been applied to a variety
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of optimization problems in VLSI design automation, computer network design,
and other domains [2]. The SimE algorithm is based on the principles of evolution.
However, unlike Genetic Algorithms (GA), only a single solution is evolved instead
of a population of solutions. Also, unlike Simulated Annealing (SA) and Tabu
Search (TS), each move in SimE is a compound move and the element(s) perturbed
are selected probabilistically based on their fitness values and not entirely randomly.

Parallelization of metaheuristics aims to solve complex problems and traverse
larger search spaces in a reasonable amount of time. The goals of parallelization can
be to achieve either lower runtimes for the same quality solutions as the sequential
algorithm or higher quality solutions in a limited amount of time [4–6]. From a
computational point of view, metaheuristics are algorithms from which functional
and data parallelism can be extracted. However, metaheuristics usually operate upon
irregular data structures, such as graphs, or upon data with strong dependencies
among different operations and as such remain difficult to parallelize using only data
and functional parallelism [4]. Furthermore, when parallelizing metaheuristics, not
only speed-ups are important but also the maximum achievable qualities. Therefore,
to achieve any benefit from parallelization requires not only a proper partitioning
of the problem for a uniform distribution of computationally intensive tasks, but
more importantly, a thorough and intelligent traversal of a complex search space
for achieving good quality solutions. The tractability of the former issue is largely
dependent on parallelizability of both the cost computation and perturbation func-
tions while the latter issue requires that the interaction of parallelization strategy
with the intelligence of the heuristic must be considered, as it directly affects the final
solution quality obtainable, and indirectly the runtime due to its effect on algorithm’s
convergence.

In this paper the parallelization of SimE is explored when it is applied to a mul-
tiobjective VLSI cell placement problem with the goal of achieving scalable speed-
ups for the best solution qualities obtained with the serial algorithm. To this end,
various parallelization approaches are investigated and a comparison amongst them
with respect to SimE metaheuristic characteristics and problem instance interaction
is presented. The paper is organized as follows: Section 2 explains the combinatorial
optimization problem. In Section 3, a brief description of the SimE algorithm is given
and an analysis of sequential implementation’s runtime is given. In Section 4, the
work is put in context of previous work while Section 5 describes parallel strategies
and experimental results. General observations are given in Section 6, and Section 7
concludes the paper.

2 Optimization Problem and Cost Functions

In this section, the optimization problem is formulated along with the cost functions
and constraint used in the optimization process.

2.1 Problem Formulation

This work addresses the problem of VLSI standard cell placement with the objectives
of optimizing power consumption, timing performance (delay), and wirelength while



J Math Model Algor (2007) 6:433–454 435

considering layout width as a constraint. Semi-formally, the problem can be stated as
follows:

A set of cells or modules M = {m1, m2, ..., mn} and a set of signals S = {s1, s2, ..., sk}
is given. Moreover, a set of signals Smi , where Smi ⊆ S, is associated with each module
mi ∈ M. Similarly, a set of modules Ms j , where Ms j = {mi|sj ∈ Smi} is called a signal
net, is associated with each signal sj ∈ S. Also, a set of locations L = {L1, L2, ..., Lp},
where p ≥ n is given. The problem is to assign each mi ∈ M to a unique location L j,
such that all of the considered objectives are optimized subject to the constraints [3].

2.2 Wirelength Cost:

Interconnect Wire length of each net in the circuit is estimated and then total wire
length is computed by adding the individual estimates:

Costwire =
∑

i∈M

li (1)

where li is the wirelength estimation for net i and M denotes total number of nets
in circuit.

2.3 Power Cost:

Power consumption pi of a net i in a circuit can be given as:

pi � 1

2
· Ci · V2

DD · f · Si · β (2)

where Ci is total capacitance of net i, VDD is the supply voltage, f is the clock
frequency, Si is the switching probability of net i, and β is a technology dependent
constant.

Assuming a fix supply voltage and clock frequency, then power dissipation of a cell
depends on its capacitance and its switching probability. Hence, the above equation
reduces to the following:

pi � Ci · Si (3)

The capacitance Ci of cell i is given as:

Ci = Cr
i +

∑

j∈Mi

Cg
j (4)

where Cg
j is the input capacitance of gate j and Cr

i is the interconnect capacitance at
the output node of cell i.

At the placement phase, only the interconnect capacitance Cr
i can be manipulated

while Cg
j comes from the properties of the cell from the library used and is thus

independent of placement. Moreover, Cr
i depends on wirelength of net i, so Eq. 3

can be written as:

pi � li · Si (5)
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The cost function for estimate of total power consumption in the circuit can be
given as:

Costpower =
∑

i∈M

pi =
∑

i∈M

(li · Si) (6)

2.4 Delay Cost:

This cost is determined by the delay along the longest path in a circuit. The delay Tπ

of a path π consisting of nets {v1, v2, ..., vk}, is expressed as:

Tπ =
k−1∑

i=1

(CDi + I Di) (7)

where CDi is the switching delay of the cell driving net vi and I Di is the interconnect
delay of net vi. The overall circuit delay is equal to Tπc , where πc is the longest path
in the layout (most critical path). The placement phase affects I Di because CDi is
technology dependent parameter and is independent of placement. Using the RC
delay model, I Di is given as:

I Di = (
LFi + Rr

i

) × Ci (8)

where LFi is load factor of the driving block, that is independent of layout, Rr
i is the

interconnect resistance of net vi and Ci is the load capacitance of cell i given in Eq. 4.
The delay cost function can be written as:

Costdelay = max{Tπ } (9)

2.5 Width Cost:

Width cost is given by the maximum of all the row widths in the layout. The layout
width is constrained not to exceed a certain positive ratio α to the average row width
wavg, where wavg is the minimum possible layout width obtained by dividing the total
width of all the cells in the layout by the number of rows in the layout. Formally,
width constraint can be expressed as below:

Width − wavg ≤ α × wavg (10)

2.6 Overall Fuzzy Cost Function:

Since three objectives are being optimized simultaneously, there should be a cost
function that represents the effect of all three objectives in form of a single quantity.
In this work, the use of fuzzy logic is proposed to integrate these multiple, possibly
conflicting objectives into a scalar cost function. Fuzzy logic allows us to describe
the objectives in terms of linguistic variables. Then, fuzzy rules are used to find the
overall cost of a placement solution. The following fuzzy rule has been used:

IF a solution has SMALL wirelength AND LOW power consumption AND
SHORT delay THEN it is an GOOD solution.
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The above rule is translated to and-like OWA fuzzy operator [9] and the member-
ship μ(x) of a solution x in fuzzy set GOOD solution is given as:

μ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β · min
j=p,d,l

{μ j(x)} + (1 − β) · 1

3

∑

j=p,d,l

μ j(x);

if Width − wavg ≤ α · wavg,

0; otherwise.

(11)

Here μ j(x) for j = p, d, l, width are the membership values in the fuzzy sets LOW
power consumption, SHORT delay, and SMALL wirelength respectively. β is the
constant in the range [0, 1]. The solution that results in maximum value of μ(x) is
reported as the best solution found by the search heuristic.

The membership functions for fuzzy sets LOW power consumption, SHORT
delay, and SMALL wirelength are shown in Fig. 1. The preference of an objective j
in overall membership function can be varied by changing the value of g j . The lower
bounds O j for different objectives are computed as given in Eqs. 12, 13, 14 and 15:

Ol =
n∑

i=1

l∗i ∀vi ∈ {v1, v2, ..., vn} (12)

Op =
n∑

i=1

Sil∗i ∀vi ∈ {v1, v2, ..., vn} (13)

Od =
k∑

j=1

CDj + I D∗
j ∀v j ∈ {v1, v2, ..., vk} in path πc (14)

Owidth =

n∑

i=1

Widthi

# of rows in layout
(15)

Fig. 1 Membership functions
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where Oj for j ∈ {l, p, d, width} are the optimal costs for wire-length, power, delay
and layout width respectively, n is the number of nets in layout, l∗i is the optimal
wire-length of net vi, CDi is the switching delay of the cell i driving net vi, I Di is the
optimal interconnect delay of net vi calculated with the help of li, Si is the switching
probability of net vi, πc is the most critical path with respect to optimal interconnect
delays, k is the number of nets in πc and Widthi is the width of the individual cell
driving net vi.

3 Simulated Evolution Algorithm

3.1 Description of Metaheuristic

The structure of the SimE algorithm is shown in Fig. 2. SimE assumes that there exists
a solution � of a set M of n (movable) elements or modules. The algorithm starts
from an initial assignment �initial , and then, following an evolution-based approach,
it seeks to reach better assignments from one generation to the next by perturbing
some ill-suited components while retaining the remaining ones. A cost function Cost

ALGORITHM Simulated_Evolution(B, �initial)

NOTATION
B: Bias Value. �: Complete solution.
mi: Module i. gi: Goodness of mi.
ALLOCAT E(mi, �i): Allocates mi in partial solution �i
Begin
INITIALIZATION;
Repeat

EVALUATION:
ForEach mi ∈ � evaluate gi;

SELECTION:
ForEach mi ∈ � DO

begin
IF Random > Min(gi + B, 1)

THEN
begin

S = S ∪ mi; Remove mi from �

end
end

Sort the elements of S
ALLOCATION:

ForEach mi ∈ S DO
begin

ALLOCAT E(mi, �i)

end
Until Stopping Condition is satisfied
Return Best solution.
End (Simulated_Evolution)

Fig. 2 Simulated evolution algorithm
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associates with each assignment of movable element mi a cost Ci. The cost Ci is used
to compute the goodness (fitness) gi of an element mi, for each mi ∈ M. The goodness
measure must be strongly related to the target objective of the given problem. Hence
in SimE approach, the quality of a solution can be measured as the quality of all its
constituent elements.

The algorithm has one main loop consisting of three basic steps, Evaluation,
Selection, and Allocation. The three steps are executed in sequence until the solution
average goodness reaches a maximum value, or no noticeable improvement to the
solution fitness is observed after a number of iterations.

The Evaluation step consists of evaluating the goodness gi of each element mi of
the solution �. The goodness measure must be a single number expressible in the
range [0, 1]. It is defined as:

gi = Oi

Ci

where Oi is an estimate of the optimal cost of element mi, and Ci is the actual cost of
mi in its current location. Since three objectives are being optimized, a multiobjective
goodness measure developed in [7] is used.

The second step of the SimE algorithm is Selection. Selection takes as input the
solution � together with the estimated goodness of each element, and a bias value
B to compensate for non-ideal nature of the calculated goodness values. It partitions
� into two disjoint sets; a selection set S and a partial solution �p of the remaining
elements of the solution �. Each element in the solution is considered separately
from all other elements. The probability of assigning an element mi to the set S is
based on its goodness gi. The selection operator has a non-deterministic nature, i.e,
an individual with a high goodness (close to one) still has a non-zero probability
of being assigned to the selection set S. It is this element of non-determinism that
gives SimE the capability of escaping local minima. In this work, a biasless selection
function developed in an earlier work [7] as been used.

Allocation is the SimE operator that has the most important impact on the
quality of solution. Allocation takes as input the set S and the partial solution
�p and generates a new complete solution �′ with the elements of set S mutated
according to an allocation function Allocation [2]. The goal of Allocation is to favor
improvements over the previous generation, without being too greedy. A variety of
heuristics can be used in this step [1]. In this work, the ‘sorted individual best fit
method’ [7] has been used.

3.2 Runtime Analysis of Sequential Algorithm

To determine the contribution of each of the cost functions and SimE operators to
overall execution time, the serial implementation was profiled using gprof (GNU
profiler) tool. Two separate versions of programs were analyzed for various test cases
executed for same number of iterations. Of the two versions, the first optimized only
wirelength and power while the other focused on all three objectives. The results
obtained showed that for first and second versions respectively 98.4 and 98.5%
of time was spent in the allocation function, 0.6 and 0.5% of time was spent in
wirelength calculation (excluding wirelength re-calculation calls made in allocation
routine), 0.2 and 0.4% of time was spent in goodness evaluation, and 0.2% of time
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was spent in delay calculation in the second version. Thus, it is obvious that for the
given problem instance with the ‘sorted individual best-fit’ method, allocation routine
heavily influences the runtime of the algorithm. The impact of this is discussed in
Section 5.

4 Related Work

The field of parallel metaheuristics has rapidly expanded in the past ten to fifteen
years and parallel versions of metaheuristics have been increasingly proposed.
Several excellent surveys, taxonomies and syntheses have also been published [4–6],
which present a global view of the field and generalize the various strategies used
into broad classes. To put the exploration approach taken in this work into context,
the parallel approaches attempted for SA, GA and TS are briefly discussed.

4.1 Simulated Annealing

4.1.1 Move Acceleration

Several efforts to determine and exploit parallelism have focused on move com-
putation, as this is a fundamental component performed numerous times during
each annealing run. The underlying idea is to partition different, non-interacting
portions of the move evaluation task across several processors in parallel. Each
individual move is evaluated faster by breaking up the overall task into subtasks such
as selecting a feasible move, evaluating the cost changes, deciding to accept or reject,
and perhaps updating a global database. Concurrency is obtained by delegating these
individual subtasks to different processors.

Such a strategy, referred to as move-acceleration or move-decomposition, involves
a close interaction between processors, and has less potential for parallelism in terms
of the amount of parallel work performed and the number of processors that can be
employed. Such methodologies are largely restricted to shared memory architectures
and preserve all the properties of the serial algorithm [8].

4.1.2 Parallel Moves

In this method, moves are computed independently and in parallel by several
processors. Since the global system state is partitioned across the processors, the in-
dependent computation and subsequent state update of interacting moves causes the
locally held view of the global system state in each processor to become inconsistent
with the local views in other processors. Consequently, errors are introduced in move
evaluation. The impact of such errors may be kept at a minimum through frequent
exchanges of state-update information between processors. However, this approach
implies significantly increased inter-processor communication, thereby restricting its
application in a cluster-of-workstations environment.

4.1.3 Multiple Markov Chains

Multiple Markov Chains (MMC) call for the concurrent execution of separate
simulated annealing chains with periodic exchange of solutions [20]. This approach
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is particularly promising since it has the potential to use parallelism to increase the
quality of the solution.

4.1.3.1 Non-interacting Scheme The algorithm can be understood if the sequential
simulated annealing procedure is considered as a search path where moves are
proposed and either accepted or rejected depending on particular cost evaluations
and also a starting random seed. The search path is essentially a Markov chain, and
parallelization is accomplished by initiating different chains (using different seeds)
on each processor. Each chain then explores the entire search space by independently
performing the perturbation, evaluation, and decision steps. After each processor
has completed the annealing schedule, the solutions are compared and the best is
selected.

4.1.3.2 Periodic Exchange Scheme (Synchronous MMC) In this scheme, processing
elements (PEs) exchange local information including the intermediate solutions and
their costs after a fixed time period. Then, each PE restarts from the best of the
intermediate solutions. Compared to the non-interacting scheme, a communication
overhead in this periodic exchange scheme would be introduced. However, each
PE can utilize the information from other nodes thereby reducing unproductive
computations and idle time. With such communication, these independent Multiple
Markov chains can collectively converge to a better solution.

4.1.3.3 Dynamic Exchange Scheme (Asynchronous MMC) The statistical data col-
lected during execution may be utilized to adaptively control the SA process in each
Markov Chain to further reduce the execution time. For example, the acceptance rate
which is closely related to the annealing state can control communication instances.
The periodic exchanges that were discussed earlier may introduce unnecessary and
untimely communication, thereby wasting time. Moreover, an intermediate solution
derived at an insufficiently cooled state can hamper the convergence of other
communicating Markov chains.

Soo-Young and Kyung proposed an asynchronous MMC model, which adaptively
determines when information is to be exchanged [20]. Communication is permitted
based on satisfying certain conditions. First, a certain period of time has to elapse,
i.e., to allow each PE sufficient independent annealing. Second, these working nodes
exchange information only when necessary, rather than at a fixed schedule, e.g., when
other PEs have arrived at a significantly better solution. In this way, these processing
elements can more efficiently guide each other to a higher quality solution. This is
known as the dynamic exchange scheme, and is an asynchronous MMC model.

4.2 Genetic Algorithms

Over the years, parallel Genetic Algorithms have been broadly classified into the
following three models [14, 15]:

1. Global single-population master-slave GAs
2. Single-population fine-grained GAs, and
3. Multiple-population coarse-grained GAs
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4.2.1 Global Single-population Master-slave ParGA

This model follows the Master–Slave paradigm where a single population is main-
tained on the Master, while evaluation of fitness and/or the application of Genetic
Operators is distributed among several slave processors. In this model, selection and
crossover consider the entire population and hence it is also known as the Global
Parallel GA. As in the serial GA, each solution may compete and mate with any
other in the population; also the selection operation determines the new population
from the complete set of older population and their offsprings.

The most common operation that is parallelized is the evaluation of solutions,
as the fitness of each chromosome is independent of any other. A fraction of the
population is assigned to each processor, and communication occurs only as each
slave receives its subset and returns the fitness values. The method does not affect
the behavior of the GA algorithm, and follows the same search pattern as serial GAs.

4.2.2 Single-population Fine-grained ParGA

Fine-grained Parallel GAs maintain only one population, but have a spatial structure
that limits interaction between individual solutions. An individual can only compete
and mate with its neighbors, i.e., selection and crossover is restricted to a small
neighborhood. However, these neighborhoods overlap, thus allowing good solutions
to disseminate across the entire population. This model is suitable for massively
parallel computers with the ideal case of having only one individual solution for each
processing element available.

4.2.3 Multiple-population Coarse-grained GAs

Multiple-population GAs provide a more sophisticated parallelization strategy
wherein several subpopulations evolve independently on individual processors
and exchange individuals periodically. This exchange of solutions is called migration
and is a core aspect of this parallel model. Multi-population GAs are known with
different names. They are referred to as Multi-deme parallel GAs (drawing on the
analogy of natural evolution), Distributed GAs (as they are often implemented on
distributed parallel architectures), and Coarse-grained GAs (since the computation
to communication ratio is usually high). This model of parallel GAs is very popular,
but also the most difficult to understand due to the effect of migration and a large
number of influential parameters. There is no hierarchical master-slave structure
but rather, a peer model with migration between demes controlled by various
parameters.

4.3 Tabu Search

Parallel TS has drawn the attention of many researchers, especially in comparison
with similar acceleration strategies applied to other heuristics. The first reported
studies were published in the early 1990s [16–18]. Crainic et al. [19], classified the
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different parallel tabu search heuristics based on a taxonomy along three dimensions
as enumerated below.

– The first dimension is Control cardinality, where the algorithm is either 1-control,
where one processor executes the search and distributes tasks to other processors
or p-control, where each processor is responsible for its own search and commu-
nicates with other processors.

– The second dimension is Control and communication type, where the algorithm
can either follow a rigid synchronization (RS) and knowledge synchronization
(KS) approach or it can be Collegial (C), and Knowledge Collegial (KC). The
former is a synchronous operation mode where the process is forced to establish
communication and exchange information at specific, explicitly defined points.
The latter is an asynchronous operation mode where the processors can indepen-
dently decide on communication depending on the global characteristics of good
solutions, the search strategy and the possible content of that communication.

– The third dimension is Search differentiation where the algorithm can be SPSS
(Single Point Single Strategy), SPDS (Single Point Different Strategies), MPSS
(Multiple Point Single Strategy), or MPDS (Multiple Point Different Strategies).

In addition to this type of classification, a more general category based on
processor communication is also used. This divides various approaches as either
Synchronous or Asynchronous. In the former, various processors working with
the same solution, communicate in a synchronous manner, where the managing
processor orchestrates the activities of all others. In asynchronous strategies, each
processor communicates independently of other nodes using either the master-slave
or peer-to-peer model.

4.3.1 Synchronous Parallel Tabu Search

In this approach, the master is primarily in-charge of controlling movement in the
search process, while the slaves are used for distributing workload. Depending on the
variants of this strategy, slave processors may start with either the same or different
initial solution. After searching its allocated part of the current neighborhood, each
slave process reports its best move back to the master. The master process selects
the best among these, subject to tabu conditions. If the stopping criteria are met then
the search stops; otherwise the master determines a new set of moves and distributes
them among the slaves which continue with the search. This approach, by Crainic’s
classification, would be a 1-control, RS, SPSS algorithm.

4.3.2 Asynchronous Parallel Tabu Search

In this approach, each processor explores a subset of the neighborhood of its current
solution. Each of these is competing with its neighbors (its adjacent processors) in
finding a superior solution. When the stopping criteria are met, every processor
reports its best solution. Similar asynchronous parallel tabu search implementations
for the traveling salesman and quadratic assignment problems have been reported
in [16]. Its classification is p-control, C, MPSS algorithm.
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4.4 This Work

This paper follows the approach taken in [4] and classify the various attempted
strategies into three comprehensive types according to the source of parallelism.
These are [4]:

1. Type I (Low-level Parallelization): The limited functional or data parallelism of
a move evaluation is exploited or moves are evaluated in parallel. This strategy,
called low-level parallelism, aims to simply speed-up the sequential algorithm
without changing the search space traversal path taken by the algorithm.

2. Type II (Domain Decomposition): This approach obtains parallelism by parti-
tioning the set of decision variables. The partitioning reduces the size of solution
space, but it needs to be repeated to allow the exploration of the complete
solution space. The traversal is different than the sequential algorithm.

3. Type III (Parallel Searches): Parallelism is obtained from multiple concurrent
explorations of the solution space.

Unlike SA, GA, TS and many other metaheuristics, parallelization of SimE has not
been explored extensively and no comparison among strategies has been made. The
only parallelization strategy reported [1] was for a single objective (wirelength) VLSI
cell placement that can be classified under type II. In this paper, a more complex
multiobjective cost function is used and comparison of the parallel strategies is
presented considering the complete spectrum of parallelization types discussed here.

5 Parallel Strategies and Experiments

The parallel SimE strategies were implemented in C along with MPICH ver.1.2.5
Message Passing Interface library. A dedicated cluster was used comprising of eight
2 GHz Pentium-4 machines with 256 MB RAM, connected with fast ethernet, and
running RedHat Linux ver.7.2. The strategies were tested on ISCAS-89 benchmark
circuits. They are of various sizes in terms of number of cells and paths, and thus
offer a variety of test cases. In all the results tables, runtimes are in seconds and the
solution qualities, denoted by μ(s), is the fuzzy cost measure discussed in Section 2.

5.1 Type I Parallelization

As stated earlier, a type I parallelization aims to speed up the sequential algorithm
without modifying its search behavior. For a type I parallel SimE strategy, paralleliza-
tion of goodness evaluations seems intuitive as it is done at the level of individual
elements, although the dependencies among elements has to be taken into account
to ensure correctness. However, the allocation routine has a sequential dependence
among its operations and it cannot be partitioned without deviating from the
sequential algorithm behavior. Hence, the implemented SimE type I parallelization
focuses only on distribution of cost calculations and goodness evaluation.

In the multi-objective cost computation, the calculation of wirelength of each net
must precede the calculation of power and delay. The wirelength calculation of each
net is independent of other nets and thus can be performed in parallel. The same
applies to power computations. The calculation of delay costs involves operating
on given critical paths, finding the delay of each and then finding maximum delay
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among all paths. These can also be performed in parallel. This results in a fairly clean
partitioning as long as cost computations are concerned. However, the complications
lie in goodness evaluations for wirelength, power and delay.

The calculation of wirelength and power goodness values of each cell requires
that the wirelength of all fan-in cells be known [7]. This complicates the partitioning
of cells among processors; if a processor needs to calculate the wirelength of cells
not in its partition, the potential gain of cost computation division is reduced to
the extent of duplicate calculations performed. The situation is worse for delay
goodness calculations as all the cells on an assigned long path may not lie in the
same assigned partition, resulting in many duplicate calculations across processors.
In addition, all processors need to know the computed delay of all long paths in the
circuit to calculate the delay goodness of cells in its partition, requiring additional
costly communication. Furthermore, during allocation at the master node, additional
cost calculations may be required when calculating the goodness gains for those cells
which are not the members of partition at the master node.

Since delay goodness partitioning has complex communication requirements, and
secondly, profiling results indicate that most of the time is spent for wirelength/power
cost and goodness calculations, the type I parallel algorithm was implemented
for only wirelength and power optimization to observe the results of partitioning.
Figures 3 and 4 show the outline of the type I parallel SimE algorithm. The partial
cost and goodness computations are carried out by all processors including the master
processor, which then receives goodness values from all processors and performs
selection and allocation. The slave processors are then updated with the new solution.

The results of type I implementation are shown in Table 1. Due to lack of space,
the solution quality for each circuit is not shown as it doesn’t vary between serial and

ALGORITHM TypeI_Parallel_SimE_Master_Process
NOTATION
(* � is the complete solution. *)

Begin
INITIALIZATIONS;
Repeat

EVALUATION:
(* For each slave process. *)
ParFor

Slave_ Process(�)

(* Broadcast Current Placement. *)
EndParFor
ParFor

Receive_Partial_Goodness_Values
EndParFor

SELECTION;
Sort the elements of S;
ALLOCATION;

Until (Stopping Criteria is Satisfied)
Return (Best_Solution)

End. (*Master_Process*)

Fig. 3 Outline of master process for type I parallel SimE algorithm
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ALGORITHM TypeI_Parallel_SimE_Slave_Process(�)

NOTATION
(* � is the complete solution. *)
(* �sis the partition assigned to slave s. *)
(* mi is module i in �s. *)
(* gi is the goodness of mi. *)

Begin
Receive_Placement
Calculate_Partial_Costs
ForEach mi ∈ �s evaluate gi EndForEach;
Send_Partial_Goodness_Values

End. (*Slave_Pocess*)

Fig. 4 Outline of slave process for type I parallel SimE algorithm

parallel versions. The results show that there is no benefit of type I parallelization
because of poor workload division owing to duplicate calculations. Furthermore,
there is an increase in the runtime of parallel algorithm as the parallelization
overheads well exceed the little workload distribution. Also, no change in runtimes
is observed with increasing processors. Interestingly, the ratio of serial to parallel
runtimes remains almost the same across the different test cases and processor
counts.

5.2 Type II Parallelization

The domain decomposition method involves the partitioning of a complete solution
into smaller domains to be optimized in parallel. For SimE, this implies the paral-
lelization of all its operators, including Allocation. Hence, the search behavior of the
parallel algorithm will differ from the serial algorithm. Allocation function division
requires that alterations performed by the individual sub-allocation functions on
the sub-solutions should not overlap, thus allowing the concurrent relocation of
several selected cells at a time. After each iteration, the sub-solutions are merged
to avoid missing parts of the search space and then re-partitioned. The elements are
partitioned row wise among the m processors. This type of partitioning facilitates
the adaptation of SimE to type II parallelization as each row can be easily processed
independently (Fig. 7). A processor s, 1 ≤ s ≤ m would be assigned a subset �s of
the solution �. Then, each processor s will evaluate the goodness of each element in

Table 1 Results for type 1 parallel SimE

Ckt name Cells Seq. time Times for parallel

p=2 p=3 p=4 p=5

s1196 561 92 130 130 130 130
s1488 667 187 263 263 263 263
s1494 661 190 268 268 273 270
s1238 540 91 127 129 131 130
s3330 1,561 3,750 5,480 5,463 5,467 5,453
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ALGORITHM TypeII_Parallel_SimE_Master_Process
NOTATION
(* ks: Set of row indices for each process s. *)
(* �: The complete current solution. *)

INITIALIZATIONS;
Begin

Repeat
ForEach s ∈ m Generate_Row_Indices ks EndForEach;

(* For each slave process. *)
ParFor

Slave_ Process(�, ks)

(* Broadcast cur. placement and row-indices. *)
EndParFor
ParFor

Receive_Partial_Placement_Rows
EndParFor

Construct_Complete_Solution
Until (Stopping Criteria is Satisfied)

Return Best_Solution.
End. (*Master_Process*)

Fig. 5 Outline of master process for type II parallel SimE algorithm

�s and run the Selection step to partition �s into a selection subset Ss and a partial
solution of remaining cells �p

s (See the serial algorithm in Fig. 2 for comparison).
This type of parallelization strategy has been attempted earlier for standard cell

placement on a network of workstations [1]. The row allocation pattern that was
proposed in [1] is made up of two alternating sets. In the even iterations, each slave

0

1

2

3

4

5

6

7

P1

P2

P3

P4

(a) Odd Iterations (b) Even Iterations 

Fig. 6 The row allocation pattern when eight rows are allocated to four processors during a odd
numbered iterations (partitioning pattern 2); b even numbered iterations (partitioning pattern 1)
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gets a slice of � K
m � rows, (where m is the number of processors, and K is the total

number of rows in the placement) while in the odd iterations the jth slave gets
the set of rows j, j + m, j + 2m, and so on. Figure 6a shows the row distribution
pattern for odd-numbered iterations while Fig. 6b is the partitioning for the even-
numbered cycles when 8 rows are used with 4 processors. It was stated that with this
fixed pattern of assigning rows to slaves in alternate steps, each cell can move to any
position on the grid in at most two steps [1].

The pseudocode of the type II parallel SimE is given in Figs. 5 and 7. As can be
seen, one of the processors (the master) is in-charge of running SimE on a particular
partition as well as performing the following tasks periodically at the end of each
iteration: (1) receive the partial placements from all other processors and combine
them into a new solution, (2) obtain a new row allocation, and finally, (3) distribute
the new solution and row allocation among the processors. The number of rows
assigned to each processor depends on the size of the placement and the number of
processors. This is repeated for all iterations until the termination condition is met.

The consequence of Allocation parallelization, however, is that each processor
only has a limited freedom of cell movement, which reduces even further with
increasing number of processors on a given number of total rows. This affects the

ALGORITHM TypeII_Parallel_SimE_Slave_Process(�, ks)
NOTATION
(* �s are the rows assigned to slave s. *)
(* mi is module i in �s. *)
(* gi is the goodness of mi. *)

Begin
Receive Placement_ And_ Indices
EVALUATION:

ForEach mi ∈ �s evaluate gi EndForEach;
SELECTION:

ForEach mi ∈ �s DO
Begin

If Random > Min(gi + B, 1)

Then
Begin

Ss = Ss ∪ mi; Remove mi from �s

End
End

Sort the elements of Ss

ALLOCATION:
ForEach mi ∈ Ss Do

Begin
Allocate(mi, �i

s)

(* Allocate mi in local partial solution rows �i
s. *)

End
Send_Partial_Placement_Rows

End. (*Slave_Process*)

Fig. 7 Outline of slave process for type II parallel SimE algorithm
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Table 2 Results for wirelength-power type II parallel SimE strategies

Ckt. μ(s) Seq. Processors Fixed Random
name time row pattern row pattern

s1196 0.684 92 2 45 50
3 36 (95) 38
4 33 (94) 32
5 29 (89) 31

s1488 0.673 186 2 105 102
3 60 (98) 65
4 37 (94) 45
5 43 (92) 36

s1494 0.650 49 2 42 44
3 60 35
4 176 29
5 196 (94) 25

s1238 0.719 72 2 95 32
3 116 (96) 23
4 167 (94) 20
5 185 (93) 14 (95)

s3330 0.699 2,765 2 1,900 1,091
3 930 (99) 574
4 748 373
5 724 (97) 378

optimum cell movement, making it more difficult for cells to reach their optimal lo-
cations in the same number of iterations as the sequential algorithm. Also, some error
in optimum cell position determination is introduced as each processor considers the
cells outside its partition as not changing positions.

To observe if a different row allocation pattern than the one mentioned earlier [1]
can lead to a different behavior, random row allocation [11] was also attempted
in the experimentation. Two parallel multiobjective algorithms, a wirelength-power
only and the other including delay optimization as well, were implemented using
two types of row allocation patterns for each. No division of wirelength and delay
cost calculations was done because of little potential gain as evident by the profiling
results and type I parallelization.

Tables 2 and 3 show the results of type II parallel SimE for two and three
objectives optimization respectively. For the results in Table 2, the serial algorithm
was run for 3,500 iterations while the parallel runs were done starting at 4,000
iterations and 500 additional iterations added with every additional processor. In
Table 3, the serial version ran for 5,000 iterations and 1,000 more iterations for
each additional processor were done. This was done because additional iterations
are required for the type II parallel algorithm to converge because of partitioning.
In cases where the parallel algorithm failed to achieve the highest serial quality, the
time shown is for the percentage of serial quality indicated in brackets. The tables
show that the speed-up trend and solution qualities are better in case of random
row allocation for both optimization versions. It is evident that parallelization of
allocation function in type II strategy, which constitutes more than 95% of runtime
(Section 3.2), leads to significant speed-ups, though at the cost of achieving lower
than maximum serial qualities in some cases.
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Table 3 Results for wirelength-power-delay type II parallel SimE strategies

Ckt. μ(s) Seq. Processors Fixed Random
name time row pattern row pattern

s1196 0.634 134 2 96 85
3 37 70
4 36 55
5 43 (98) 30

s1488 0.523 244 2 54 50
3 39 80
4 76 45
5 70 50

s1494 0.626 253 2 116 (88) 235
3 73 (87) 93
4 110 (86) 115
5 103 (87) 96 (98)

s1238 0.666 187 2 38 110
3 78 75
4 83 35
5 34 (98) 78

s3330 0.674 13,007 2 4,676 (90) 3,171
3 2,604 (87) 1,658 (90)
4 2,062 (83) 1,105 (86)
5 1,336 (80) 1,031 (86)

5.3 Type III Parallelization

Type III parallelization or parallel searches aim for a concurrent exploration of the
search space with parallel threads that may or may not interact (by exchanging
some kind of information). In the simplest form of parallel search, each thread
independently performs a separate search with a different randomization. However,
it has been observed that there is seldom any speed-up in this method as this is
equivalent to multiple independent runs of the serial algorithm. Strategies in which
threads communicate with others have shown promising results for SA, GA and
TS [4–6]. Hybrid algorithms have also been proposed in which, for instance, GA
is used with parallel threads of SA or some other metaheuristic or vice versa.

Parallel searches are effective if the search subspaces of the various threads do
not overlap (or have minimal overlap) so that all threads should concurrently search
distinct parts of the solution space (ideally). In case of SimE, although the selection
operator is non-deterministic, the outcome is highly dependent upon the goodness
values. With two threads of SimE using the same solutions but with different
randomization, the set of cells selected will not differ much. As such, this does not
guarantee the required non-overlapping concurrent exploration of different areas of
a search space. Also, the SimE allocation operator that has the greatest impact on
final solution quality is deterministic. Compared to this, SA, TS, and GA, exhibit
more randomness in their search operators and thus lend themselves to different
randomization with parallel searches as compared to SimE.

To explore type III parallelization of SimE, a parallel SimE was implemented on
the lines of asynchronous multiple Markov chain parallel simulated annealing [8],
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where a central processor keeps track of the best solutions found so far among all
threads. Since there is no workload division in parallel searches, the only way to
achieve any speed-up is to enable threads to assist each other in rapidly reaching
better solutions and by minimizing the time wasted in iterations in which no good
solutions are found. It is observed that initially the solution rapidly evolves to a
certain quality after which successive good solutions are found after a number of
inferior ones. The interval of exchanges of best solution with the central processor
was varied. Each thread keeps track of the number of successive times it fails to
improve the current solution and resets this counter every time a better solution is
found. After a certain set limit, called the retry threshold, is exceeded, the thread
starts checking at the central processor if a better solution is available. The master
either provides a better solution or accepts the solution of the requesting processor
if it is better than what master already has. Furthermore, to keep the master updated
with the best solution found so far among all threads, so that any requesting thread
may be benefited, each processor always communicates the best solution found
recently to the master. Thus the parallel algorithm tries to ensure that each processor
is given a chance to diversify and evolve solution on its own while a better solution

ALGORITHM TypeIII_Parallel_SimE_Slave_Process
NOTATION
(* Count is the current retry value. *)

Begin
INITIALIZATIONS;
Repeat

EVALUATION;
SELECTION;
Sort the elements of S
ALLOCATION;
Calculate_Costs;
If CurCost > BestCost
Then

Begin
Inform_Master;
Count = 0;
End

Else
Count = Count + 1

EndIf
If Count > Retry_Threshold
Then

Begin
If Costmaster < Costcur

Then Get_New_Placement
End

Until (Stopping Criteria is Satisfied)
End. (*Slave_Process*)

Fig. 8 Structure of the type III parallel simulated evolution algorithm
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Table 4 Results for type III parallel SimE

Ckt. name μ(s) Seq. time Retry val. Time for parallel

p=3 p=4 p=5

s1494 0.673 121 50 130 122 130
100 118 113 115
150 125 120 115
200 110 119 110

s1238 0.719 72 50 70 71 68
100 64 60 62
150 70 66 70
200 71 60 60

is made available if present. The outline of a slave thread in type III parallel SimE
algorithm is given in Fig. 8.

The results for Type III parallel SimE are shown in Table 4. The processors start
from at least three as one processor is required as a central store. Both the serial
and parallel algorithms were run for 2,500 iterations at each processor. All runs
were performed using the same starting solution but with different randomization
seeds. Four different retry values of 50, 100, 150 and 200 iterations were tested. The
runtimes show little deviation from the serial runtime. This indicates that the search
derives negligible benefit from cooperating processes. Since there is no workload
division, the results are virtually identical to the serial algorithm runs, though for
higher threshold values consistently higher quality results, sometimes exceeding the
serial quality, were obtained. These results strongly relate to the property of SimE
that independent searches are not diversified enough when based solely on different
randomizations to assist each other in reaching better solutions in less time than the
serial algorithm.

6 General Observations

Based on results of the three parallelization strategies, some overall observations
can be made. Although it appears that the structure of the generic SimE algorithm
lends itself easily to a low-level parallelization, the nature of cost functions (problem
instance) and the type of allocation method used dictate the degree of parallelism
possible. Type I parallelization would be suitable if goodness calculation is computa-
tionally intensive, there is a sparse data dependence among elements and/or the allo-
cation function can be parallelized without affecting its outcome. Secondly, domain
decomposition implicitly divides the solution and parallelizes all SimE operators, but
the ability to achieve high quality solutions depends again upon the problem instance
or the design of allocation operator to cope with parallel domains, i.e., maintaining
the algorithm’s convergence properties. Lastly, parallel searches are not beneficial
to SimE due to its metaheuristic search behavior, as mentioned in Section 5.3,
unless some mechanism to diversify the search are introduced additionally. Use of a
different allocation function at each thread can be one way of achieving this, whereby
the searches are directed in different directions by exploiting the different ways of
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optimizing the given problem with different allocation functions. Another promising
idea might be the use of concepts borrowed from population based evolutionary
metaheuristics, such as GA, in conjunction with parallel SimE threads. For instance,
solutions from independent, parallel threads may be combined intelligently using
crossover operators that take advantage of SimE goodness measure to produce
better starting solutions for the next SimE iterations in each of the parallel threads.

Parallel SA [10], GA [13] and TS [12] were also implemented for the same
optimization problem and it was found that parallel cooperative searches best suited
SA and GA, while a type I parallelization of TS gave the best speed-ups. At present,
a fair and thorough comparison among these different parallelized metaheuristics is
being explored.

7 Conclusions

The paper explored parallel SimE strategies for a multiobjective VLSI cell place-
ment, studying the applicability of each class of parallelization to the SimE algorithm
structure with a given problem instance. Comparing strategies in an identical setup,
it was identified why one particular strategy is more suitable than the other for SimE
parallelization using the placement problem as an example of a large optimization
instance. The paper identifies the generalities of SimE parallelization that can be
extended to other problem instances as well.
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