
 

 

Journal of Applied Research and Technology 845

  
 
 

FSM State-Encoding for Area and Power Minimization Using 
Simulated Evolution Algorithm 
 
Sadiq M. Sait*1, F. C. Oughali2, A. M. Arafeh3 
 

1,2,3Department of Computer Engineering 
1Center for Communications and IT Research, Research Institute 
King Fahd University of Petroleum & Minerals 
Dhahran, Saudi Arabia. 
*sadiq@kfupm.edu.sa 
 
 
ABSTRACT 
In this paper we describe the engineering of a non-deterministic iterative heuristic [1] known as simulated evolution 
(SimE) to solve the well-known NP-hard state assignment problem (SAP). Each assignment of a code to a state is 
given a Goodness value derived from a matrix representation of the desired adjacency graph (DAG) proposed by 
Amaral et.al [2]. We use the (DAGa) proposed in previous studies to optimize the area, and propose a new DAGp 
and employ it to reduce the power dissipation. In the process of evolution, those states that have high Goodness have 
a smaller probability of getting perturbed, while those with lower Goodness can be easily reallocated. States are 
assigned to cells of a Karnaugh-map, in a way that those states that have to be close in terms of Hamming distance 
are assigned adjacent cells. Ordered weighed average (OWA) operator proposed by Yager [3] is used to combine the 
two objectives. Results are compared with those published in  previous studies, for circuits obtained from the MCNC 
benchmark suite. It  was found that the SimE heuristic produces better quality results in most cases, and/or in lesser 
time, when compared to both deterministic heuristics and non-deterministic iterative heuristics such as Genetic 
Algorithm. 
 
Keywords: EDA, FSM Synthesis, State Encoding, Simulated Evolution, Multiobjective Optimization, Non-Deterministic 
Algorithms, Desired Adjacency Graphs, Fuzzy Logic. 
 
 
1. Introduction 
 
Most tasks involved in designing  VLSI systems 
employ CAD tools. Digital systems are designed 
based on the separation of data path and control 
logic. The control logic is implemented by 
synthesizing finite state machines (FSMs). 
Automated design of FSMs with area and power 
constraints has been of considerable interest to the 
CAD community. The complexity of FSM 
implementation lies in its storage elements and 
combinational logic realization. It is possible to 
synthesize an FSM using a minimum number of 

encoding bits (  sN2log , where Ns is the number 

of states in the FSM); however, using additional 
bits could be justified if combinational logic was 
reduced thereby reducing the overall area and/or 
power consumption. If nb is the number of bits 
used to encode each state, then the number of 
possible assignments (hence the size of the 
search space [4]) is given by 
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For example, in a two state machine, if two bits are 
used for encoding, then there are 12 possible 
assignments. Different state assignments will 
results in different area and power requirements. 
For large FSMs, exploring all possible encoding 
solutions for optimization is an extensive task. At 
times, it may be possible to reduce the amount of 
combinational logic by increasing the number of 
bits per state (incompletely specified machines), 
but this obviously increases the size of the search 
space. Clearly, the state assignment problem 
(SAP) is an NP-hard combinatorial optimization 
problem similar to the travelling salesman problem. 
In this work, we engineer another iterative heuristic 
known as Simulated Evolution (SimE) to search for 
better solutions to solve the SAP for FSMs.  
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Previous research on two-level combinational logic 
realization of FSMs using well designed 
deterministic heuristics for area minimization 
employed mechanisms such as implicant merging, 
code covering and disjunctive coding [5]. Finding 
states assignment which resulted in common 
expressions and maximum literal savings was one 
of the objectives in the state assignment problem 
(SAP). Devadas et.al., proposed two algorithms [6] 
[7], the first of which is fan-out oriented and 
assigns close codes, in terms of Hamming 
distances, to state pairs that have similar next 
state transitions. The second algorithm, which is 
fan-in oriented (also called Mustang), looks for 
state pairs with higher number of incoming 
transitions from the same states. Higher weights 
are given to those pairs of states to be assigned 
close codes. The motivation in this case is to 
maximize the frequency of common cubes in the 
encoded next-state functions. Another heuristic, 
similar to this one, is Jedi [8] where state 
assignment are made in a way similar to that 
proposed by Devadas’ fan-out algorithm which 
calculates the encoding affinity cost as a function 
of how frequently a pair of states is represented in 
next-state and output functions. The use of a 
semiformal specification for code implementation 
along with formal verification of finite state 
machines (FSM) was reported by Torres et al. [9]. 
 
Non-deterministic general iterative heuristics such 
as simulated annealing, particle swarm and tabu 
search has been used to solve a variety of 
combinatorial optimization problems [10, 11, 12]. 
For a state assignment problem, a genetic 
algorithm-based state encoding, targeting 
minimization of area and power, was proposed by 
Chaudhury et.al. [13]. They used a unified 
approach targeting static power and dynamic 
power along with area trade-off. Other attempts to 
use GAs to solve the SAP include the work by Aly 
[14], Almaini et al [13], and others [16], [17]. 
Another attempt is by Amaral et al [2] who used 
GA with cost function proposed by Armstrong [18]. 
Armstrong’s measure combines fan-in, fan-out and 
output costs for measuring literal savings. Amaral 
proposed a matrix representation as genotype, and 
a desired adjacency graph (DAGa) as a tool for 
applying heuristic rules on FSM [19]. 
 
 

Power consumption in CMOS circuits is mainly 
attributed to charging and discharging of circuit’s 
capacitance. Reducing power consumption is done 
by reducing switching activity, logic area 
(capacitance), or their product. Switching activities 
in sequential circuits are due to logic transition on 
flip-flops and primary inputs. Most of the work 
reported in  previous works [20] [21] tries to 
minimize total switching on the flip-flops. 
 
The aim of this work is to engineer another 
evolutionary non-deterministic heuristics commonly 
known as SimE. One key requirement of SimE is 
to define a Goodness measure of the current 
assignment of a movable element, in our case the 
assignment of a binary pattern to a state. In the 
process of evolution, elements with high Goodness 
are given a lower probability of moving from their 
current assignments. The DAG proposed by 
Amaral [2] is exploited in the design of cost 
estimators and Goodness measures required by 
the SimE algorithm. 
 
The rest of the paper  is organized as follows. In 
section 2 we discuss the construction of the 
desired adjacency graphs (DAG) as proposed by 
Amaral [2] for area minimization, and  we propose 
a new DAG for power minimization. In section 3 we 
present the SimE heuristic for the state assignment 
problem (SAP), using desired adjacency graph 
(DAG) proposed in [2]. In section 4 we present 
problem formulation, proposed Goodness 
measures and an allocation function for SimE. 
Experiments and results are reported in section 5. 
Finally, we provide some final conclusions. 
 
2. Desired adjacency graphs (DAGs)  
 
The assignment of codes to states is a 
combinatorial optimization problem with the size of 
the search space given by equation 1. Searching 
all possible encoding solutions is an extensive 
work that requires sub-optimal search methods. 
Table 2 shows a description of a small finite state 
machine with two possible assignments. 
Assignment 1 has a cost of 47 literals (in SOP form 
when synthesized by “SIS” [22]) while assignment 
2 has a cost of only 4 literals. Efficient techniques 
are required to find the right assignment of codes 
to states to reduce cost. 
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As discussed earlier, many heuristic techniques 
have been proposed for the state assignment 
problem [2, 18, 23]. Based on a paper by 
Armstrong [2], Amaral introduced a tool called 
desired adjacency graph (DAGa) which can be 
used for applying heuristic rules to any given FSM. 
The heuristic used suggest that reduction in literal 
count, and thereby the cost of synchronous 
sequential circuits (SSC) is possible by minimizing 
the Hamming distance between predefined sets of 
states which may be chosen as follows. If they are: 
 Rule i: In the same set of successors of a 

given state. 
 Rule ii: In the same set of predecessors of a 

given state with a given input condition. 
 Rule iii: In the same partition for a given 

output. 

 
 
2.1 DAGa for an area minimization 

Using the above, Amaral et al [2] proposed a 
desired adjacency graph (DAGa), which is a 
weighted graph that represents the strength of 
connection between states (nodes of the graph). 
Simply, it indicates the desirability of having states 
close to each other. In order to have a low area 
SSC, it is necessary to minimize the distance 
between states that are strongly connected in the 
DAGa. (Please refer to [2] for equations used to 
build a DAGa).  
 
As an example, given the previously described 
FSM which represents the shiftreg benchmark 
circuit of MCNC, table 2 shows the DAGa obtained 
using equations reported in [2]. For example, we 

Present state 
Next state 

Output Z0 
Assign 

#1 
Assign 

#2 I0=0 I0=1 

S0 S0 S4 0 101 010 

S1 S0 S4 1 110 000 

S2 S1 S5 0 001 011 

S3 S1 S5 1 100 001 

S4 S2 S6 0 011 110 

S5 S2 S6 1 000 100 

S6 S3 S7 0 111 111 

S7 S3 S7 1 010 101 

 
Table 1. Two assignments of an FSM for “shiftreg” MCNC benchmark requiring different number of literals. 

  S0 S1 S2 S3 S4 S5 S6 S7 

S0 0 9 2 0 9 0 2 0 

S1 9 0 1 3 1 8 0 2 

S2 2 1 0 8 3 2 8 0 

S3 0 3 8 0 0 3 1 9 

S4 9 1 3 0 0 8 3 0 

S5 0 8 2 3 8 0 1 2 

S6 2 0 8 1 3 1 0 9 

S7 0 2 0 9 0 2 9 0 

 
Table 2. DAGa for “shiftreg” MCNC benchmark for area optimization. 
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obtain DAG (0,4) = R1 + R1 + R3 + R4 = 3 + 3 + 2 
+ 1 = 9. The two factors R1 are produced because 
states S0 and S4 are common successors of 
states S0 and S1 (Rule i), the factor R3 appears 
because Z0(S0) = Z0(S4) (Rule iii), and R4 is 
added because there is one transition from state 
S0 to S4. 
 
2.2 DAGp for power minimization 
 
Since our objective is to minimize both area and 
power, we propose a DAGp that can be used for 
the power minimization. As is well known, the 
switching activity in a circuit has a direct influence 
on the power dissipated. The switching activities in 
a finite state machine can be modeled as a state 
transition graph (STG) G(V, E), where a vertex Si 
in V represents a state of the FSM and an edge Eij 
in E represents a transition from state Si to Sj . Let 
Psi denote the probability of finding the state 
machine in state Si, and pij denotes the transition 
probability from state Si to state Sj. Interpreting the 
STG as a Markov Chain, Psi is the steady states 
probabilities.  
 
The steady states probabilities can be iteratively 
calculated by solving Chapman-Kolmogorov 
equations. The process is terminated once the 
state probabilities converge so that the difference 
between successive iterations is within a user 
defined tolerance value. Thus, the total transition 
probability from a state Si to state Sj is the 
probability that the machine in state Si multiplied by 
the transition probability from state Si to state Sj. 
 

sjijij PpP .     (2) 

 
Where Pij is the total state transition probability 
from state Si to state Sj. The sum of the total state 
transition probabilities between two states 
indicates the amount of switching between them. 
 

jiijij PPW      (3) 

 
Based on the transition values calculated in STG, 
a desired adjacency graph (DAGp) for power  
 
 
 
 

minimization is formulated. The values of weights 
in the DAGp indicate the desired relative proximity 
in the state assignment of two states. By assigning 
shorter distance codes to states connected with 
higher values, (i.e., higher transition probability), 
the overall switching on the state lines of the FSM 
can be minimized.  
 
As an example, table 3 shows the transition 
probabilities pij from state Si to state Sj for the 
bbara circuit in MCNC benchmark used in this 
paper. 
 
The steady state probabilities are calculated using 
the script in Matlab that iteratively solves the 
Chapman-Kolmogorov equations. Table 4 shows 
the steady state probabilities for the bbara circuit in 
MCNC benchmark. 
 
The total transition probability from state Si to state 
Sj is the probability that the machine in state Si 
(steady state of Si) multiplied by the transition 
probability from state Si to state Sj. The sum of the 
total state transition probabilities between two 
states indicates the amount of switching between 
them, which equals to the value of our proposed 
DAGp for power minimization. As an example, the 
transition probability from S0 to S1 equals to 0.125 
and the transition probability from S1 to S0 equals 
to 0.0625. Thus, we obtain DAGp(1,2) = P0,1 + P1,0 
= (p0,1   × Ps0) + (p1,0   × Ps1) = (0.125 × 0.155242) + 
(0.0625 × 0.266667) = 0.036072. Where p0,1 and 
p1,0 are the transition probabilities from S0 to S1 
and from S1 to S0 respectively. And Ps0 and Ps1 
are the steady state probabilities of S0 and S1. 
Table 5 gives the DAGp for “bbara” MCNC 
benchmark that can be used in the design of 
Goodness measures required by SimE for power 
optimization. 
 
3. Simulated evolution 
 
The SimE algorithm is a general search strategy 
for solving a variety of combinatorial optimization 
problems which seek to find a global optimum of 
some real valued cost function cost Ω → R defined 
over a discrete set Ω. The set Ω is called the state 
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space  and  its  elements are  referred to  as states  
(do not confuse with the states of FSM). A state 
space Ω together with an underlying neighborhood 
structure (the way one state can be reached from 
another state) form the solution space. 
Combinatorial optimization problems can be 
modeled in a number of ways. A generic 
formulation suggested by Saab and Rao [24] is the 
following: Given a finite set M of distinct movable 
elements and a finite set L of locations, a state is 
defined as an assignment function S: M → L 
satisfying certain constraints. 
 
Many of the combinatorial problems can be 
formulated according to this generic model. In our 
case the assignment is of binary patterns of fixed 
length to states of an FSM. 
 
The structure of the SimE algorithm is shown in 
Figure 1. SimE assumes that there is a solution Ø 
of a set M of n (movable) elements or modules. 
The algorithm starts from an initial assignment 
Øinitial, and then, following an evolution based 
approach, seeks to reach better assignments from 
one generation to the next by perturbing some ill-
suited components and retaining the near-optimal 
ones. A cost function cost associates with each  
 

assignment of movable element mi
 a cost Ci. The 

cost Ci is used to compute the Goodness (fitness) 
gi of an element mi, for each mi ∈ M. The algorithm 
has one main loop consisting of three basic steps, 
evaluation, selection, and allocation. The three 
steps are executed in sequence until the solution’s 
average Goodness reaches a maximum value, or 
no noticeable improvement to the solution fitness 
is observed after a number of iterations. The 
evaluation step consists of evaluating the 
Goodness gi of each element mi of the solution Ø. 
The Goodness measure must be a single number 
expressible in the range [0, 1]. It is defined as: 
 

i

i
i C

O
g      (4) 

 
Where Oi is an estimate of the optimal cost of the 
element mi, and Ci is the actual cost of mi in its 
current location. 
 
The above equation assumes a minimization 
problem (maximization of Goodness). Notice that, 
according to the above definition, the Oi’s do not 
change from generation to generation, and 
therefore, are computed only once during the  
 

  S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 

S0 0.8125 0.125 0 0 0.0625 0 0 0 0 0 

S1 0.0625 0.75 0.125 0 0.0625 0 0 0 0 0 

S2 0 0.0625 0.75 0.125 0.0625 0 0 0 0 0 

S3 0 0 0 0.875 0.0625 0 0 0.0625 0 0 

S4 0.0625 0.125 0 0 0.75 0.0625 0 0 0 0 

S5 0 0.125 0 0 0.0625 0.75 0.0625 0 0 0 

S6 0 0.125 0 0 0 0 0.8125 0.0625 0 0 

S7 0 0.125 0 0 0.0625 0 0 0.75 0.0625 0 

S8 0 0.125 0 0 0.0625 0 0 0 0.75 0.0625 

S9 0.0625 0.125 0 0 0.0625 0 0 0 0 0.75 

 
Table 3. State transitions probabilities of “bbara” circuit for MCNC benchmark. 

 
S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 

0.1552 0.2666 0.1333 0.1333 0.1967 0.0498 0.0163 0.0374 0.0093 0.0023 

 
Table 4. Steady state probabilities of “bbara” circuit for MCNC benchmark. 
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initialization step. Hence only the Ci’s have to be 
recomputed at each call to the evaluation function. 
Empirical evidence [25] shows that the accuracy of 
the estimation of Oi is not very crucial to the 
successful application of SimE. However, the 
Goodness measure must be strongly related to the 
target objective of the given problem.  
 
The second step of the SimE algorithm is 
selection. Selection takes as input a bias value B, 
the solution Ø together with the estimated 

Goodness of each element. It partitions Ø into two 
disjointed sets; a selection set SS and a partial 
solution Øp of the remaining elements of the 
solution Ø. Each element in the solution is 
considered separately from all other elements. The 
decision whether to assign an element mi to the set 
SS is based solely on its Goodness gi. The 
selection operator has a non-deterministic nature, 
i.e., an individual with a high Goodness (close to 
one) still has a non-zero probability of being 
assigned to the selection set SS. It is this element 
of non-determinism that gives SimE the capability 
of escaping local minima. Allocation is the SimE 
operator that has the most impact on the quality of 
solution. Allocation takes as input the set SS and 
the partial solution Øp and generates a new 
complete solution Ø’ with the elements of set SS 
mutated according to an allocation function. The 
goal of allocation is to favor improvements over the 
previous generation, without being too greedy. 
 
4. Problem formulation 
 
This section describes how SAP is formulated in 
SimE. This includes population representation, the 
use of DAGs in the development of Goodness 
measures to be used in evaluating each individual 
of the population, and the allocation procedure. 
 
4.1 Solution representation 

States assignment problem can be seen as a 
linear or 2-D placement problem. In table 6, states 

  S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 

S0 0 0.0361 0 0 0.0220 0 0 0 0 0.0001 

S1 0.0361 0 0.0417 0 0.0413 0.0061 0.0020 0.0047 0.0012 0.0003 

S2 0 0.0417 0 0.0167 0.0083 0 0 0 0 0 

S3 0 0 0.0167 0 0.0083 0 0 0.0083 0 0 

S4 0.0220 0.0413 0.0083 0.0083 0 0.0154 0 0.0023 0.0006 0.0001 

S5 0 0.0061 0 0 0.0154 0 0.0031 0 0 0 

S6 0 0.0020 0 0 0 0.0031 0 0.0010 0 0 

S7 0 0.0047 0 0.0083 0.0023 0 0.0010 0 0.0023 0 

S8 0 0.0012 0 0 0.0006 0 0 0.0023 0 0.0006 

S9 0.0001 0.0003 0 0 0.0001 0 0 0 0.0006 0 

 
Table 5. DAGp for “bbara” MCNC benchmark for power optimization. 

 

 
 

 Figure 1. Structure of the SimE algorithm [1]. 
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are placed in suitable locations associated with 
different Gray codes. A data structure similar to 
Karnaugh maps is employed where adjacent 
slots have a Hamming distance of one. As it is 
preferred that pairs of states with high DAG 
values have close codes, an attempt  was made 
to get them as close to each other as in the 2-D 
structure. 
 

Gray coding 00 01 11 10 

Locations L0 L1 L2 L3 

 
Table 6. Locations associated with Gray Sequence. 

 
We can think of the set of movable elements as 
the states, and the set of locations as the squares 
of the K-map. In order to employ the SimE 
algorithm we need to define the population and a 
Goodness measure for individuals.  Since the 
simplicity of the population representation 
determines the complexity of the allocation 
function, the population is represented as a linear 
or 2-D array. The number of array elements equals 
the number of FSM states. Each element contains 
index of one Gray sequence code. As shown in the 
example in table 7, the first element in the 
population corresponds to the state (S0) and 
contains the index of the corresponding Gray code. 
 

S0 S1 S2 S3 

L0 L2 L3 L1 
 

Table 7. Population representation. 
 
Giving a finite state machine with 4 states, the 
final solution is the SimE population that results 
in minimum cost. The algorithm will try to place 
highly connected states in DAG into adjacent 
locations (i.e., assign them close codes). Table 8 
depicts the final solution where S0 assigned 
code (00) which corresponds to the location (L0) 
in Gray sequence. Similarly, S1 is assigned code 
(11) which corresponds to location (L2) in Gray 
sequence, and so on. 
 

Gray coding 00 01 11 10 

State assign. S0 S3 S1 S2 
 

Table 8. Final solution sepresentation. 

 

4.2  Goodness measure–I 
 

Goodness measure in SimE (equation 4) consists 
of two elements; Oi an estimation of optimal cost 
and Ci the actual cost of individual Si in the 
population. Goodness value of individual Si is 
defined as the sum over all Sj states of Hamming 
distance between state Si and state Sj multiplied by 
DAGij. Pairs of states with high DAG values are 
preferable to have close codes (minimum 
Hamming distance). Estimation of the optimal 
Goodness Oi is calculated as in equation 5. The 
distance between individual Si and all other states 
is assumed to be equal to 1. 
 

 




1

0

s

j iji DAGO    (5) 

Although this estimation of Oi is not possible to be 
achieved, it is still  a good estimation for an optimal 
case. Empirical evidence shows that the accuracy 
of Oi is not very crucial to the successful 
application of SimE [25]. 
 
4.3  Goodness measure–II 
 
Goodness value of individual Si is defined as the sum 
over all states of Hamming distance between state Si 
and state Sj multiplied by DAGij. Estimation of the 
optimal Goodness Oi is calculated as in equation 6, 
where, the distance between state i and other states 
is assumed to be based on the value of Wj . 
 

 




1

0
.s

j ijiji WDAGO    (6) 
 

In any binary encoding of finite-state machines, the 
number of codes that are  a distance d from any 
other code is calculated using mathematical 
combinations. Table 9 shows an example of 3, 4 
and 5-bits encoding. The number of codes that are 
of Hamming distances d = 1, 2, 3, 4, 5 are listed.  
 

Encoding 
Length 

Number of codes of distance (d) 
from any given code 

d=1 d=2 d=3 d=4 d=5 

3-bits 3 3 1     

4-bits 4 6 4 1   

5-bits 5 10 10 5 1 

 
Table 9. Hamming distance in n-bit encoding. 
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Thus, for any encoding with n-bits, the total 
number of codes that are of a distance (d) from 
any other code is given by the following equation: 
 

)!(!
!

dnd

n

d

n
N

b

bb
c 









   (7) 

 
Weight vector W is built according to the above 
definition. For example, in 3-bits encoding, weight 
vector will be W= [1, 1, 1, 2, 2, 2, 3]. Oi is then 
calculated by sorting DAGi in descending order 
and applying equation 6. In Goodness measure II, 
states with strong connections are multiplied by 
small weights (distance) values, while weakly 
connected states will be multiplied by higher 
distance values. This calculation provides a more 
accurate assessment of the optimal value Oi. 
 
The actual cost Ci for individual Si is expressed 
in equation 8. D(Si, Sj) is the Hamming distance 
between codes of state Si and state Sj. DAGij is 
the corresponding weight between state Si and 
state Sj. DAG could be related to the area or 
power. Ci will be low when pairs of states with 
high DAGij have a small distance D (i.e., 
assigned adjacent codes due to their strong 
relation represented in DAG). As Oi values are 
fixed for all generations, the Goodness will be 
determined by the value of Ci. As Ci approaches 
the estimated optimal value Oi, the Goodness of 
individual Si increases. 
 

 




1

0
).,(s

j ijjii DAGSSDC   (8) 

 

As the heuristics suggest, an assignment with 
maximum Goodness value for each individual 
should result in an SSC with minimal cost. 
 
4.4  Initialization 
 
Initialization includes specifying bias for selection 
procedure, stopping criteria which have been 
chosen to be a fixed number of generations, 
computing Oi for each individual in the population, 
and constructing an initial population by random 
code assignment. 
 
 
 

4.5  Selection 
 
In the selection step, each member of the 
population is considered separately for selection; 
selection function is used with its original 
description in SimE [1]. Individuals with low 
Goodness are more likely to be selected for 
mutation in the next generation. On the other hand, 
individuals with high Goodness have higher 
chance of retaining their assigned codes in next 
generation. However, they still have nonzero 
probability to be assigned to selection set SS. The 
value of Bias B is a function of how realistic is the 
estimate of optimal cost Oi of individual Si. In case 
Oi is a tight lower bound on the actual cost Ci, then 
a value of (B=0) is a reasonable choice. However, 
if Oi is a loose lower bound for Ci, i.e., if Oi cannot 
possibly be achieved (like in our case), then a 
small negative value for B should be chosen to 
compensate for the lack of accuracy of Oi. 
 
Selected elements in set SS are sorted in an 
ascending order based  on their Goodness value, 
where elements with lower Goodness value are 
processed first at allocation step. 

 
 

Example inputs outputs states 

bbara 4 2 10 

bbsse 7 7 16 

dk14 3 5 7 

donfile 2 1 24 

train11 2 1 11 

lion9 2 1 9 

s1 8 6 20 

shiftreg 1 1 8 

tav 4 4 4 

Sand 11 9 32 

 
Table 10. Selected MCNC benchmark circuits  

used for comparison. 

 
Avg. # selected 14 13 12 10 

Bias 0 -0.05 -0.1 -0.15 

 
Table 11. Bias Vs. average no. of selected individuals. 
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4.6 Allocation  

After selecting and sorting individuals in an 
ascending order of their Goodness values, they 
are processed. Each state in the selection set SS 
needs to be assigned a new code, where it should 
have better Goodness compared to  the previous 
one. All codes assigned originally to the selected 
states are now free. First state to be reallocated 
can have any of these nonassigned codes, while 
next states will have remaining free codes. The 
state to be processed will have its Goodness 
evaluated for each available code. The evaluation 
process will take into consideration the remaining 
states in Øp, in addition to states which already 

have been reassigned new codes. The code that 
maximizes the state Goodness will be chosen. 

5.  Implementation and results 
 
The experiments compare performance of SimE 
for the area minimization with Nova-11 Nova-22 
[26] and genetic algorithm reported by Amaral [2]. 
Results for Jedi [8] tool  were also included in the 
comparison. MCNC benchmarks were used for 
reporting and comparing the results in this paper, 

                                                      
1 Nova-1 is NOVA executed with the default option -e ig. 
2 Nove-2 is NOVA executed with options -e ioh -r. 

Example GA NOVA1 NOVA2 Jedi SimE-1 SimE-2 

bbara 130 134 154 124 109 99 

bbsse 345 312 381 289 257 275 

dk14 252 252 268 346 208 203 

donfile 408 321 280 169 260 174 

train11 53 79 48 40 43 38 

lion9 22 51 39 30 23 21 

shiftreg 10 9 3 18 4 4 

tav 32 35 35 35 32 32 

Avg. 157 149 151 131 120 112 

 
Table 12. SAP results comparison for area minimization (in no. of literals SOP). 

 

Benchmark 
SimE Jedi 

Assign. 
Cost 

lit(SOP) 
Assign. 

Cost 
lit(SOP) 

bbara 6-3-15-11-2-0-8-10-14-7 92 6-10-11-14-2-3-0-8-12-4 124 

bbsse 
14-12-6-4-2-0-11-3-13-5-8-

15-7-1-9-10 
248 

15-2-12-8-4-5-0-1-14-10-3-6-
7-13-11-9 

289 

dk14 7-3-5-1-2-6-0 205 4-0-1-2-5-3-7 346 

donfile 
19-22-27-17-18-16-3-6-15-

24-26-30-32-21-31-29-20-28-
2-0-10-14-4-12 

213 
12-13-15-14-29-31-8-25-11-
10-9-27-20-28-4-6-30-22-16-

24-0-18-26-2 
169 

train11 4-1-3-0-6-9-5-2-7-11-15 38 3-5-11-7-10-13-15-2-0-9-1 40 

lion9 0-1-3-11-15-7-5-4-6 19 15-13-9-11-14-12-8-10-6 30 

shiftreg 7-3-6-2-5-1-4-0 4 7-4-6-5-3-0-2-1 18 

tav 1-0-2-3 32 1-2-3-0 35 

Avg. - 106 - 131 

 
Table 13. States assignment for SimE, Jedi. 
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details of selected circuits in terms of the number of 
states, etc., are given in table 10. The cost is 
obtained using “SIS” tools developed by UC Berkeley 
[22], and it is the number of literals in SOP form, 
which are required for implementing the FSM. 
 
GA solutions reported by Amaral [2], were obtained 
with a population size of 200, and run for 800 
generations [2]. In our implementation, we fixed the 
number of iterations to eight hundred, and bias 
value of (-0.15) for Goodness measure–I and 0 for 
Goodness measure II. Table 11 shows relation 
between bias value and number of selected 
individuals of the population.  It is evident that the 
increased value of bias (i.e. from -0.15 to 0) results 
in an increase in the average number of selected 
individuals (i.e., from 10 to 14). This behavior is due 
to the use of  loose bound estimation of Goodness 
Oi, namely Goodness measure-I. A high (positive) 

bias will increase the number of selected elements 
in each iteration, which allows the algorithm to 
search harder. In contrast, a negative value of bias 
will have the effect of reducing the number of 
selected elements for mutation. 
 
Comparison of results is reported in table 12.  Cost 
reported by “SIS” tool is taken without any further 
minimization to the logic obtained. Reported 
numbers are averaged results as they vary due to 
the random behavior of the non-deterministic 
iterative heuristic. Clearly, SimE outperforms  other 
tools and algorithms in most cases, (except in a 
few, for example results for donfile circuit when 
compared to results by Jedi). While, GA is known 
to be very time consuming heuristic, SimE has a 
much shorter runtime (i.e., 80 to 90 sec) for used 
benchmarks. It was also noted that time  did not 
increase rapidly with the increase of number of 

Example 
GA 

(MWHD) 
Jedi -
Best 

SimE-1 SimE-2 

bbara 214.7 156.5 135.98 137.6 

bbsse 446.1 496.6 393.14 393.06 

dk14 661.2 628.1 502.56 493.04 

train11 180.4 207.1 157.18 151.94 

lion9 142 145.6 117.64 107.78 

s1 1165.1 1087.2 971.3 992.12 

shiftreg 163.3 96.3 144.02 135.2 

Avg. 424.61 360.71 323.93 321.55 

 
Table 14. SAP Results comparison for power minimization (µW). 

 

Benchmark 
SimE 

Assign. Cost lit (µW) 

bbara 0-2-6-7-4-12-5-1-9-8 92 

bbsse 0-4-5-1-6-7-3-2-10-14-15-8-12 248 

dk14 1-3-0-4-2-7-5 205 

train11 13-15-11-7-5-14-12-3-1-10-9 38 

lion9 6-2-8-0-4-5-1-3-7 19 

s1 
0-2-6-4-1-20-3-7-19-23-31-22-9-16-

27-17-15-18-11-25 
4 

shiftreg 0-2-1-3-4-6-5-7 32 

Avg. - 106 

 
Table 15. State assignments for SimE. 
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states due to the compact population 
representation. We can notice that SimE-2 
achieveed better results compared to SimE-1 as 
the optimal cost estimation used in Goodness 
measure-II is more realistic. 

 Validation of obtained state assignments was 
conducted by matching the obtained logic with the 
original description of the state machine. This 
validation ensures that state assignment done by 
SimE doesn’t change circuits’ behavior. Table 13 
shows final state assignment and literal count 
produced by SimE compared to Jedi assignment. 
For GA and NOVA assignments you can refer to 
[2]. These assignments are provided for the sake 
of verification. 
 
Power minimization results are compared with 
results reported in [27] and Jedi tool using 
assignment options that gives best results. In [27] 
the authors are reporting power minimization using 
two methods; first by using MWHD and then by a 
measure called Fan-out which accounts for the 
size of the logic cones. Table 14 shows that SimE 
with Goodness measure–II is outperforming all 
other methods. In most cases, SimE results are 
better than those reported in [27] using MWHD 
(except for one circuit (shiftreg) when compared to 
results reported using Jedi). The values reported in 
table 14 are the average of five different runs. All 
the results for power minimization were calculated 
using (power_estimate -t sequential) call in SIS 
synthesis tool. The power values reported are in 
microwatts assuming 20 MHz clock and 5 voltage 
power supply. Table 15 shows the assignments of 

codes for the states of the benchmark circuits 
when optimized for power. Note that numbers in 
different tables vary slightly due to the non-
deterministic nature of the algorithm. But as it can 
be observed, the final results are close indicating 
the stability of the heuristic and its implementation. 
 
Figure 2 shows the behavior of a SimE run. The 
darker line in the plot is the average Goodness 
measure, and the lighter line above depicts the FSM 
cost. As it can be observed, with iterations, the cost 
decreases and the Goodness increases. Also 
observe the hill-climbing phenomenon of SimE. 

 
Our problem being solved consists of two 
objectives to be optimized. Balancing different 
objectives by a weighted cost functions is not 
sufficient to reach the desired solution. One 
convenient vehicle available for representing multi-
objective cost functions is fuzzy logic which 
provides a required formal algebra to express and 
combine trade-off objective criteria. Functions for 
each objective are used (called membership 
functions) which map the numerical value of 
objectives to the interval [0,1] [1]. To obtain a fuzzy 
logic definition of the above multi-criteria objective 
function, two linguistic variables area and power 
are introduced and a linguistic value for each 
variable is defined, in our case small for area, and 
low for power. These linguistic values characterize 
the degree of satisfaction of the designer with the 
values of objectives fi(x), (i=a,p). These degrees of 
satisfaction are described by membership 
functions µi(.) on fuzzy sets of linguistic values. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
Figure 2. SimE Behavior.
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Membership functions for small area and low 
power are built. These are non-increasing 
functions, since the smaller the area fa(.) and lower 
the power fb(x), the higher is the degree of 
satisfaction µa(.), and µb(.). The most desirable 
solution is the one with the highest membership in 
the fuzzy subsets small area, and low power. 
However, such a solution most likely does not 
exist. Therefore, one has to trade-off these 
individual criteria  with each other. This trade-off is 
conveniently specified in linguistic terms in the 
form of the following fuzzy logic rule. 
 
Let the fuzzy subset of good solutions be 
characterized by the following fuzzy rule: 
 

R.0   If (small area) OR (low power) 
Then good solution. 

 
We implement the fuzzy OR above using the orlike 
Ordered Weighted Averaging (OWA) operator 
proposed by Yager [3] where the degree of ORing 
is controlled by a parameter β between [0,1]. 
According to the orlike operation, the above fuzzy 
logic rule R.0 evaluates the following. 
 

)(
2
1)1(

),max()(

ba

bax








    (9) 

 

where β is a parameter between 0 and 1 
indicating the degree of nearness of this orlike 
operator to the strict meaning of the max 
operator. Table 16 shows results obtained 
using fuzzy operators compared to results 
obtained for area or power individually. 
Comparison between fan-out [23], Jedi and 
SimE are reported in Table 17. SimE with fuzzy 
logic outperforms other methods in five circuits 
and performs poorly in two circuits. 
 
6. Conclusions  
 
In this paper we presented the engineering of an 
evolutionary heuristic [1] to find better solutions for 
the NP-hard state assignment problem. Solutions 
in simulated evolution heuristic evolve based on 
the current Goodness value of their assignments. 
SimE accommodates the domain knowledge of the 
designer in the design of Goodness measure 
which plays an important role in the perturbation of 
solutions during their process of their evolution. 
Two Goodness measures are proposed, one 
incorporating more domain knowledge, and this is 
reflected in the performance of the heuristic in the 
solutions obtained. It is evident that the more the 
engineer puts in his domain knowledge in the 
design of Goodness measures, the better is the 
performance of the heuristic. Goodness measures 

Benchmark 
Area Heuristic Power Heuristic Fuzzy (MAX) 

Area Power Area Power Area Power 

bbara 58 162.56 63 132.46 58 136.26 

bbsse 124 463.26 134 393.06 123 400.84 

dk14 104 531.88 104 493.04 104 493.3 

train11 20 101.84 31 151.94 21 97.64 

lion9 14 86.76 16 107.78 15 80.74 

s1 352 1312.88 296 992.12 294 993.2 

shiftreg 4 108.04 17 135.2 4 108.04 

tav 24 167.3 24 161.96 24 161.96 

Avg. 88 366.82 86 320.95 80 309 

 
Table 16. Fuzzy logic results comparison. 
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in this work exploit the desired adjacency graphs 
available in the literature for area optimization [2]. 
We propose a new desired adjacency graph for 
power optimization. In order to assign codes 
which are close in terms of Hamming distance, 
the problem is treated as an assignment problem 
with a difference. The 2-D structure to which they 
are assigned is similar to Karnaugh maps, and 
the heuristic seeks to find adjacent squares for 
pairs of states that have a minimal Hamming 
distance. The two objectives for area and power 
are combined using the fuzzy ordered weighted 
operator proposed by Yager [3]. Results are 
compared to those published in literature and it is 
seen that both in terms of quality of solutions and 
the required run-time, the performance of the 
SimE heuristic with the proposed Goodness 
measures is excellent and can be used for other 
similar NP-hard problems. 
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