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Abstract A recent advancement in VLSI that drastically
improved the circuit density is the introduction of CMOL
(CMOS/nanodevices hybrid), which consists of an overlay
of a nanofabric over a CMOS stack. Combinational logic in
CMOL is implemented from a netlist of NOR gates and In-
verters by programming nanodevices placed between over-
lapping nanowires. The length of the nanowires is restricted,
and therefore connectivity of the circuit elements is con-
strained to be within a certain radius, else additional buffers
are required.

In this paper we present a Tabu Search (TS) algorithm
to address the assignment problem in CMOL. The heuristic
is engineered to provide sub-optimal solution by efficient
exploration of search space. Empirical results for ISCAS
benchmarks are compared with previous solutions using
GA, MA, and LRMA heuristics. Results show that in almost
all cases, TS exhibits more intelligent search of the solutions
subspace, and is able to find better solutions in less time. For
all tested benchmarks, over 90 % reduction in average CPU
processing time when compared with best published tech-
niques was obtained.
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1 Introduction

Modern iterative non-deterministic heuristics have been in-
creasingly applied to solve a variety of combinatorial op-
timization problems which are NP-hard. Assigning cells to
slots is an important step in the process of electronic de-
sign automation. Over time, the objective of placement in
VLSI design has changed from reducing the overall wire
length to reducing the layout area, to improving timing per-
formance, and then to reducing the overall power dissipa-
tion. With new advances in technologies come new issues.
The new advancement of CMOS/nanodevice hybrid circuits,
like CMOL [26], requires combinational logic to be imple-
mented from a netlist of NOR gates and Inverters by pro-
gramming nanodevices placed between overlapping nano-
wires. Like in the case of most programmable devices, the
length of the nanowires is restricted, and therefore connec-
tivity of the circuit elements is constrained to be within a
certain radius, else additional buffers are required.

The aim of this work is to come up with an efficient and
effective method for the cell assignment problem that ap-
pears in CMOL nanofabric crossbar architecture. We ad-
dress the complexity associated with the confined CMOL
nanowires crossbar on the logic connectivity and circuits
implementation. An iterative heuristic, namely Tabu Search,
will be applied to find feasible circuits implementations in
CMOL technology, by minimizing the number of additional
inserted buffers that may be required. The rest of the paper
is arranged as follows: in Section 2, we discuss some back-
grounds and previous works. Section 3 introduces CMOL
FPGA-like architecture. Section 4 details the problem for-
mulation, Section 5 outlines Tabu Search, a heuristic en-
gineered to solve our combinatorial optimization problem.
Section 6 contains the empirical results, comparison and fur-
ther discussion about the problem behavior. Finally, we con-
clude the paper and provide final remarks.
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2 Literature review

Assignment or cell placement problem has been proven to
be NP-hard [22]. For relatively large instances of such prob-
lems (i.e., thousands of cells), it is not possible to use enu-
merative techniques; therefore we resort to heuristic tech-
niques which, in reasonable execution time, can lead to
acceptable solutions. Heuristic algorithms assigned to the
assignment problem can be broadly classified into con-
structive and iterative algorithms. The constructive heuris-
tic starts from a seed component; a cell to be assigned to a
slot in the layout surface divided into n slots. During each
step of the algorithm, one cell will be placed into one of
the empty slots. At the end of each step, we have a par-
tial placement of a subset of cells/modules. Different tech-
niques can be applied to choose which unplaced cell must
be selected and where to be added to the partial placement.
For example, a cell to be placed may be selected depending
on how strongly it is connected to the current partial place-
ment. The ideal location of the selected cell can be found,
for instance, using a heuristic known as force-directed place-
ment algorithm [24], where the cell zero-force location is
mathematically computed. The constructive placement al-
gorithms are greedy and don’t produce optimum solutions
because at each step they make decisions in the absence
of complete information. For example, when the cell is se-
lected during the ith step, the selection is made with re-
spect to the partial placement; the unplaced modules are ig-
nored. Once a cell is placed, the algorithm will not go back
and retrack from its already made decision. In CMOL cir-
cuits, connections between cells are done through already
available nanowires and nanodevices. Constructive heuris-
tics may reach the point where design constraints (e.g., lim-
ited connectivity radius in CMOL) are not met, which end
up with not only costly (e.g., wirelength) but infeasible so-
lutions.

On the other hand, iterative heuristics can be engineered
to modify a given initial placement while respecting prob-
lem constraints and improving the given cost function.
Iterative improvement procedures constitute very effec-
tive approaches to produce feasible solutions with the de-
sired performance. Examples of iterative heuristics, which
are also known as non-deterministic heuristics, have been
widely used in optimization problems and not limited to
only VLSI design automation. These include Genetic Al-
gorithms [9, 15, 20], Simulated Evolution [21], Stochastic
Evolution [23], Particle Swarm Optimization [14, 30], Ant
Colony [16, 31], and Tabu Search [12].

Tabu Search has been applied to solve a large number
of combinatorial optimization problems in various fields of
sciences, engineering, and business. Results reported indi-
cate comparable performance to other iterative heuristics.
Examples of hard problems to which Tabu Search has been

applied with success include routing and networking [7],
scheduling [34], and space allocation [18]. Previous imple-
mentations of Tabu Search for VLSI design problems in-
clude parallel multi-objective cells placement [19], where
power, area, and delay objectives are combined in an aggre-
gated fuzzy cost function. Parallelization strategy is adapted
to traverse the large search space looking for placement with
minimum cost.

Feature size scaling in CMOS technology has led to
difficulties in manufacturing, due to short channel effects,
doping fluctuations and expensive lithography process.
Meanwhile, advances in nanoelectronics are expected to
achieve high density of devices that can operate at THz
frequencies [4]. Many effective applications have been
proposed that use molecular nanodevices, nanowires, and
nanocrossbar fabrics [25, 26]. A new trend is emerging
for combining the flexibility and high fabrication yield
advantages of CMOS technology with nanometer-scale
molecular devices. A self-assembly of two-terminal nanode-
vices, with nanowire crossbar fabrics, enables high func-
tional density and sustains acceptable fabrication costs.
Likharev and Strukov [26] introduced a hybrid semicon-
ductor/nanowire/molecular integrated circuit called CMOL,
which uses two levels of perpendicular nanowires as cross-
bar interconnection on top of inverter-based CMOS stack,
and showed possible applications of CMOL in field pro-
grammable gate arrays (FPGA) [29], neuromorphic Cross-
Nets [17], and in memories [27].

Recently, several proposals had been introduced for cell
placement/assignment on FPGA-like CMOL architecture.
Like in other nano-fabric crossbars and FPGA like devices,
nanowires break at fixed intervals confining CMOL cell con-
nectivity to a fixed number (M) of other cells located within
its proximity square-like connectivity domain. Each CMOL
cell must be connected to one of its proximity cell mem-
bers, and failure to do so will require the insertion of a buffer
which results in increase of congestion and delay. The prob-
lem here is to find an assignment that will result in smallest
number of additional buffers.

Likharev et al. utilized existing FPGA CAD tools to per-
form placement and routing on 4 × 4 tile-based version of
CMOL [28, 29]. They used reserved routing cells and re-
cursive routing algorithm for inter-tile routing. Hossein et
al. [11] proposed a recursive method for removing routing
congestion by keeping and ranking placement solutions in
final iterations of the placement algorithm according to cost.
Subsequently, when routing of best placement configuration
failed, another placement solution was considered until rout-
ing was satisfied. Instead of working at tiles level, Hung et
al. [13] encoded the CMOL cell assignment as a Satisfia-
bility problem at cells level, where a placement solutions is
found when all Boolean constraints are satisfied. However,
when circuits sizes increased the computation time became
evident.
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Previous attempts to use sub-optimal search heuristics are
reported in [6, 32, 33]. The genetic Algorithm (GA) [32] was
used with two dimensional block PMX crossover operator
and mutation, where the fitness function evaluated the Man-
hattan distance between connected cells. The heuristic was
driven to minimize the total Manhattan distance of the pop-
ulation. Nonetheless, memory requirements, choices of data
structure for chromosomes representation, and computation
time are significant disadvantages of GA. A more elaborate
work was reported in [6]; where a Memetic computing ap-
proach was used by implementing a hybrid of the Genetic
Algorithm and the Simulated Annealing (SA) local-based
search heuristic. SA was used in each generation to en-
hance offsprings which resulted from PMX crossovers and
pairwise interchange mutations in GA. Hung et al. [33] ex-
tended their work on Memetic approach by integrating self-
learning operators using Lagrangian Multipliers (LRMA).
The Lagrangian relaxation technique (LRT) was applied in
population goodness function by assigning Lagrangian mul-
tipliers to penalty values corresponding to problem con-
straints and repeatedly updating them. Results reported us-
ing LRMA approach is promising, however, more computa-
tions are needed for the penalty updating mechanism and SA
local-based search. A theoretical investigation on CMOL
cell assignment is reported in [5]; the authors proved math-
ematically that placement of 2-input NOR/INV circuits is
possible and may require adding additional buffers (i.e., pair
of inverters in case of cells that require long wires to con-
nect) to satisfy all connections.

3 CMOL FPGA architecture

CMOL cell-based, field-programmable gate array (FPGA)-
like architecture is based on integrating conventional in-
verter-based four-transistor MOSFET CMOS cell with uni-
form reconfigurable nanowire fabric. Two-terminal nanode-
vices “latching switches”, that have two metastable internal
states, are self-assembled at each crosspoint in CMOL fab-
ric and provide diode-like I–V curves for logic circuits im-
plementation. Likharev et al. predicted the density of nan-
odevices to be above 1012 to cm2 for Fnano = 3 nm, where
Fnano is the nanowires half-pitch. That results in abundant
available nanodevices that can serve both inter-cells connec-
tivity and wiring-logic. CMOS stack is connected to nano-
fabric by Metal pins that span to top and bottom nanowire
levels as shown in Fig. 1(a). Two CMOS inverters (i.e.,
inverter A and inverter C) are connected by pin-nanowire-
nanodevice-nanowire-pin connection. The electrical repre-
sentation of four inverter-based CMOS cells and corre-
sponding nanowire and nanodevices is shown in Fig. 1(b).
Inverter A has two pins; pin1 connects the input of the
CMOS inverter to one of the nanowires levels making the

Fig. 1 Low-level structure of CMOL circuit: the incline angle
α � 1 and dimensionless parameter β satisfy two conditions,
sinα = Fnano/βFCMOS and cosα = rFnano/βFCMOS where r is an
integer

nanofabric, while pin2 connects the CMOS inverter’s output
to the second level of nanowires. The upper right cell (in-
verter A) is connected to the lower left cell (inverter C) by
activating the appropriate nanodevice (nd1) in the crosspoint
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Fig. 2 CMOS FPGA topology:
for r = 3,
M = 2r(r − 1) − 1 = 11 cells in
the “Connectivity Domain”
(Highlighted by dark line) for
the input pin of cells painted in
dark-grey [28]. The overlap
between connectivity domain of
two cells is shown in light grey

Fig. 3 Example of CMOL
circuit: (a) NOR/INV logical
circuit; (b) CMOL
implementation of (a),
(c) showing only used cells.
Shaded cells are connected
through combination of
nanowires, nanodevices and
CMOS pins

between the nanowire connected to output of inverter A
and nanowire connected to input of inverter C. When two
or more nanodevice on the same nanowire are activated as
shown in Fig. 1(b) (nd1 and nd2) the output of inverter C
will be equivalent to NOR gate whose inputs are cell A and
cell B. Wired-OR logic is implemented through nanowires
and nanodevice.

CMOL nanowire crossbar is rotated by angle α =
arcsin (Fnano/βFCMOS) related to the CMOS pins that are
arranged into a square array with side of 2βFCMOS as
shown in Fig. 1(c), where FCMOS is CMOS half-pitch, and
β is a factor larger than 1. This approach allows a unique
access to any nanodevice via the appropriate pin pair. Each
CMOS cell has an area of A = (2βFCMOS)2. Like other
nano-fabric crossbars, CMOL’s nanowires break at repeated
intervals of L = 2β2F 2

CMOS confining CMOL cells connec-
tivity to only M = 2r(r − 1) − 1 other cells located within
its proximity square-like “Connectivity Domain” as shown
in Fig. 2, where r is an integer value that indicates the con-
nectivity domain diameter and represents the constraint of
CMOL placement. CMOL nanodevices can be configured
by setting appropriate voltages. When configuration is done
the nanodevices are set to the ON (low-resistance) state or
OFF (high-resistance). If the nanowires and nanodevices
shown in Fig. 3(b) are activated, the CMOL circuit will be
equivalent to circuit shown in Fig. 3(a). The first NOR gate
of the circuit can be implemented by connecting inputs ‘A’
and ‘B’ with inverter ‘1’ to satisfy both connectivity and

logic wiring for the desired gate. The abundance of avail-
able nanodevices and nanowires provides a variety of dif-
ferent possible configurations for the implementation of one
circuitry. Among those their could be only certain config-
urations that satisfy connectivity domain constraint and do
not require additional routing resources.

Different variations of CMOL cells architecture were de-
veloped in the literature; initially, Likharev [28] extended
cell types to include latches. Later, Dong et al. [8] pro-
posed two new CMOL cells for efficient sequential logic im-
plementation, the T-Cell, basically a transmission gate and
the D-Cell, a transmission gate and an inverter. Those new
cells can be combined with original inverter-based cells to
form Tri-State buffers for MUX implementation and D Flip-
Flops for sequential design. Abid et al. [1] utilized two types
of nano-junction devices with CMOL-based cells to imple-
ment cryptographic algorithms. They developed XOR gates
with resistive junctions and XOR/AND gates with diode-
like junctions. The proposed design combines CMOS in-
verters with transmission gates, and results in sufficiently
larger cells than the conventional inverter cell of CMOL.
Abid et al. [2] also introduced a 3D CMOL FPGA imple-
mentation where a nano-wire crossbar is placed between
two CMOS layers, each layer reaches to nanowires span-
ning in one direction. This arrangement provides improved
density, but with complex inter-cell connectivity as each cell
is only restricted to access one level of the nanowire cross-
bar.
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4 Problem formulation

The placement or assignment of cells in order to minimize
a cost function is a NP-hard problem [23]. Even one dimen-
sional placement, the simplest possible, is hard to solve. In
2-D array of n locations there are as many as

S = n(n − 1)(n − 2) · · · (n − m) (1)

arrangements for placing m cells, where m could be in the
thousands. Overtime, heuristic techniques have been devel-
oped for solving the placement problem, and finding a good
solution in polynomial function of m.

Given a collection of NOR/INV gates, and the collec-
tion of nets (the set of ports to be connected together), the
CMOL placement problem consists of finding suitable loca-
tions for each gate under the constraint of connectivity do-
main and are given a cost function. Formally the problem
can be restated as: for a set of gates G = g1, g2, g3, . . . , gm

and a set of netlists Γ = γ1, γ2, γ3, . . . , γm where γi =
{fan-ini & fan-outi} of gi and given a set of slots or loca-
tions L = L1,L2,L3, . . . ,Ln where m ≤ n, the placement
problem is to assign each gi ∈ G to a unique location Lj

such that the objective is optimized. Positions are defined by
the coordinate values (xj , yj ) and the subset of G that rep-
resent inputs/outputs may be pre-assigned fixed locations or
constrained to certain positions.

Each CMOL cell can implement one inverter or one NOR
gate with multiple fan-in, however, complying to the con-
nectivity constraint can be substantially harder if gates of
high fan-in are allowed. Unlike conventional CMOS-based
cell assignment, CMOL cell placement is constrained to
“Connectivity Domain” of radius r . Each CMOL cell is
connectable to one of its proximity cell members, any vi-
olation of this constraint would impose further processing
(i.e., buffer insertion) to satisfy connectivity. However, such
a process would cause more congestion to the already con-
gested CMOL circuit and could result in a substantial in-
crease of timing delay. Mathematically, the “Connectivity
Domain” can be defined as follow. Given a gate and its
netlist (gi, γ i) placed in location Li , for any gate gk ⊆ G

and gk in the netlist γ i the following inequality should be
satisfied.

dist(Lj ,Lk) ≤ r (2)

where Lk is the location of gk , dist is Manhattan distance,
and r is CMOL connectivity diameter. The objective of
CMOL cell assignment is to satisfy the constraint in Inequal-
ity (2), and to minimize distance between connected gates in
circuit G. Failing to comply with the CMOL constraint will
result in an implementation that has more delay and area
requirements. The complexity of CMOL placement arises
from the overlap in connectivity domain of adjacent cells as
shown in Fig. 2, that results in fewer connectivity choices.

Fig. 4 Tabu list visualized as window over accepted moves

5 Tabu Search and its implementation

Tabu Search is a general iterative metaheuristic for solving
combinatorial optimization problems. TS proceeds by mak-
ing iterative perturbations while preventing cycling to cer-
tain number of recently visited points in search space. The
TS procedure starts from an initial feasible solution S (cur-
rent solution) in the search space Ω . A neighborhood ℵ(S)

is defined for each S. A sample of neighbor solutions V∗ ⊂
ℵ(S) is generated called trial solutions (n = |V*| � |ℵ(S)|),
and comprises what is known as the candidate list. From
this generated set of trial solutions, the best solution, say
S∗ ∈ V∗ is chosen for consideration as the next solution.
A solution S∗ ∈ ℵ(S) can be reached from S by an opera-
tion called a move to S∗. The move to S∗ is considered even
if S∗ is worse than S, that is, Cost(S∗) > Cost(S). Selecting
the best move in V∗ is based on the supposition that good
moves are more likely to reach the optimal or near-optimal
solutions. The best candidate solution S∗ ∈ V∗ may or may
not improve the current solution, but is still considered. It is
this feature that enables escaping from local optima. How-
ever, with this strategy, it is possible to reach the local op-
timum, since moves with Cost(S∗) > Cost(S) are accepted,
and then in a later iteration return back to local optimum.

In order to prevent returning to previously visited solu-
tions a memory or list T, known as tabu list, is maintained.
This list contains information that to some extent forbids
the search from returning to a previously visited solution.
Whenever a move is accepted, its attributes are introduced
into the tabu list T. Move reversal is prevented for the next
k = |T| iterations because they might lead back to a previ-
ously visited solution. The tabu list can be visualized as a
window on accepted moves as shown in Fig. 4. The moves
which tend to undo previous moves within this window are
forbidden.

In some cases, it is necessary to overrule the tabu sta-
tus since only move attributes (not complete solutions) are
stored in tabu lists. These tabu moves may also prevent the
consideration of some solutions which were not visited ear-
lier. This is done with the help of the notion of aspiration
criterion. Aspiration criterion is a device used to override
the tabu status of moves whenever appropriate. It temporar-
ily overrides the tabu status if the move is sufficiently good.
Aspiration criterion must make sure that the reverse of a re-
cently made move leads the search to an unvisited solution,
generally a better one. A flow chart illustrating the basic
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Fig. 5 Flow-chart of Tabu Search algorithm

short-term memory Tabu Search algorithm is given in Fig. 5.
Intermediate-term and long term memory processes are used
to intensify and diversify the search respectively [10, 23].

One of the Tabu Search algorithm parameters is the size
of the tabu list. A small tabu list size is preferred for explor-
ing the solution near a local optimum, and a larger tabu list
size is preferable for breaking free of the vicinity of local
minimum. The list size varying between 5 and 12 have been
used in many applications. Any aspect (feature or compo-
nent of a solution) that changes as a result of a move from S

to Strial can be an attribute of that move, where a single
move can have several attributes. The duration for which
a move containing the particular tabu attribute is forbidden
(the size of tabu list) is called Tabu tenure. An algorithmic
description of a simple implementation of the tabu search is
given in Fig. 6.

5.1 Solution representation and initialization

A placement solution is an arrangement of logic cells in a
two dimensional layout surface. The representation used in
this work is in the form of a 2-D grid. The layout is con-
structed by computing the number of required CMOL cells
to fit each benchmark circuit. The outer cells of the grid are
reserved for I/O pins, where I/O pins moves are restricted
to these reserved locations. In the initialization phase each

Ω : Set of feasible solutions (i.e., placements).
S: Current solution.
S∗: Best admissible solution.
Cost: Objective function (Reduce # of buffers).
ℵ(S): Neighborhood of S ∈ Ω .
V∗: Sample of neighborhood solutions.
T: Tabu list.
AL: Aspiration Level.

Begin
1. Start with an initial feasible solution (placement) S ∈ Ω .
2. Initialize tabu lists and aspiration level.
3. For fixed number of iterations Do
4. Generate neighbor solutions V∗ ⊂ ℵ(S).

(Each solution results from the swap of two cells).
5. Find best S∗ ∈ V∗.
6. If move S to S∗ is not in T Then
7. Accept move & update best solution.
8. Update tabu list (Store swap reversal).
9. Update aspiration level.

(AL = Cost of best solution seen so far).
10. Increment iteration number.
11. Else
12. If Cost(S∗) < AL Then
13. Accept move & update best solution.
14. Update tabu list & aspiration level.
15. Increment iteration number.
16. EndIf
17. EndIf
18. EndFor

End.

Fig. 6 Algorithmic description of short-term Tabu Search (TS)

Fig. 7 2-D grid layout of
CMOL initial placement of
s27.blif . 19 cells; 8 gates,
7 inputs and 4 outputs

logic gate is assigned a positive integer value that distin-
guishes it from the rest. Then, the encoded logic gates are
randomly assigned in the 2-D layout as shown in Fig. 7.

5.2 Cost evaluation

The main objective of placement is to find a feasible assign-
ment of cells in which all connections are satisfied. One way
to accomplish this is to place strongly connected cells close
to each other. A commonly used objective function is the to-
tal weighted wirelength over all signal nets and is expressed
as:

L(P ) =
∑

n∈N

wn · dn (3)

where, dn is the estimated wirelength of net n and wn is
weight of net n. Since, in CMOL all cells are connected via
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Fig. 8 Final cost yielded by TS in four circuits vs. candidate list size
(r = 12)

pre-assembled nanowires, the problem we are trying to op-
timize is to place connected cells within each others con-
nectivity domain as to avoid insertions of additional buffers.
Therefore, we should have a measure which can quantify the
overall quality of the solution. A conventional approach is
to calculate the number of nets that violate the connectivity
domain constraint. The overall cost of a solution is the total
number of connectivity domain violating nets (the number
of additional buffers that are needed to satisfy all connec-
tions). The cost of each gate g ∈ G is expressed in Eqs. (4a)
and (4b), where the overall circuit’s cost is the sum of the
individual cost of the gates.

Ci =
∑

j∈γ (i)

ui,j (4a)

ui,j =
{

1 if disti,j > r

0 otherwise
(4b)

5.3 Neighborhood solutions generation

In each iteration we generate a number of neighbor solutions
(i.e., candidate list) by making perturbations as follows: two
cells (two I/O pins or two logic cells) are selected randomly,
then their locations are interchanged. Each solution in the
candidate list is evaluated based on the change in number of
buffers before and after the swap. If two or more neighbor-
hood solutions have equal swap cost, which also happens to
be the best cost in the candidate list, the solution with lesser
Manhattan distance is chosen. We have experimented with
different sizes of candidate lists; Fig. 8 shows the final cost
yielded by TS in four benchmark circuits when candidate
list size is changed, given that all other parameters are con-
stant. It is clearly seen that for this problem TS had better re-
sults when more neighbor solutions are considered. Figure 9
shows the per iteration cost of one circuitry given different
sizes of candidate list. Candidate list sizes in the range of 50

Fig. 9 Change in cost per iteration of s1238.blif for different candidate
list sizes (r = 12)

reach the optimal solution of zero buffers when r = 12 in
less iterations, thus this size has been used throughout our
implementation.

5.4 Tabu list and aspiration level

Different tabu attributes were tested, when two cells i and j

are swapped. One attribute was to forbid moves related to
cell i, that means that any move which included i, even
swapping i with j , was tabued. Another experiment consid-
ered both i and j , forbidding any perturbations that include
either of them. The Tabu attribute of a move that is used
in all results reported in this paper is swap reversal. If two
cells are involved in interchange, the reversal of this move is
forbidden. A short-term memory element is used throughout
the implementation where experiments of tabu list size rang-
ing from 5 to 12 were conducted. We conclude that change
in the tabu list size in this range has little impact on the qual-
ity of the solutions, thus the size of tabu list is taken as a
fixed value equal to 5. The aspiration criterion is based on
the following: if the current solution is the best seen so far
(i.e., better than the global best solution), then tabu restric-
tion is overridden and the current solution is accepted as new
best solution and tabu list is updated.

5.5 Tailored neighborhood solutions

Since the number of cells that violate the given constraint are
far less than the total number of cells, it is rational for Tabu
swaps to always include cell(s) that violate the connectivity
radius constraint. Therefore, we experimented by modify-
ing the neighborhood solutions generation by constructing a
list of top 20 cells which have many long connections and
exceed the connectivity radius. In each iteration, this list is
updated to keep track of the worst placed cells. Each Tabu
move (i.e., swap) involves a cell from this list, and another
cell that may or may not be in the list. This modification re-
sults in always including violating cells in Tabu moves, such
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moves may take the search to unvisited solutions thereby en-
hancing search space exploration.

To avoid being greedy, and not curtail exploration, the
following approach was adopted. The list of all of the cir-
cuit’s cells are sorted according to the cost given in Eq. (4a).
When selecting cells for swaps, one cell is selected ran-
domly while the other is selected probabilistically. Those on
the top of the list which have more violations have a higher
chance of being selected, while those pairs that do not have
violating cells also have a non-zero probability of being se-
lected. To perform the probabilistic selection, we used the
positive values of a Gaussian random variable which has
mean m0 = 0 and standard deviation 3σ = circuit − size.
Given the Gaussian distribution, cells in the top of the list
will be more frequently selected than those in the bottom of
the list.

5.6 Buffers insertion

Buffers insertion is a post-processing procedure which is
performed when Tabu Search terminates. Violating connec-
tions are resolved by inserting buffers as intermediary cells.
Buffers insertion may fail if CMOL grid is highly congested
and/or the circuit still has many violating connections. Ini-
tially, the procedure starts with one buffer (pair of inverters)
for each violating connection. Buffers are inserted using the
same iterative methods used for cell placement. Tabu Search
is recalled given a number of modifications. All blank cells
in the grid are considered for buffers insertion. The invert-
ers are randomly assigned. Swaps are allowed only between
added inverters or an inverter and blank cell. The algorithm
continuously improves the locations of the inverters. If the
algorithm terminates and still some connections violate the
connectivity domain constraint, additional buffers are added
for those connections and the procedure is repeated. This
process repeats until all connected gates are within each oth-
ers connectivity domain, or when no blank cells are left in
CMOL grid (i.e., the circuit is infeasible given the current
cells arrangement). In our implementation, we limited the
number of inverters that can be inserted in a given connec-
tion to 6 to avoid major deterioration of the circuit’s timing
delay.

6 Experimental results

Evaluation of search heuristic efficiency and behavior is
conducted using ISCAS’89 benchmarks [3]. Further con-
sideration should be given to ISCAS’89 by replacing se-
quential elements’ inputs and outputs with POs and PIs re-
spectively [13]. ISCAS’89 benchmarks used in this work are
mapped to NOR-based gates with maximum of five inputs.
Tabu Search has been implemented using Java program-
ming language and executed on a machine comparable to

Fig. 10 Change of problem cost and Manhattan distance in TS itera-
tions (r = 12—s1238.blif)

the one used by other simulations published in literature, it
has 1.5 GHz Intel Pentium M processor with 512 MB mem-
ory. Three options were available to find a placement solu-
tion that satisfy the CMOL connectivity constraint; one was
to minimize Manhattan distance, another was to minimize
number of inserted buffers by using cost function discussed
in Sect. 5.2, and the third was to minimize both distance
and buffers. Results obtained for the first option showed that
the number of inserted buffers are more than those of the
second option. Moreover, when minimizing buffers, Man-
hattan distance was reduced to similar levels as if distance
was being optimized. Minimizing both distance and buffers
required more processing and didn’t have significant advan-
tages over minimizing buffers only. Figure 10 shows the cor-
relation between the number of inserted buffers and Manhat-
tan distance. It can be seen that TS is accepting bad moves
to reach better solutions in terms of inserted buffers (which
is the main objective), and in this process, the Manhattan
distance (wirelength) also improves.

Table 1 shows the number of cells (i.e., NOR/INV logic
gates), inputs and outputs of benchmark circuits used; Area
(Tiles) is the area used by CMOL FPGA CAD 1.0 tool [29],
while Area (Row × Column) is the area used in GA [32],
MA [6], LRMA [33] and TS. The heuristic stops when all
violations are removed or when reaching a predefined num-
ber of iterations. The median value of results obtained from
20 runs for each circuit is reported where each run uses dif-
ferent seeds for random numbers.

6.1 Literature comparison

Comparison is performed with CMOL FPGA CAD 1.0, we
set the connectivity radius to r = 12 and r = 9. GA, MA
and LRMA use population size equal to 24 and stopping
criterion when fitness score is not updated for 50 times. The
crossover rate in MA and LRMA is RC = 0.33 and mutation
rate RM = 0.01. Simulated Annealing used in each of GA
iterations has initial temperature T = 0.2 and terminating
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Table 1 ISCAS’89 Benchmarks: showing the number of Cells to be placed including Gates, Inputs and Outputs. Area is the size of CMOL 2-D
grid. AU % is the fraction of utilized cells in CMOL grid

Circuits Cells Gates Inputs Outputs Area (Tiles) Area (Row × Column) AU % (Tiles) AU %

s27 19 8 7 4 64 (2 × 2) 25 (5 × 5) 18.75 32.00

s208 136 109 18 9 256 (4 × 4) 169 (13 × 13) 48.05 64.50

s298 122 85 17 20 256 (4 × 4) 144 (12 × 12) 48.83 59.03

s344 180 130 24 26 400 (5 × 5) 196 (14 × 14) 43.50 66.33

s349 184 134 24 26 400(5 × 5) 196(14 × 14) 26.50 68.37

s382 175 124 24 27 400 (5 × 5) 196 (14 × 14) 43.25 63.27

s386 164 138 13 13 400 (5 × 5) 196 (14 × 14) 54.75 70.41

s400 188 137 24 27 400 (5 × 5) 196 (14 × 14) 47.25 69.90

s420 299 248 34 17 400 (5 × 5) 361 (19 × 19) 75.00 68.70

s444 187 136 24 27 400 (5 × 5) 196 (14 × 14) 52.50 69.39

s510 304 266 25 13 – 361 (19 × 19) – 73.68

s526 273 222 24 27 576 (6 × 6) 324 (18 × 18) 57.12 68.52

s641 302 206 54 42 576 (6 × 6) 676 (26 × 26) 50.17 30.47

s713 321 225 54 42 – 676 (26 × 26) – 33.28

s820 447 400 23 24 – 529 (23 × 23) – 75.61

s832 454 407 23 24 – 529 (23 × 23) – 76.94

s838 606 507 66 33 – 676 (26 × 26) – 75.00

s1196 675 613 31 31 – 729 (27 × 27) – 84.09

s1238 724 662 31 31 – 784 (28 × 28) – 84.44

temperature 0.01. Tables 2 and 3 show the final results ob-
tained for ISCAS’89 benchmarks when r = 12 and r = 9 re-
spectively; (Delay) is the circuit’s logical levels reported by
SIS tool after inserting the buffers, computation time (Time)
in seconds, (Buf ) shows the number of inserted buffers to
satisfy CMOL connectivity domain.

Tabu Search solutions are more effective than those of
CMOL CAD 1.0 in terms of computation time, delay and
area utilization. The last two columns of Table 1 show that
cell-based CMOL architecture has better area utilization
AU % than that of tile-based architecture. Tables 2 and 3
indicate that the tile-based approach is the most time con-
suming and the least effective in timing delay. It also fails to
place big circuits.

Results obtained from implementation of TS for r = 12
are better than those obtained in GA, MA and LRMA in both
computation time and Buffers count. TS required shorter
CPU processing time due to its simplified operations com-
pared to genetic crossover, mutation and Lagrangian multi-
pliers calculation in LRMA. Table 2 shows that Tabu Search
found the optimal solutions with zero buffers for all bench-
marks, with 92 % average computation time saving. For ex-
ample, s1238 benchmark needed only 12.87 seconds in TS,
comprising only a 3.6 % of time needed by LRMA.

Table 3 shows TS results when r = 9; solutions found
by TS are better than those of MA for all benchmark cir-
cuits. TS falls behind LRMA in only two circuits (s820 and

s1238) while sustaining equal averaged results. Again, TS
found solutions in lesser time with 73 % saving.

Experiments were conducted using the tailored neighbor-
hood generation; quality of results was similar to those of
Tabu search with random swaps, however the range of can-
didate list size reduced from 30–50 swaps to 20–40 swaps.
This constituted for 20–35 % reduction in candidate list size
compared to that required when random cells were selected.

For circuits s820, s832, s1196, s1238 when r = 9, buffers
insertion heuristic was unable to resolve all of the violating
connections due to limited CMOL grid size. For example,
circuit s1238 requires 54 buffers (i.e., 108 inverters) where
only 60 blank cells are available in CMOL grid. Therefore,
a bigger CMOL grid should be used to implement the cir-
cuit. For accurate comparison with previous algorithms, we
used the same grid size as reported in literature. Results
given for the aforementioned circuits in Table 3 indicate the
number of violating connections rather than the number of
buffers inserted.

7 Conclusion

In this paper we presented the implementation of Tabu
Search heuristic for CMOL nano-hybrid cells placement.
We analyzed the problem behavior and engineered a Tabu
Search solution that exploits better understanding of the lim-
itations imposed by CMOL connectivity domain. Further,
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Table 2 CMOL CAD, GA, MA, LRMA and TS results comparison for ISCAS’89 benchmark circuits and connectivity radius r = 12. Delay is
circuit’s logic levels. Time is computation time in seconds. Buf is the number of inserted buffers

Circuits CMOL CAD 1.0 GA [32] MA [6] LRMA [33] Tabu Search

Delay Time Delay Time Buf Delay Time Buf Delay Time Buf Delay Time Buf

s27 9 1 7 0.01 0 7 0.01 0 7 0.01 0 7 0.01 0

s208 18 3 16 1.12 0 16 0.12 0 16 0.10 0 16 0.01 0

s298 13 7 11 0.17 0 11 0.11 0 11 0.09 0 11 0.01 0

s344 20 8 18 0.57 0 1 0.29 0 18 0.16 0 18 0.01 0

s349 20 7 18 0.49 0 18 0.28 0 18 0.18 0 18 0.01 0

s382 13 7 11 1.60 0 11 0.38 0 11 0.32 0 11 0.03 0

s386 16 11 10 1.05 0 10 0.33 0 10 0.34 0 10 0.03 0

s400 15 8 11 2.12 1 11 0.40 0 11 0.34 0 11 0.02 0

s420 20 8 16 8.50 1 16 3.41 0 16 1.57 0 16 0.07 0

s444 17 9 11 1.86 2 11 0.40 0 11 0.34 0 11 0.03 0

s510 – – 18 16.56 2 18 7.56 0 18 3.42 0 18 0.18 0

s526 16 13 11 9.75 5 11 4.36 0 11 1.59 0 11 0.48 0

s641 25 8 23 82.66 15 19 39.40 4 16 22.02 0 16 6.27 0
s713 – – 24 52.84 34 19 30.11 3 19 41.77 2 19 8.69 0
s820 – – 15 77.52 41 12 61.71 10 12 54.09 6 12 11.77 0
s832 – – 16 69.27 54 12 60.17 11 12 63.77 4 12 10.55 0
s838 – – 28 201.37 50 24 85.62 7 24 100.40 4 24 4.48 0
s1196 – – 30 234.88 84 23 208.15 19 24 179.47 9 23 6.87 0
s1238 – – 37 268.92 121 28 267.34 31 26 353.00 9 26 12.87 0

Average – – 17 54.28 22 15 40.53 4 15 43.31 2 15 3.28 0

Table 3 CMOL CAD, MA, LRMA and TS results comparison for
ISCAS’89 benchmark circuits and connectivity radius r = 9. Time is
computation time in seconds. Buf is the number of inserted buffers

Circuits CMOL CAD 1.0 MA [6] LRMA [33] Tabu Search

Time Time Buf Time Buf Time Buf

s27 0.07 0.01 0 0.01 0 0.01 0

s208 509.84 0.22 0 0.20 0 0.01 0

s298 370.3 0.27 0 0.37 0 0.05 0

s344 6.18 0.85 0 0.65 0 0.04 0

s349 7.6 0.57 0 0.72 0 0.04 0

s382 12.88 5.70 0 1.43 0 0.67 0

s386 10.3 1.89 0 1.62 0 0.20 0

s400 7.52 4.48 0 1.82 0 0.61 0

s420 – 13.83 0 7.73 0 1.24 0

s444 7.59 5.74 0 2.05 0 0.97 0

s510 213.27 22.71 7 25.49 5 64.57 1
s526 – 21.72 5 23.13 2 39.44 0
s641 – 48.26 11 106.64 6 51.73 1
s713 – 79.63 12 97.38 3 51.88 2
s820 – 202.60 42 153.20 31 75.91 32
s832 – 118.83 45 164.06 39 77.75 37
s838 – 22.60 15 189.12 10 63.13 1
s1196 – 502.22 49 565.41 36 72.35 35
s1238 – 404.11 55 856.69 39 73.00 54

Average – 76.64 13 115.67 9 30.19 9

we proposed a probabilistic method to make tailored swaps
and reduce candidate list size. Results obtained are better
than those published in literature with savings in required
computation time. We are investigating the implementation
of other search heuristics for CMOL placement problem
and are experimenting with placement and reconfiguration
around defective nanodevices.
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