
Engineering Applications of Artificial Intelligence 15 (2002) 357–368

Tabu search based circuit optimization

Sadiq M. Sait*, Munir M. Zahra

Department of Computer Engineering, King Fahd University of Petroleum and Minerals, KFUPM Box 673, Dhahran-31261, Saudi Arabia

Received 13 November 2001; received in revised form 22 April 2002; accepted 8 June 2002

Abstract

In this paper we address the problem of optimizing mixed CMOS/BiCMOS circuits. The problem, formulated as a constrained

combinatorial optimization problem is addressed using a tabu search algorithm. Initially a random approach is adopted for selecting

among available solutions. Further, as an alternative competing solution the concepts of simulated evolution are applied to classical

tabu search (CTS). This allows for a stochastic criterion for selecting among available solutions as compared to the random

approach of CTS. Only gates on the critical sensitizable paths are considered for optimization. Such a strategy leads to sizeable

circuit speed improvement with minimum increase in the overall circuit capacitance. Compared to earlier approaches, the presented

techniques produce circuits with remarkable increase in speed (greater than 20%) for very small increase in overall circuit

capacitance (less than 3%).

r 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Tabu search; Simulated evolution; Circuit optimization; Search algorithms; CMOS/BiCMOS; Mixed technologies; Critical path;

False path

1. Introduction

Popularity of CMOS technology is due to its low DC
power dissipation and high package density. The
demand for superior performance motivated research
and development that lead to the emergence of BiCMOS
technology. BiCMOS is a combination of CMOS and
Bipolar technologies, with advantages of both, high
speed and high driving capabilities of Bipolar, as well as
the low area and low power consumption of CMOS.
VLSI designs are evaluated with respect to three main

performance criteria: speed, area, and power consump-
tion. As these criteria are conflicting designers usually
seek to optimize one criteria, namely speed, while
satisfying specific constraints/requirements on area and
power consumption.
One of the optimization techniques applied at the

circuit level is the selection of logic blocks of the VLSI
circuit, in terms of speed and area. For example, for
standard cell designs, the optimization can be performed
through a careful selection of different implementations
of a block in the same technology. These alternative

implementations vary in area, driving capabilities,
intrinsic delay, and capacitive loading (Lin et al.,
1990). Another optimization strategy is to follow a
mixed technology design approach. One possible choice
is to mix CMOS/BiCMOS technologies. In terms of
manufacturing process, this is feasible since the CMOS
process is part of BiCMOS process. The CMOS-based
BiCMOS process is a CMOS baseline process to which
bipolar transistors are added. So, for a mixed design
circuit, initially all cells are exposed to CMOS process.
Then bipolar transistors are added to only those cells
that are selected to be BiCMOS.
In this paper we discuss the problem of optimizing

mixed CMOS/BiCMOS circuits in terms of delay, power
and area. Although the scope of the work is directed to
CMOS and BiCMOS technologies, other technologies
can be included taking into consideration the feasibility
and practicality of mixing these technologies.
The basic idea is as follows. Given a circuit consisting

of only CMOS cells, some of those cells are selected and
replaced by their equivalent BiCMOS cells in such a way
that the entire delay of the circuit is decreased with a
minimum increase in power and area.
In Baba-Ali and Bellaouar (1994), the above ap-

proach for optimizing standard cells circuits is used. The
*Tel.: +966-3-860-3059; Fax: 966-3-860-2217.

E-mail address: sadiq@ccse.kfupm.edu.sa (S.M. Sait).

0952-1976/02/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

PII: S 0 9 5 2 - 1 9 7 6 (0 2) 0 0 0 5 4 - 4

technique aims at improving circuit performance by
making for each gate, a choice between CMOS or
BiCMOS cells depending only on their load capacitance.
The authors reported noticeable speed improvement on
all the test circuits used. However, in their implementa-
tion, no constraints on power dissipation were placed,
and the number of BiCMOS gates was high. The
reported approach suffers from several problems,
namely:

1. All the nodes are considered for optimization.
2. Output nodes are replaced whether they are on time

critical paths or not.
3. The approach is local; that is, it performs the

optimization on a single node. It does not have a
global view of the circuit; hence it is expected to get
trapped at a local optimum solution.

The actual delay of a circuit is determined by
the delay of its longest sensitizable path. A sensitizable
path is a path which can be activated by at least
one input vector. Those paths which cannot be
activated by any input vector are called false paths. A
path is critical if its total delay is greater than a
threshold value. Thus, the problem of finding and
estimating the delay of critical paths is called the critical

path problem (Chen et al., 1993). For static timing
analysis techniques, the circuit is modeled as a directed
acyclic graph in which three popular algorithms are
used to trace the paths: depth first search (DFS) with/
without pruning, breadth first search (BFS), and PERT-
like trace.
In this work we enumerate all sensitizable critical

paths according to the a-critical concept. First, all paths
with average delay (including estimation of interconnect
delays) exceeding an estimated threshold value are
enumerated. From amongst these paths, only sensitiz-
able paths are reported.
In the following section we discuss the a-critical

approach. Discussion on false path problem is given in
Section 3. The circuit optimization problem (COP) is
formulated as a combinatorial optimization problem in
Section 4. Details of application using tabu search (TS)
are given in Section 5. Use of some simulated evolution

(SE) concepts with TS for the COP are presented
in Section 6. Experimental results are provided in
Section 7.

2. The a-critical approach

The delay of the circuit is determined by its longest
sensitizable paths. Therefore, to verify and optimize the
circuit timing, the focus should be on predicting the
timing critical paths only. A path p is classified as critical
if its total delay, Tp; is very close to its latest required

arrival time LRATp: If Tp exceeds LRATp;
path p becomes a long path. The path delay
consists of two components: the logic delay which is
known prior to layout, and the interconnect delay
which is unknown. In VLSI designs, the interconnect
delay is a major part of the overall path delay. Therefore
it is very important for pre-layout timing analysis to
predict the interconnect delay requirements. The inter-
connect capacitance is a key element in the total
interconnect delay (Youssef et al., 1995). The a-critical

algorithm aims at predicting the interconnect delay
requirements of a given circuit by estimating the delay of
the longest paths in the circuit. Before we describe this
algorithm, we recall from Youssef et al. (1995) some
definitions and equations proposed to compute the path
delay.
Let p ¼ fv1; v2;y; vpg be a path in the circuit graph,

where v1 and vp are the source and sink cells. The total
delay on p is given by

Tp ¼
Xp�1
i¼1

ðCDvi
þ IDvi

Þ; ð1Þ

where, CDvi
is the switching delay of cell vi and IDvi

is
the interconnect delay of the net driven by cell vi:
The switching delay may be expressed as follows:

CDvi
¼ BDvi

þ LFvi
� AcLvi

; ð2Þ

where, BDvi
is the base (intrinsic) delay of cell vi in

nanoseconds, LFvi
is the load factor of the output pin of

the driving cell vi; expressed in units of time per unit
capacitance, and AcLvi

is the summation of input
capacitance of fan-out gates of cell vi:
The interconnection delay may be expressed as

follows:

IDvi
¼ LFvi

� Cvi
; ð3Þ

where Cvi
is the total interconnect capacitance (area +

fringe) of the net driven by cell vi:
The interconnect capacitance Cvi

is estimated
using data from past designs as follows. The
average and standard deviation of net length for
different types of nets (2-pin, 3-pin, y; m-pin) are
collected from past designs of similar complexity.1 These
are transformed into interconnect capacitances. Let Cvi

and svi
be the estimated expected interconnect capaci-

tance and standard deviation of the net driven by cell vi:
Then, the expected interconnect delay IDvi

of net vi

and its corresponding variance S2
vi

are estimated as
follows:

IDvi
¼ LFvi

� Cvi
; S2

vi
¼ LF 2

vi
� s2vi

: ð4Þ

Under the assumption of statistical independence
between the nets, the expected delay and variance on

1This classification helps reduce the sample variance around the

mean.

S.M. Sait, M.M. Zahra / Engineering Applications of Artificial Intelligence 15 (2002) 357–368358

any path p can be expressed as follows:

Tp ¼
Xp�1
i¼1

ðCDvi
þ IDvi

Þ; S2
p ¼

Xp�1
i¼1

S2
vi
: ð5Þ

Let Tmax be the expected delay of the longest path in the
circuit, that is,

Tmax ¼ max
pAP

ðTpÞ; ð6Þ

where P is the set of all paths in the circuit graph G:

2.1. Description of a-critical algorithm

The a-critical approach is based on the following
definition:

Definition. A given path p; with overall delay Tp; is
a-critical iff:

Tp þ a�
ffiffiffiffiffi
S2
p

q
XTmax: ð7Þ

For a user specified a; the a-critical approach
enumerates all paths which satisfy Eq. (7).

3. False path problem

The presence of false paths has many undesirable
effects which include loss of accuracy and waste of
optimization effort. False paths exist in a circuit because
of several reasons, namely:

1. Incompatible transitions: A false path results from the
combination of incompatible transitions.

2. Incorrect signal flow: Timing verifiers that operate at
switch level encounter this problem. Due to the
bidirectional nature of MOS transistors, the intended
signal flow in a structure such as the barrel shifter is
not always obvious2 (Benkoski et al., 1990).

3. Logic dependency: The most explicit source of false
paths comes from some logic that depends on the
output of other logic (Perremans et al., 1989).

In recent years many techniques have been proposed to
detect false paths. The reported techniques rely on
various path sensitization criteria which fall into three
types: Static, Dynamic and Viable.

Static sensitization: These techniques are based on the
D-Algorithm which is widely used in testing. One
important assumption of the D-Algorithm is that,
except for the signal to be propagated, all other signals
in the circuit are assumed to have static values
throughout the propagation process. This assumption,

however, is not always true which may lead to incorrect
results. First it may report some paths as false paths
while in reality they are not. Second, it can under-
estimate the sensitizable path length (Benkoski et al.,
1990; Brand and Iyengar, 1986; Roth, 1966).

Dynamic sensitization: This approach is also based
on D-algorithm, but it takes into consideration the
stability requirement of the signals. The false paths
reported in Du et al. (1989), Perremans et al. (1989),
Huang et al. (1993) and Chen and Du (1993) follow this
approach.

Viability: The flaw in the dynamic sensitization
condition is the absence of perfect knowledge on gate
delays. In such case, both the exact value of any node at
any time before the node has settled to a final value, and
the time at which a node settles to a final value is
problematic. That is, the above-mentioned methods use
criteria which are non-robust.
McGeer and Brayton (1989) developed a technique

that computes the longest viable path in combinational
circuits. Their techniques are based on two conditions:
correctness and robustness. These two requirements are
derived from the idea of Boolean difference. The
sensitization criterion associates the path with a Boolean
expression, which represents the set of input vectors that
activate the path. If the associated Boolean expression
of the path is found equal to logic 0, the path is claimed
to be a false path.

4. Optimization of BiCMOS/CMOS VLSI designs

The problem of optimizing a mixed technology design
can be formulated as an optimization problem and
solved using a variety of algorithms. For a mixed
CMOS/BiCMOS design, there exist 2m solutions for a
circuit with m gates. Hence, full/brute force design space
exploration is infeasible even for designs of moderate
sizes.

4.1. Problem definition

Given a netlist of CMOS gates, the objective is to find
an optimal or near-optimal solution to the problem of
replacing some of the CMOS gates with BiCMOS gates
such that the overall delay is minimized with minimum
increase in the power and area of the circuit. Since the
delay of a circuit depends only on the longest sensitiz-
able paths, only gates belonging to those paths are
considered in the search space. The reader should note
that changing the implementation of a gate instance
from CMOS to BiCMOS does not always result in delay
improvement. The BiCMOS gate has less delay than the
corresponding CMOS gate if its fanout load CL is
greater than a certain threshold CX (Baba-Ali and
Bellaouar, 1994). Therefore, only those nodes with CL >

2A barrel shifter is a combinational circuit that can shift or rotate a

data word by any number of bits in a single operation. Implemented

like a multiplexer, each output can be connected to any input

depending on the shift distance.

S.M. Sait, M.M. Zahra / Engineering Applications of Artificial Intelligence 15 (2002) 357–368 359

CX should be considered in the search. Given a
circuit with m nodes and K sensitizable paths, we
should first extract all nodes that are included in
the sensitizable paths and satisfy the inequality
CL > CX : Let A be the set of such nodes and let n be
the size of this set.
The input for the COP is

* Set A ¼ ðg1; g2;y; gnÞ:
* Vector D =(DD1;DD2;y;DDn)

DDi ¼ Dc
gi
� Db

gi
;

where DDi is the circuit delay gain due to changing
gate i implementation from CMOS to BiCMOS.
Obviously, for all giAA; DDiX0: The value ‘‘0’’
is because gi may be swapped without any im-
provement in the delay when it is not a part of the
longest path.

Dc
gi

and Db
gi

is the circuit delay when gate
gi is implemented in CMOS and BiCMOS,
respectively.

* Vector C = (DC1; DC2;y,DCn)

DCi ¼ Cb
gi
� Cc

gi
;

where DCi is the total capacitance increase of the
circuit due to changing gate i implementation from
CMOS to BiCMOS.

Cc
gi
and Cb

gi
is total capacitance of the circuit when

gi is CMOS and BiCMOS, respectively.

Due to non-availability of power dissipation model
for BiCMOS, we expressed the changes in power in
terms of changes in capacitance. The power of CMOS
and BiCMOS gates is proportional to their capacitive
load (Embabi et al., 1993).
The problem is to find a subset S of A such that, when

the nodes in S are implemented by BiCMOS, it leads to
maximum reduction in Tmax; while satisfying a threshold
constraint on capacitance, that is

maximize
P

iAS DDi

subject to
P

iAS DCipCT :
ð8Þ

The term
P

iAS DDi reflects the total circuit delay gain
due to changing a set S of gates from CMOS to
BiCMOS. CT is a user specified threshold which
represents the maximum allowable total capacitance
increase.
The output is

* S where SDA:
* DD ¼

P
iAS DDi;

* DC ¼
P

iAS DCi:

If Tmax is the initial delay of the circuit, then the final
delay

DF ¼ Tmax � DD: ð9Þ

Let CI be the initial total capacitance. Then the final
capacitance is

CF ¼ CI � DC: ð10Þ

Next, we shall show that the decision version of COP is
NP-complete.

4.2. Is COP in NP?

A problem is said to be computationally hard if it
cannot be solved by any known polynomial-time
algorithm (time complexity= yðNÞ). Non-deterministic
polynomial (NP) algorithms are often employed to
determine their possible solutions. Any problem that
can be solved by such a randomized algorithm is said to
be in NP.
Hence in order to prove that COP is in NP, we need to

find a non-deterministic algorithm that could be used to
solve the problem in polynomial time (Horowitz and
Sahni, 1990). Before doing this, let us present some
definitions and concepts. Choice(A) is a function that
arbitrarily chooses one of the elements of a set A.
Success and failure are two signals to indicate a
successful and unsuccessful completion of the algorithm,
respectively. The assignment statement X’Choiceð1 : nÞ
could result in X being assigned any value of the integers
in the range ½1; n
: There is no rule to specify how this
choice is to be made. Whenever, there is a set of choices
leading to a successful completion then one such set of
choices is always made and the algorithm terminates
successfully. A non-deterministic algorithm terminates
unsuccessfully if and only if there exists no set of choices
leading to a success signal (Horowitz and Sahni, 1990).
For COP, let ‘‘0’’ and ‘‘1’’ represent the choice

between CMOS and BiCMOS, and X represents a set of
these choices. Let M be a maximum objective reduction
in the delay. Then we can formulate a non-deterministic
algorithm for COP as shown in Fig. 1. As can be seen
from the figure, there is no rule for guessing a solution
that might lead to successful termination of the
algorithm. The time complexity of this algorithm is
OðnÞ:

4.3. Is COP NP-complete?

The concept of NP-completeness stems from the fact
that most hard problems are equivalent—if a single
polynomial-time algorithm could be found to solve one

Fig. 1. Nondeterministic COP algorithm.

S.M. Sait, M.M. Zahra / Engineering Applications of Artificial Intelligence 15 (2002) 357–368360

such problem, it would be applicable to all others. This
equivalence is achieved through polynomial algorithmic
reduction of these problems.
Hence the COP is an NP-complete problem if it is NP-

hard and belongs to the NP class of problems. In the
previous section, we proved that COP is NP. Now let us
try to prove that it is NP-hard. To do so, the following
steps need to be carried out (Baase, 1991):

1. Select an NP-complete problem P:
2. Show that P is reducible to COP by finding a

polynomial function TðxÞ that transforms (reduces)
P to COP

Let P denote the Knapsack problem which is known
to be NP-complete (Horowitz and Sahni, 1990). The
definition of Knapsack problem is as follows: a set of n

items is available to be packed into a knapsack with
capacity C units. Item i has a profit pi and uses up si

units of capacity. The problem is to determine the subset
I of items which should be packed in order to maximize:X
iAI

pi ð11Þ

such thatX
iAI

sipC:

Here the solution is represented by the subset
IDf1;y; ng: Now let us show that P is reducible to
COP. As we can see there is a correspondence between
the input/output of COP and the input/output of P:
That is:

* Both of the problems have an input of n items.
* Item i in COP has DDi gain in the delay (profit) which

corresponds to the profit pi of item i in P:
* Item i in COP uses DCi units of capacity which

corresponds to the capacity si of item i in P:
* The objective of both problems is to find out a subset

of items that maximize the total gain (profit).
* Both problems COP and P are subjected to some

constraints of a given capacity threshold, CT and C;
respectively.

Let TðxÞ be a polynomial reducible function from P
to COP. Then from the previous correspondence we can
deduce the following:

TðCÞ ¼ CT ; ð12Þ

Tðs1; s2;y; snÞ ¼ DC1;DC2;y;DCn; ð13Þ

Tðp1; p2y:pnÞ ¼ DD1;DD2;y;DDn: ð14Þ

It is clear that TðxÞ is one-to-one function of OðnÞ
time complexity. This means that P is reducible to COP.
Hence COP is an NP-hard problem. Since COP is NP-

hard and at the same time it belongs to NP class of
problems, then it is NP-complete.
The above result justifies searching for a heuristic

solution to this problem. The heuristic solution adopted
is described next.

4.4. Proposed solution

To identify the gates of set S; we proceed in three
steps:

1. Generation of the a-critical paths of the input circuit.
2. Eliminate the false paths.
3. Apply TS algorithm to select the gates of subset S

among those covered by the sensitizable critical
paths.

Phase I: This phase enumerates all critical paths
according to the a-criticality described in Section 2. Path
enumeration is achieved via a PERT-like trace of the
circuit graph (Youssef et al., 1995).

Phase II: After generating all critical paths for a given
circuit, these paths are checked via false path checking
procedure to extract the false paths. This step is
necessary to speed up the optimization process by
minimizing the input population as well as it gives
accurate timing. As mentioned earlier, many techniques
have been proposed for this purpose. We use the
algorithm of Du et al. (1989) and Yen et al. (1989) with
few modifications. The first modification is the use of a
more accurate delay model (Youssef et al., 1995). Other
modifications are related to the way of handling the
generation of new events in the events propagation
phase.

Phase III: This is the optimization phase. The input of
this step is a set of the longest sensitizable paths of the
given circuit. The process aims to replace some of the
CMOS gates by BiCMOS gates in order to optimize the
circuit for delay without exceeding a capacitance
threshold constraint. The output is a mixed CMOS/
BiCMOS circuit with optimum cost. This optimization
step is achieved using TS heuristic.
TS is a metaheuristic which can be used as an

independent search technique or as a higher level
heuristic procedure for solving combinatorial optimiza-
tion problems. It is designed to guide other methods to
escape the trap of local optimality. TS operates by
incorporating flexible memory functions to forbid
transitions (moves) between solutions that reinstate
certain attributes of past solutions. Attributes that are
not permitted to be reinstated are called tabu, and are
maintained in short-term memory called tabu list. After
a specified duration they are removed from the list and
are free to be inserted again.
For a variety of problems, TS has found solutions

superior to the best solution previously obtained by

S.M. Sait, M.M. Zahra / Engineering Applications of Artificial Intelligence 15 (2002) 357–368 361

alternative methods. In other cases, it has demonstrated
advantages such as ease of implementation, or the
ability to handle additional considerations such as
constraints not encompassed by an original problem
formulation (Glover, 1990).

5. TS algorithm

Tabu search is an iterative procedure that works by
making moves from one trial solution to another. An
algorithmic description of a simple implementation of
TS is given in Fig. 2.
The TS procedure starts from an initial feasible

solution s (current solution) in the search space O: A
neighborhood @ðsÞ is defined for each s: A sample of
neighbor solutions VnC@ðsÞ is generated called trial

solutions (n ¼ jVnj5j@ðsÞj), and comprises what is
known as the candidate list. From this generated set of
trial solutions, the best solution, say snAVn is chosen for
consideration as the next solution. The move to sn is
considered even if sn is worse than s; that is, even if
costðsnÞ > costðsÞ:
In order to prevent returning to previously visited

solutions a memory or list T, known as tabu list, is
maintained. Whenever a move is accepted, its attributes
are introduced into the tabu list. The purpose is to
prevent the reversal of moves for the next k ¼ jTj
iterations because they might lead back to a previously
visited solution.

In certain situations, it is necessary to overrule the
tabu status. This is done with the help of the notion of
aspiration criterion. Aspiration criterion overrides the
tabu status of moves whenever appropriate. One
aspiration criterion, also known as best solution aspira-
tion criterion (AS1) overrides the tabu restriction if the
move produces a new best solution. In this work we used
this and another aspiration criterion, called aspiration by

search direction (AS2) (Reeves, 1995). In aspiration by
search direction, if an improving move e is made, then
the reverse move %e is accepted if it also is an improving
move.

Initial solution: The initial solution can be any feasible
solution. It is found that TS may take longer if given a
poor initial solution. In our case, the initial solution is a
set A of nodes of type CMOS only, which are covered by
the sensitizable a-critical paths. As search proceeds,
neighbor solutions are generated by swapping a CMOS
gate with a BiCMOS gate or vice versa. The selection of
the gate for swap can be done randomly. This approach
is referred to as classical tabu search (CTS). Another
strategy is to select the gate based on its characteristics
and attributes. Here we employed the simulated evolu-

tion (SE) heuristic to evaluate the goodness(fitness) of
each gate in the candidate list. This approach is called
evolutionary tabu search (ETS). It is detailed in the next
section.

Tabu list: Formulation of the tabu list is one of the
main steps in TS. Since we have only one type of move
we used one tabu list. Each entry in the tabu list contains
the following information:

* gate number in the path,
* gate type, CMOS or BiCMOS,
* cost associated with this move,
* frequency of the move, and,
* a gain bit (0 or 1): this field is used if aspiration by

search direction is used as discussed later.

Evaluation function: In order to select the best solution
among several candidate solutions generated in each
iteration we have to evaluate each solution. The
evaluation function is formulated to incorporate all
the parameters to be optimized. As mentioned earlier,
our objective is to maximize

P
iAS gi; that minimizes

Tmax; subject to capacitance constraints. The evaluation
function takes the following form,

EðsÞ ¼
X
iAS

gi � X ; ð15Þ

where X is a penalty that is included if capacitance
constraints are violated. The above evaluation function
is suitable for short-term tabu search. TS based on long-
term memory requires historical information. In the
next section we will show how a record of history of the
moves is used to diversify search to improve results.
(Sait and Youssef, 1999)Fig. 2. Algorithmic description of short-term TS.

S.M. Sait, M.M. Zahra / Engineering Applications of Artificial Intelligence 15 (2002) 357–368362

5.1. Diversification and long term memory

In many combinatorial optimization problems, appli-
cation of short-term memory alone may not produce a
good solution. In Glover (1990), it is shown that the
long-term memory functions can be very important for
obtaining best results. In our work, we apply frequency-
based diversification. In this strategy, we keep track of
the number of times a certain move has been made. At
the point when diversification is to be made, we penalize
those moves that have been most frequent, thereby
taking the search to areas unvisited thus far (Glover,
1990; Hubscher and Glover, 1994; Laguna and Glover,
1993). Therefore, the following modifications to short-
term TS are done.

1. When the short-term TS algorithm hits a local
optima, the following actions are taken:

(a) All BiCMOS nodes are swapped to CMOS.
Denote the number of those nodes as
NUM OF BiCMOS

(b) Search for least frequency nodes and replace
them by BiCMOS. The search replacement
process continues till the objective load threshold
is reached or till the number of replaced nodes
is equal to NUM of BiCMOS. Some of the
BiCMOS nodes that were changed to CMOS
may be changed again back to BiCMOS. Using
the above, the search process is transferred
to another region where the process might lead
to a better solution.

2. Re-start the short-term memory component again
and continue until another local optimum is reached;
then repeat Step 1.

6. Evolutionary tabu search

As mentioned in the previous section moves can be
generated by selecting gates based on their attributes.
This approach is based on the evolutionary aspects of
the SE heuristic. Before explaining how this can be
done, an overview of SE is presented.

6.1. Simulated evolution overview

SE is one of the iterative heuristic techniques for
solving combinatorial optimization problems. It was
proposed by Kling and Banerjee in 1987 (Kling and
Banerjee, 1987). The main idea of SE is that selection of
components to change to improve the solution is done
according to a stochastic rule. The components not
located in a proper manner need to change their
locations to improve the solution while those compo-

nents already well located have a high probability to
stay in their locations (Sait and Youssef, 1999).
The algorithm starts with the initialization phase

where various parameters are set to desired values. Then
the algorithm enters the iterative phase which consists of
three steps: Evaluation, Selection and Allocation. The
three steps are executed repeatedly until the stopping
criteria are met. Each step is explained briefly below
(Sait and Youssef, 1999).

Evaluation: In this step the goodness of each element
ei in the population P is evaluated. Goodness is defined
as

gi ¼
Oi

Ci

;

where Oi is the estimate of the optimal cost of the
element ei; and Ci is the actual cost of ei in its current
location. Accordingly, Oi does not change from genera-
tion to generation and is therefore it is computed only
once while Ci has to be recomputed at each call to the
evaluation step. The goodness measure must be strongly
related to the targer objective of the given problem.

Selection: After evaluating goodness of all individuals
in the population, some of them are selected to be
allocated in new locations. The selection is based on a
selection function Fs which has two parameters: good-

ness gi and selection bias B. Values of B are recom-
mended to be in the range of [�1:0.1]. In many cases a
value of B ¼ 0 would also be a reasonable choice. The
higher the goodness of the element, the more likely that
it will not be selected and hence higher is the probability
of the element to remain in its current location.

Allocation: In the Allocation step, locations of selected
elements in S are altered according to a problem-specific
allocation function FA: The allocation function may be a
non-deterministic function which involves a choice
among a number of alternative moves for each
element.The order and type of of alteration of elements
is problem specific. This is why, in many cases, Sorting

step is important to achieve better solutions. Since the
goodness of the elements are so tightly coupled with the
target objective, superior alterations are supposed to
gradually improve the individual goodnesses. Hence,
Allocation allows the search to progressively converge
towards an optimal configuration where each element is
optimally located (Sait and Youssef 1999).

6.2. Evolutionary tabu search

In our approach to applying TS to COP, we used the
two functions Evaluation and Selection of SE as an
alternative stochastic method for generating moves.
Each function is formulated for COP as follows:

Evaluation: Let A= (g1; g2;y , gn) where each gi

satisfies the fanout load constraint CL > CX : For each
gi in A; we compute DDi which is gain delay due to

S.M. Sait, M.M. Zahra / Engineering Applications of Artificial Intelligence 15 (2002) 357–368 363

changing gate i implementation from CMOS to
BiCMOS, that is

DDi ¼ Dc
gi
� Db

gi
:

This computation is done only once. In this case

Oi ¼ DDi: ð16Þ

Let T be the current delay of the circuit and T 0
i be the

delay of the circuits after swapping gate i: Then the
actual circuit delay gain (cost) is

Ci ¼ T 0
i � T : ð17Þ

Let Gi be the goodness of gate i: Since COP is a
maximization problem, then the goodness function
should be derived in such a way as to relate that if the
gate goodness is high, its fitness should also be high so
that the gate will most likely not get swapped. Therefore
Gi is defined as follows:

Gi ¼ 1� 0:5 1þ
Ci

Oi

� �
: ð18Þ

For example, if swapping gate i from CMOS to
BiCMOS produces maximum gain in the circuit delay,
then Ci ¼ Oi resulting in Gi to be 0: In this case, gate i is
not in its optimal state and it needs to be swapped.
Using the above equations and definitions, the evalua-
tion step of SE can be applied as follows:

FOR EACH giAA DO

Ci ¼ T 0
i � T

Gi ¼ 1� 0:5ð1þ Ci

Oi
Þ

END FOR EACH

Selection: After computing the goodness of all gains
in A; we select from A a subset R of size N for the
purpose of generating N moves. The selection of those
gates is made as follows:

REPEAT

select gate gi randomly;
generate a Random number between ‘‘0’’ and ‘‘1’’;
IF RandompMinð1; 1 � Gi þ BÞ THEN R ¼ R,gi;
ENDIF;

UNTIL jRj ¼ N;

The bias B is used only when gi is already BiCMOS
and needs to be swapped to CMOS. This is because
when a low goodness CMOS gate is swapped to
BiCMOS, its goodness becomes high. Therefore, in
order for a gate gi to be re-selected as a mechanism to
escape from the trap of local optima, the bias B is used
to maximize the gate’s re-selection probability. Since the
value of B is problem dependent, we experimented with
different values. The expected advantage of generating
moves based on SE approach is that the search will be
biased to drift towards better solutions faster than

generating moves randomly. However, the evaluation
and selection steps are done during every iteration which
means that each iteration in this approach takes much
more time than the iteration in the classical approach.
Therefore, SE based approach usually takes longer time
than the classical approach. Comparision of these two
techniques is carried out in the next section.

7. Results and discussion

The approach described in this paper has been tested
on several ISCAS-85 benchmark circuits. For the nine
ISCAS-85 circuits used, the percentage of false paths
reported ranged from 0 to 24%. Note that these are false
paths from among the critical paths. In all but one case
the maximum delay of the circuit did not change due to
removal of false paths, but the number of gates on the
sensitizable paths was reduced. For Classical TS,
experiments with short term and long term components
were conducted to observe the behavior of TS in both
cases. In addition, two aspiration criteria (AS1 and AS2)
were experimented with. For SE based Evolutionary TS,
experiments with long-term components were conducted
and the results compared with Classical TS.
For all experiments, we used capacitance threshold to

be 10% of total capacitance, the required reduction in
the delay to be 30%. The tabu list size is an important
parameter in TS. If the size is too small, the search will
start cycling, and if it is too large, the search will be too
restrictive. We experimented with several list sizes,
ranging from 4 to 12. List sizes between 5 and 7
achieved best results in nearly all the benchmarks used.
Another parameter affecting the search process is the
candidate list size. We experimented with several list
sizes, ranging from 10 and 20 and found that the list
sizes between 16 to 20 achieved best results.
All tools are developed in C and run on SUN SPARC

workstations.
Table 1 shows the results obtained by applying long-

term memory component with customary aspiration
criterion, AS1: The number of BiCMOS gates required
to speed up circuits using the presented approach is a
very small percentage of the total number of gates. For
medium to large sized circuits (greater than 200 gates)
this number is less than 5%. For most circuits tested, a
percentage delay reduction between 15% and 29.4% has
been achieved with capacitance increase of less than 7%.
Table 2 shows the best results obtained by applying

long term memory TS with AS2: If we compare the
results of TS using AS1 with those of TS using AS2; we
find that TS with AS2 performs better than TS with AS1

for the circuits c6288, highway, and fract, while it
generates almost the same results as TS with AS1 for the
other circuits. In the case of ‘‘fract’’, the delay reduction
objective has been achieved which means that the run

S.M. Sait, M.M. Zahra / Engineering Applications of Artificial Intelligence 15 (2002) 357–368364

time (2000 iterations) is enough to reach the stated
objectives. Let us look at the AS2 to explain why TS
with AS2 produces better results. Using AS2; a move e is
accepted if it is tabu and both e and its reverse move %e

are improving or both are non-improving. This means
that the solution tries to follow a certain direction to
seek a better solution than the current one. By following
a certain direction during the search, TS tries to climb
the hill to escape from local optima. Of course for some
cases, TS with AS2 does not produce better results than
TS with AS1 because the TS algorithm is nondetermi-
nistic, hence several runs have to be conducted to get the
best result.

Table 3 summarizes the best results obtained
by applying long-term ETS. Comparing these
results with that of CTS (Table 1), it is seen that ETS
performs better than CTS in four cases; namely in
c880,c1355, struct and fract. On the other hand, CTS
produced better results than ETS in case of c432, c449,
c6288 and highway while both strategies produced the
same results in case of c3540. This reflects the fact that
ETS could generate better results as it selects and
replaces only those gates which have a low fitness; i.e.,
those that are good to replace. However it may get
trapped in a local optimum sometimes as is clear from
some results that are worse than those of random

Table 1

Best results of long-term memory of TS with AS1

Circuit name Max delay (ns) Delay red. % of delay red. Total cap. (pF) Cap incr. % of cap incr.

c432 171.911 43.342 25.20 109.260 1.478 1.00

c499 65.344 13.357 20.00 101.717 1.384 1.00

c880 125.506 25.212 20.10 215.111 2.122 0.99

c1355 109.860 26.677 24.30 399.564 7.266 1.80

c3540 185.201 48.645 26.30 683.401 1.796 0.26

c6288 657.646 98.103 14.90 1983.395 7.856 0.40

Struct 121.894 26.106 21.40 750.081 2.534 0.34

Highway 32.438 8.815 27.20 15.150 0.762 5.00

Fract 76.575 22.497 29.38 43.405 2.691 6.20

Table 2

Best results of long-term memory of TS with AS2

Circuit name Max delay (ns) Delay red. % of delay red. Total cap. (pF) Cap incr. % of cap incr.

c432 171.911 43.342 25.2 109.260 1.516 1.40

c499 65.344 12.276 18.8 101.717 1.434 1.40

c880 125.506 25.257 20.1 215.111 2.144 1.00

c1355 109.860 26.712 24.3 399.564 7.164 1.80

c3540 185.201 48.645 26.3 683.401 1.796 0.26

c6288 657.646 99.712 15.2 1983.395 7.906 0.40

struct 121.894 26.130 21.4 750.081 2.534 0.34

Highway 32.438 8.542 26.3 15.150 0.762 5.00

Fract 76.575 22.975 30.0 43.405 2.667 6.10

Table 3

Best results of long-term memory of evolutionary TS

Circuit name Max delay (ns) Delay red. % of delay red. Total cap. (pF) Cap incr. % of cap incr.

c432 171.911 43.308 25.2 109.260 1.516 1.40

c499 65.344 12.463 19.0 101.717 1.430 1.40

c880 125.506 25.273 20.1 215.111 2.160 1.00

c1355 109.860 27.016 24.6 399.564 7.228 1.80

c3540 185.201 48.645 26.3 683.401 1.796 0.26

c6288 657.646 71.130 10.8 1983.395 7.902 0.40

Struct 121.894 26.540 21.8 750.081 2.534 0.34

Highway 32.438 8.720 26.9 15.150 0.777 5.10

Fract 76.575 22.976 30.0 43.405 2.675 6.16

S.M. Sait, M.M. Zahra / Engineering Applications of Artificial Intelligence 15 (2002) 357–368 365

generation strategy. Let us explain the reason for this
kind of behavior.
In the selection step of SE, a node i is selected if the

following inequality is satisfied:

RandompMinð1; 1� Gi þ BÞ: ð19Þ

If the goodness Gi is low, the probability of selecting the
node i will be high. According to our goodness function,
if a CMOS gate with low goodness is swapped, its
goodness would increase. Then the probability of re-
selecting this gate again (as a mechanism of TS to escape
from local optima) will be very low. Therefore once the
gates are swapped to BiCMOS, they are unlikely to be
selected again resulting in a local optimal solution. In
order to avoid that, we use the bias B only in case a gate
is BiCMOS so as to increase its selection probability
even if its goodness is high. We experimented with
different values of B from 0.1 to 0.7 with interval of 0.1.
Although some good results are achieved with the values
0.5–0.7 as shown in the table, the use of bias B only is
still not enough to avoid the trap of local optimality.
Therefore, we have to modify our goodness function in
such a way as to enable TS to escape from local
optimality as the CTS does.
As another method of measuring the quality and

performance of ETS versus Classical CTS, Table 4
shows the average delay reduction for benchmark
circuits. For each circuit, both CTS and ETS have been
executed for 2000 iterations for different values of Tabu
list size and candidate list size. Then the average value
has been computed for each. It is obvious that ETS
produces better solutions (i.e., more delay reduction)
than CTS on the average. Hence, to achieve a certain
objective solution, it is better to apply ETS for a few
trials. However, ETS take more time to finish executing
2000 iterations or to achieve objectives than what CTS
takes. There are two reasons behind this. First, the step
of computing the goodness of all nodes for each
iteration in ETS is an expensive step. Second, each
iteration in ETS takes much more time than the time
spent in each iteration in CTS. Let us compare the move
generation step in both approaches to clarify the point.

In CTS, in each iteration N moves are generated by
selecting only N nodes randomly and then the necessary
processing and evaluation is done. In ETS, in order to
generate N moves, we randomly select a node and check
if its goodness satisfies the inequality [refrand] or not. If
the inequality is satisfied, then the node is accepted as
one of the candidates; otherwise another node has to be
selected randomly again and the process is repeated.
Therefore, generating N moves in this case requires
selection of M nodes where MXN: Obviously this step
is more expensive than its equivalent step in CTS.

7.1. Tabu search behavior

To show the behavior of short-term memory and
long-term memory CTS in terms of current solution cost
and the best solution cost, we chose as an example the
results obtained for the circuit c499 at tabu list size = 5
and candidate list size = 14. The combined plot of these
results is shown in Fig. 3.
For both long-term and short-term memory it is seen

that some of the values of solution cost are negative even
though their associated moves are not penalized. This is
because of the fact that at some instances, the current
solution may consist of BiCMOS gates which are not on
the longest paths and their driving CMOS gates are on
the longest paths making the CMOS delay of those gates
greater than their original delay, hence the overall delay
is increased.
From Fig. 3, it is obvious that after small number of

iterations(short term), the algorithm reaches a local
optimal solution cost of around 6.5 and gets trapped at
that level for the rest of running time. Actually we can
also see that when an illegal move is made, the solution
cost is penalized which hardly improves again. The
solution of this trap is to diversify the search as done in
long-term memory TS. As it is clear from the figure that
when the solution hits a local optimum (no change of
best solution for the last 200 iterations), the proposed
diversification strategy drives the search to another
region where the cost of the new solution gets improved.
It is clear that after 409 iterations where the current
solution cost was approximately 4, the diversification

Table 4

Comparison between CTS and ETS in terms of quality and performance

Circuit name CTS ETS

Average delay reduction (ns) Run time (s) Average delay reduction (ns) Run time (s)

c432 42.39 313 42.42 544

c499 7.47 133 7.49 471

c880 23.87 167 24.11 566

c1355 23.82 379 24.47 1578

Highway 7.72 52 7.83 35

Fract 21.44 99 22.72 135

S.M. Sait, M.M. Zahra / Engineering Applications of Artificial Intelligence 15 (2002) 357–368366

produced better solution with cost a little higher than 5.
As diversification is a procedure of long-term memory,
the longer TS runs, the better would be the result. This
fact is clear in the figure where after 1700 iterations,
the solution cost improved from aproximately 7 to
around 8.
To compare the behavior of CTS versus

ETS, both algorithms were applied on the same bench-
mark circuit c499 for identical tabu list size¼ 5 and
candidate list size¼ 14: The data of current cost and best
cost for 2000 iterations have been collected and plotted
in Figs. 4 and 5, respectively. As seen in Fig. 4, ETS
finds good solutions (here, good delay reduction is
around 7 ns.) quickly in a few iterations (around 200)
because it examines small sets of gates having low
goodness. This means that some gates with low good-
ness are swapped to BiCMOS to get better solution.
Then ETS tries to look for any gate with low goodness
to swap. But since most of the gates now have high
goodness, ETS will swap some of these gates producing
worse solutions than before. Therefore it will get
trapped at local optimum solution. On the other hand
CTS requires more number of iterations to find good
solutions because it examines all gates in the critical
paths. However, after finding a good solution (delay
reduction around 6 ns in this case), it continues in
generating good solutions and even better solutions than
those found so far. This is clear from the figure where
ETS produced good solutions with the following

0.0 500.0 1000.0 1500.0 2000.0
of Iterations

 40.0

 30.0

 20.0

 10.0

0.0

10.0

S
ol

ut
io

n
C

os
t

Behavior of Short and Long Term Memory of TS
for c499, T SIZE=5,CAN SIZE=14, diverse after 200 itr.

current cost of LT
best cost of LT
current cost of ST
best cost of ST

D
:2

09

D
:4

09

D
:6

20

D
:8

64

D
:1

06
4

D
:1

26
4

D
:1

46
4

Below :
penalized

D : # diversification
 at iteration

cost of
bad moves

D
:1

66
4

D
:1

86
4

Fig. 3. Comparison between the behavior of short- and long-term

memory TS.

0 500 1000 1500 2000
of Iterations

 40.0

 30.0

 20.0

 10.0

0.0

10.0

S
ol

ut
io

n
C

os
t

Behavior of Classical TS vs. Evolutionary TS in Terms of Current Solution Cost
for c499, T SIZE=5, CAN SIZE=14, diverse every 200 itr.

Current Cost of CTS
Current Cost of ETS

Fig. 4. Comparison between the behavior of classical and evolutionary

TS in terms of current solution cost.

0 500 1000 1500 2000
of Iterations

0.0

2.0

4.0

6.0

8.0

S
ol

ut
io

n
C

os
t

Behavior of Classical TS vs. Evolutionary TS in Terms of Best Solution Cost
for c499, T SIZE=5, CAN SIZE=14, diverse every 200 itr.

Best Cost of ETS
Best Cost of CTS

Fig. 5. Comparison between the behavior of classical and evolutionary

TS in terms of best solution cost.

S.M. Sait, M.M. Zahra / Engineering Applications of Artificial Intelligence 15 (2002) 357–368 367

reduction in the delay: around 5 ns after 500 iterations,
around 6 ns after 700 iterations, around 5 ns after 1200
iterations and around 7.5 ns after 1800 iterations. This
reflects the fact that CTS is capable of escaping from the
local optimum trap. Fig. 5 gives more clearer idea about
the quality of both CTS and ETS. Obviously, ETS
jumps quickly to a good solution and gets stuck there
while CTS gradually produces better solutions as it runs
for more time.
Generally the proposed ETS produces local optimal

solutions. However, it produces better average results as
compared to CTS. Also, ETS takes much longer than
CTS and hence to obtain a certain objective within a few
executions regardless of the time, it may be applied.
In this work, the candidate list of neighboring

solutions is built using both random generation strategy
and the concept of Simulated Evolution. Future work
may include power and area into the optimization
process. This would require a power model for BiCMOS
technology and accurate computation of CMOS and
BiCMOS. Also the possibility of merging ECL with
CMOS or ECL with BiCMOS may be considered.

Acknowledgements

The authors acknowledge the King Fahd University
of Petroleum and Minerals, Dhahran, for support. Also,
the assistance rendered by Mohammad Faheemuddin is
appreciated.

References

Baase, S., 1991. Computer Algorithms: Introduction to Design and

Analysis. Addison-Wesley, Reading, MA.

Baba-Ali, A.R., Bellaouar, A., 1994. An optimization tool for mixed

CMOS/BiCMOS standard cells circuits. Arabian Journal of

Science and Engineering 19 (4B), 883–888.

Benkoski, J., Meersch, E., Claesen, L., De Man, H., 1990. Timing

verification using statically sensitizable paths. IEEE Transaction on

Computer-Aided Design 9 (10), 1073–1083.

Brand, D., Iyengar, V., 1986. Timing analysis using functional

relationships. Proceedings of ICCAD-86, pp. 126–129.

Chen, H., Du, D., 1993. Path sensitization in critical path problem.

IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 12 (2), 196–207.

Chen, H., Du, D., Liu, L., 1993. Critical path selection for

performance optimization. IEEE Transactions on Computer-Aided

Design 12 (2), 185–195.

Du, D. Yen, H., Ghanta, S., 1989. On the general false path problem in

timing analysis. Proceedings of the 26th Design Automation

Conference, pp. 555–560.

Embabi, S., Bellaouar, A., Elmasry, M., 1993. Digital BiCMOS

Integrated Circuit Design. Kluwer Academic Publishers, Dor-

drecht.

Glover, F., 1990. Tabu search: a tutorial. Technical Report, University

of Colorado, November.

Horowitz, E., Sahni, S., 1990. Fundamentals of Computer Algorithms.

Computer Science Press, Rockville, MD.

Huang, S., Parng, T., Shyu, J., 1993. A polynomial-time heuristic

approach to approximate a solution to the false path problem. 30th

ACM/IEEE Design Automation Conference, pp. 118–122.

Hubscher, R., Glover, F., 1994. Applying tabu search with influential

diversification to multiprocessor scheduling. Computers & Opera-

tions Research 21 (8), 877–884.

Laguna, M., Glover, F., 1993. Bandwidth packing: a tabu search

approach. Management Science 39 (4), 492–500.

Lin, S., Marek-Sadowska, M., Kuh, E., 1990. Delay and area

optimization in standard-cell design. Proceedings of the 27th

Design Automation Conference, pp. 349–352.

McGeer, P., Brayton, R., 1989. Efficient algorithm for computing the

longest viable path in a combinational network. 26th ACM/IEEE

Design Automation Conference, pp. 561–573.

Perremans, S., Claesen, L., De ManV, H., 1989. Static timing analysis

of dynamically sensitizable paths. 26th ACM/IEEE Design

Automation Conference, pp. 568–573.

Reeves, C. (Ed.), 1995. Modern Heuristic Techniques for Combina-

torial Problems. Mc-Graw-Hill, Europe.

Kling, R., Banerjee, P., 1987. Esp:a new standard cell placement

package using simulated evolution. Proceedings of the Interna-

tional Design Automation Conference, pp. 60–66.

Roth, J.P., 1966. Diagnosis of automata failures: a calculus and a

method. IBM Journal of Research Development 10 (4), 278–281.

Sait, S.M., Youssef, H., 1999. Iterative computer algorithms and their

applications in engineering. IEEE CS Press.

Yen, S., et al., 1989. Efficient algorithms for extracting the K-most

critical paths in timing analysis. Proceedings of 26th Design

Automation Conference, pp. 649–654.

Youssef, H., Sait, S.M., Al-Farrah, K., 1995. Timing influenced force-

directed floorplanning. European Design Automation Conference

with Euro-VHDL Euro-DAC’95, Brighton, September, pp. 156–

161.

S.M. Sait, M.M. Zahra / Engineering Applications of Artificial Intelligence 15 (2002) 357–368368

	Tabu search based circuit optimization
	Introduction
	The alpha-critical approach
	Description of alpha-critical algorithm

	False path problem
	Optimization of BiCMOS/CMOS VLSI designs
	Problem definition
	Is COP in NP?
	Is COP NP-complete?
	Proposed solution

	TS algorithm
	Diversification and long term memory

	Evolutionary tabu search
	Simulated evolution overview
	Evolutionary tabu search

	Results and discussion
	Tabu search behavior

	Acknowledgements
	References

