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Abstract Combinatorial optimization problems are generally NP hard problems that require large run-times
when solved using iterative heuristics. Parallelization using distributed or shared memory computing clusters
thus becomes a natural choice to speed up the execution times of such problems. In this paper, several parallel
schemes based on an asynchronous multiple-Markov-chain (AMMC) model are explored to parallelize simu-
lated annealing (SA), used for solving a multiobjective VLSI cell placement problem. The different parallel
schemes are investigated based on the speedups and solution qualities achieved on an inexpensive cluster of
workstations. The problem requires the optimization of conflicting objectives (interconnect wire-length, power
dissipation, and timing performance), and fuzzy logic is used to integrate the costs of these objectives. The goal
is to develop effective AMMC-based parallel SA schemes to achieve near linear speedups while maintaining
or achieving higher solution qualities in less time and to analyze these parallel schemes against the common
critical performance factors.

Keywords Asynchronous MMC · Parallel SA schemes · Multiobjective cell placement ·
Cluster-of-workstations

S. M. Sait (B) · A. M. Zaidi · M. I. Ali · K. S. Khan · S. Syed
College of Computer Sciences and Engineering, King Fahd University of Petroleum & Minerals,
Dhahran 31261, Saudi Arabia
E-mail: sadiq@kfupm.edu.sa

A. M. Zaidi
E-mail: alizaidi@kfupm.edu.sa

M. I. Ali
E-mail: miali@kfupm.edu.sa

K. S. Khan
E-mail: khawar@kfupm.edu.sa

S. Syed
E-mail: sanaulla@kfupm.edu.sa

123

Author's personal copy



260 Arab J Sci Eng (2011) 36:259–278

1 Introduction

There is a growing need for obtaining useful/acceptable solutions for combinatorial optimization problems
in numerous areas of research and industry. Consequently, there is considerable interest in utilizing iterative
stochastic heuristics like simulated annealing (SA) that are capable of delivering acceptable or near-optimal
solutions to these problems with reasonable run times [1]. This is especially true with the often conflicting,
multiple objectives that have to be addressed in such problems. However, despite their potential, such heuristics
(simulated annealing in particular) can still have extremely high runtime requirements if very high solution
qualities are required, (or very strong constraints are placed).

One way to adapt iterative techniques such as SA is to solve large problems and traverse larger search
spaces in reasonable time is to parallelize them [2,3], with the eventual goal being to achieve either much
lower run times for same quality solutions, or higher quality solutions in a fixed amount of time. From a
computational point of view, metaheuristics are algorithms from which functional and data parallelism can be
extracted. However, metaheuristics usually operate upon irregular data structures, such as graphs, or upon data
with strong dependencies among different operations and as such remain difficult to parallelize using only
data and functional parallelism [4]. Furthermore, when parallelizing metaheuristics, not only speedups are
important but also the maximum achievable qualities. Therefore, to achieve any benefit from parallelization
requires not only a proper partitioning of the problem for a uniform distribution of computationally intensive
tasks, but more importantly, a thorough and intelligent traversal of a complex search space for achieving good
quality solutions. The tractability of the former issue is largely dependent on parallelizability of both the cost
computation and perturbation functions, while the latter issue requires that the interaction of parallelization
strategy with the intelligence of the heuristic must be considered, as it directly affects the final solution quality
obtainable, and indirectly the runtime due to its effect on algorithms convergence.

Simulated Annealing Parallelization Issues

The simulated annealing algorithm has an inherent sequential nature since each iteration (consisting of three
phases: move, evaluate, decide) depends upon the previous iteration [1,5]. The decision phase determines what
the current solution will be for the start of the next move-evaluate-decide cycle. This inherent sequential nature
makes parallelization of this algorithm a non-trivial task.

Parallel simulated annealing has been the subject of intensive exploration since it was first proposed. Vir-
tually all known methods of parallelization for simulated annealing can be classified into one of two groups:
single Markov-chain and multiple Markov-chain methods [6]. Most single Markov-chain approaches attempt
to exploit parallelism between the three phases. They include move-acceleration, parallel-moves, and spec-
ulative annealing and are generally more suitable for shared-memory environments. Approaches based on
multiple Markov-chains call for the concurrent execution of separate simulated annealing chains with periodic
exchange of solutions [6,7]. This approach is particularly promising since it has the potential to use parallelism
to increase the quality of the solution rather than simply accelerate the algorithm. Theoretically, this approach
is not intended to provide speedups since the same amount of work is being done by each processor as in the
serial version. However, since a higher fitness solution can be reached in the same amount of time, speedup
may be measured as the difference in times taken to achieve the same quality as the serial version. Multiple
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Markov-chain-based parallelization is ideally suited for distributed memory systems, considering that the need
for communication between nodes is considerably reduced.

In our work, we attempt to solve the multiobjective VLSI standard cell placement problem. We experiment
with different versions of the asynchronous multiple-Markov-chain parallel SA (or AMMC PSA) approach
described in [6], as this scheme has been found to be well suited for solving this problem in a distributed-
memory environment [7]. Our goal is to develop parallel SA implementations that:

1. solve a VLSI standard cell placement problem with multiple, potentially conflicting objectives.
2. are suited for an inexpensive, cluster-of-workstations environment, as opposed to specialized HPC solu-

tions like those utilized in the majority of prior work.
3. can achieve (a) improved quality solutions with runtimes equivalent to the serial algorithm, and/or (b)

near-linear speedups without compromising final solution quality.

The contributions of this work are highlighted briefly in [8]. This paper presents the comprehensive explanation
behind each contribution as well as the detailed discussion and analysis of results with respect to the common
critical performance factors discussed in Sect. 5.

2 SA Parallelization Strategies in Literature

Several studies of parallelization strategies for metaheuristics in general have been reported in literature [3,9].
For our discussion, we use the classification proposed by Toulouse and Crainic [9], which broadly classifies
all types of attempted techniques according to how parallel nature is exploited. The three categories of parallel
strategies for heuristics are identified as:

1. Low-level parallelization (Type 1): The operations within an iteration of the solution method can be par-
allelized. Such methods seek to divide the computational workload for each iteration across multiple
processors, and as a consequence, leave the algorithm characteristics unaffected.

2. Parallelization by domain decomposition (Type 2): The search space (problem domain) is divided and
assigned to different processors. For trajectory-based methods such as simulated evolution, stochastic
evolution and simulated annealing, this may involve the partitioning of the solution across available pro-
cessors so that multiple perturbations/moves may be performed on the solution in each iteration, instead
of a single move. This usually implies a conspicuous departure from the functionality and characteristics
of the serial algorithm.

3. Multithreaded or parallel search (Type 3): Parallelism is implemented as a multiple concurrent explora-
tion of the solution space using search threads with various degrees of synchronization or information
exchange. Such approaches are increasingly proving their worth. These methods allow for increasing the
variety of the search threads particularly by having different types of searches—same method with differ-
ent parameter settings or even different metaheuristics proceeding concurrently. Thus, a more thorough
exploration of the solution space of a given problem instance becomes possible. As an additional benefit,
multithreaded methods appear more robust than their sequential counterparts relative to the differences in
problem types and characteristics. Such approaches also offer a relatively easy way to harness the simple
and cost effective parallelism provided by an inexpensive network-of-workstations parallel environment.

In this section we discuss several notable parallelization approaches attempted for simulated annealing
in literature, as well as identify where each approach fits in the above classification. We also identify the
pitfalls as well as the potential associated with each technique with respect to our specific problem instance
and parallelization environment.

2.1 Move Acceleration

Several efforts to determine and exploit parallelism have focused on move computation, as this is a fundamental
component performed numerous times during each annealing run. The underlying idea is to partition different,
non-interacting portions of the move evaluation task across several processors in parallel. Each individual move
is evaluated faster by breaking up the overall task into subtasks such as selecting a feasible move, evaluating
the cost changes, deciding to accept or reject, and perhaps updating a global database. Concurrency is obtained
by delegating these individual subtasks to different processors.
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Such a strategy, referred to as move-acceleration or move-decomposition is an example of the Type 1, or
low-level parallelization mentioned earlier. It involves a close interaction between processors, and has less
potential for parallelism in terms of the amount of parallel work performed and the number of processors that
can be employed. Such methodologies are largely restricted to shared memory architectures [7] and preserve
all the properties of the serial algorithm. Kravitz and Rutenbar [10] implemented this parallel SA method for
cell placement on a shared memory multiprocessor, achieving a speedup of two on four processors.

2.2 Parallel Moves

An example of the Type 2 or domain decomposition parallelization scheme is the parallel moves strategy. In
this method, moves are computed independently and in parallel by several processors. Since the global system
state is partitioned across the processors, the independent computation and subsequent state update of inter-
acting moves causes the locally held view of the global system state in each processor to become inconsistent
with the local views in other processors. Consequently, errors are introduced in move evaluation. The impact
of such errors may be kept at a minimum through frequent exchanges of state-update information between
processors. However, this approach implies significantly increased inter-processor communication, thereby
restricting its application in a cluster-of-workstations environment.

One method to circumvent this problem is to accept a single move from among the set of interacting moves
computed in parallel, and discard the rest. This method ensures that no errors are introduced in move evaluation
although it is not very efficient. Allowing errors in parallel moves calls for techniques to control their effect on
annealing. However, it has been observed that simulated annealing is largely error tolerant and the introduction
of a limited amount of error does not drastically affect the convergence properties of the algorithm [11].

Several methods to control the error have been proposed, while in other methods, the algorithm is allowed
to proceed with error though occasionally local views of the global state are synchronized across all the proces-
sors. Such parallel moves techniques in which error is introduced in a controlled manner create opportunities for
exploiting coarse-grained parallelism, and show a greater potential for faster execution. It, therefore, becomes
very important to understand the nature of these errors and their effect on the quality of the resulting solutions
[11,12].

Kravitz and Rutenbar [10] implemented this approach on a shared memory multiprocessor, achieving a
speedup of 3.5 on four processors. Banerjee et al. [13] used this approach for standard-cell placement on an
iPSC/2 hypercube multiprocessor and proposed several geographical partitioning strategies for the problem
specific to the hypercube topology. Speedups of twelve on sixteen processors were reported. Casotto et al. [14]
worked on speeding up simulated annealing for the placement of macrocells, and achieved speedups of 6 using
eight processors using this approach on a shared memory multiprocessor. Sun and Sechen [15] have shown
results achieving near linear speedup on a network of workstations, also using this approach. Chandy and
Bannerjee [7] implemented this method for standard cell placement on both a shared-memory Sun 4/690MP
as well as a distributed-memory Intel iPSC/860, with the former exhibiting a speedup of approximately two
on four processors, and the latter achieving a maximum speedup of 3.75 on eight processors. It is important to
note at this point that virtually all of the parallel methods listed above exhibited degradation of final solution
quality as more processors were added.

2.3 Speculative Execution

Speculative computation attempts to predict the execution behavior of the simulated annealing schedule by
speculatively executing future moves on parallel nodes. The speedup is limited to the inverse of the acceptance
rate, but being a form of Type 1 parallelization scheme, it does have the advantage of retaining the exact
execution profile of the sequential algorithm, and thus the convergence characteristics are maintained.

A sequential simulated annealing schedule is simply a series of move proposals intended to reduce some
cost function as related to the particular problem. Each move consists of three parts—the proposal or pertur-
bation, evaluation, and decision. Only after these three parts are completed is the next move started. Since the
decision made by the next move is dependent on the current state as determined by prior moves, simulated
annealing is almost inherently serial in nature. Consider the decision tree of moves in Fig. 1a. The top node
represents a move attempted in a simulated annealing process. There are two possible decisions as a result of
this move—acceptance or rejection. Speculative computation will assign two different processors to specula-
tively work on the two possibilities before the parent move has completed. The reject-processor can start at
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Fig. 1 a Possible decision tree for speculative parallel SA. b Decision trees at low-temperature and high-temperature regions

the same time as the parent, since it will assume that the state has not changed. After the parent has completed
the move proposal, it can then relay the new state to the accept-processor.

As the acceptance characteristics of the procedure varies, the shape of the tree can also change. For exam-
ple, if the acceptance rate is high, it would make sense to generate a linear tree of only acceptance nodes. On
the other hand, a very low acceptance rate would imply the creation of only rejection nodes (see Fig. 1b).

Speculative computation seems to be a promising avenue for achieving at least some speedup in the high
temperature region. However, the work done by Chandy et al. shows that particularly for the standard cell
placement problem, speculative execution SA succumbs to a very high overhead and thus is not a feasible
option [7].

2.4 Multiple Markov-Chains

Multiple Markov-chains call for the concurrent execution of separate simulated annealing chains with periodic
exchange of solutions [6]. This approach is particularly promising since it has the potential to use parallelism
to increase the quality of the solution. All implementations based on this scheme fall under the Type 3 category
of parallelization.

Non-Interacting Scheme

The algorithm can be understood if the sequential simulated annealing procedure is considered as a search path
where moves are proposed and either accepted or rejected depending on particular cost evaluations and also a
starting random seed. The search path is essentially a Markov-chain, and parallelization is accomplished by
initiating different chains (using different seeds) on each processor. Each chain then explores the entire search
space by independently performing the perturbation, evaluation, and decision steps. After each processor has
completed the annealing schedule, the solutions are compared and the best is selected.

This differs from parallel moves in that each chain is allowed to perform moves on the entire set of cells
and not just a subset. Of course, there is no speedup in this approach since each processor is individually
performing the same amount of work as the sequential algorithm. To achieve speedup, we must reduce the
number of moves evaluated in each chain by a factor of 1/p where p is the number of processors. Since the
number of moves determines the runtime of the program, a reduction by a factor of 1/p will cause a speedup
of p. Obviously, such a reduction alone is not appropriate since the quality will likely decrease accordingly. To
take advantage of the fact that multiple processors are being used, some means of interaction or information
exchange between the various chains is necessary [7].

Periodic Exchange Scheme: Synchronous MMC

In this scheme, processing elements (PEs) exchange local information including the intermediate solutions
and their costs after a fixed time period. Then, each PE restarts from the best of the intermediate solutions.
Compared to the non-interacting scheme, a communication overhead in this periodic exchange scheme would
be introduced. However, each PE can utilize the information from other nodes, thereby reducing unproduc-
tive computations and idle time. With such communication, these independent multiple Markov-chains can
collectively converge to a better solution.
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Dynamic Exchange Scheme and the Asynchronous MMC Method

The statistical data collected during execution may be utilized to adaptively control the SA process in each Mar-
kov-chain to further reduce the execution time. For example, the acceptance rate which is closely related to the
annealing state can control communication instances. The periodic exchanges that were discussed earlier may
introduce unnecessary and untimely communication, thereby wasting time. Moreover, an intermediate solution
derived at an insufficiently cooled state can hamper the convergence of other communicating Markov-chains.

Soo-Young and Kyung proposed an asynchronous MMC model, which adaptively determines when infor-
mation is to be exchanged [6]. Communication is permitted based on satisfying certain conditions. First, a
certain period of time has to elapse, to allow each PE sufficient independent annealing. Second, these working
nodes exchange information only when necessary, rather than at a fixed schedule, e.g., when other PEs have
arrived at a significantly better solution. In this way, these processing elements can more efficiently guide each
other to a higher quality solution. This is known as the dynamic exchange scheme, and is an asynchronous
MMC model.

In order to further improve the performance, asynchronous communication can be centralized by having
PEs access a global state repository to reduce overhead and idle time. Each of these processing nodes follows
a separate search path and whenever they complete their individual annealing run, they access a global state
which consists of the current best solution and its cost. Using this method of managed communication, overhead
time can be further reduced substantially. However, an additional master node that holds and communicates
the global state is required.

The master PE does not perform any computation. When a working node has completed an iteration, it
sends its solution metric to the master and requests the best solution available. The master PE, on receipt of
this request, will determine if the received solution is better than its local “best”. If it is, the master will ask the
requestor to send back its state. The requestor would then do so, and continue with the next set of iterations.
If instead, the master determines that the local best solution is better than the one received then it would send
this current best state to the requesting node. At the cost of dedicating an extra processor for “master” usage,
this asynchronous approach can eliminate much of the idle time that was present in earlier schemes.

Chandy and Bannerjee implemented the asynchronous MMC method for solving the standard-cell place-
ment problem on both a shared-memory Sun 4/690MP as well as a distributed-memory Intel iPSC/860. For
the former, a maximum speedup of 2.53 was achieved on four processors, and a maximum speedup of 6.26 on
eight processors for the second machine. Both implementations exhibited a mild degradation of final solution
quality as the number of processors increased.

The rest of this paper is organized as follows. In Sect. 3, a detailed description of our placement optimization
problem and cost functions is provided. Next, Sect. 3.2 we present a brief overview of our experimental setup,
followed by details of the attempted parallelization strategies and their results, in Sect. 4. This is followed by
an analysis of these results in Sect. 5 and finally we conclude in Sect. 6.

3 The Optimization Problem, Cost Functions and Experimental Setup

Our placement optimization problem is of a multiobjective nature with three design objectives namely, inter-
connect wire-length, power consumption, and timing performance (delay). The layout width is taken as a
constraint. In this section, we describe the problem and the cost functions for the three objectives and the
constraint. The aggregate cost of the solution is computed using fuzzy rules.

3.1 Cost Functions

Wire Length Cost

A Steiner tree approximation, which is fast and fairly accurate in estimating the wire length is adopted [16].
To estimate the length of net using this method, a bounding box, which is the smallest rectangle bounding the
net, is found for each net. The average vertical distance Y and horizontal distance X of all cells in the net are
computed from the origin, which is the lower left corner of the bounding box of the net. A central point (X, Y )
is determined at the computed average distances. If X is greater than Y then the vertical line crossing the cen-
tral point is considered as the bisecting line. Otherwise, the horizontal line is considered as the bisecting line.
A Steiner tree approximation of a net is the length of the bisecting line added to the summation of perpendicular
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distances to it from all cells belonging to the net. A Steiner tree approximation is computed for each net and
the summation of all Steiner trees is considered as the interconnection length of the proposed solution.

X =
∑n

i=1 xi

n
, Y =

∑n
i=1 yi

n
, (1)

where n is the number of cells contributing to the current net.

Steiner tree = B +
k∑

j=1

Pj , (2)

where B is the length of the bisecting line, k is the number of cells contributing to the net and Pj is the
perpendicular distance from cell j to the bisecting line.

Interconnection length =
m∑

l=1

Steiner treel , (3)

where m is the number of nets.

Power Cost

In VLSI circuits with well-designed logic gates, the dynamic power consumption contributes the 90% to the
total power consumption [17,18]. Minimizing the dynamic power consumption is among the objectives as
mentioned before. Power consumption pi of a net i in a circuit can be given as:

pi � 1

2
· Ci · V 2

DD · f · Si · β, (4)

where Ci is total capacitance of net i, VDD is the supply voltage, f is the clock frequency, Si is the switching
probability of net i , and β is a technology dependent constant.

Assuming a fix supply voltage and clock frequency, then power dissipation of a cell depends on its capac-
itance and its switching probability. Hence, the above equation reduces to the following:

pi � Ci · Si (5)

The capacitance Ci of cell i is given as:

Ci = C r
i +

∑

j∈Mi

Cg
j , (6)

where Cg
j is the input capacitance of gate j and C r

i is the interconnect capacitance at the output node of cell i .

At the placement phase, only the interconnect capacitance C r
i can be manipulated while Cg

j comes from
the properties of the cell from the library used and is thus independent of placement. Moreover, C r

i depends
on wirelength of net i , so Eq. 5 can be written as:

pi � li · Si (7)

The cost function for estimate of total power consumption in the circuit can be given as:

Costpower =
∑

i∈M

pi =
∑

i∈M

(li · Si ) (8)
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Delay Cost

A digital circuit comprises a collection of paths. A path is a sequence of nets and blocks from a source to a
sink. A source can be an input pad or a memory cell output, and a sink can be an output pad or a memory cell
input. The longest path (critical path) is the dominant factor in deciding the clock frequency of the circuit. A
critical path makes a problem in the design if it has a delay that is larger than the largest allowed delay (period)
according to the clock frequency. Thus, this cost is determined by the delay along the longest path in a circuit.
The delay Tπ of a path π consisting of nets {v1, v2, . . . , vk}, is expressed as:

Tπ =
k−1∑

i=1

(CDi + IDi ), (9)

where CDi is the switching delay of the cell driving net vi and IDi is the interconnect delay of net vi . The overall
circuit delay is equal to Tπc , where πc is the longest path in the layout (most critical path). The placement
phase affects IDi because CDi is technology dependent parameter and is independent of placement. Using the
RC delay model, one obtains IDi :

IDi = (LFi + Rr
i ) × Ci , (10)

where LFi is a load factor of the driving block, that is independent of layout, Rr
i is the interconnect resistance

of net vi and Ci is the load capacitance of cell i given in Eq. 6.
The delay cost function can be written as:

Costdelay = max{Tπ } (11)

Width Cost

Width cost is given by the maximum of all the row widths in the layout. We have constrained layout width not
to exceed a certain positive ratio α to the average row width wavg, where wavg is the minimum possible layout
width obtained by dividing the total width of all the cells in the layout by the number of rows in the layout.
Formally, we can express width constraint as below:

Width − wavg ≤ α × wavg (12)

Fuzzy Aggregate Cost Function

We used fuzzy logic for designing an aggregating cost function, allowing us to describe the objectives in terms
of linguistic variables. Then, fuzzy rules are used to find the overall cost of a placement solution. The following
fuzzy rule is used:

Rule 1: IF a solution has SMALL wire length AND LOW power consumption AND SHORT delay THEN it
is a GOOD solution.

The above rule is translated to and-like OWA fuzzy operator [19] and the membership μ(x) of a solution
x in fuzzy set GOOD solution is given as:

μ(x) =
{

β · min j=p,d,l{μ j (x)} + (1 − β) · 1
3

∑
j=p,d,l μ j (x); if Width − wavg ≤ α · wavg,

0; otherwise.
(13)

Here μ j (x) for j = p, d, l, width are the membership values in the fuzzy sets LOW power consumption,
SHORT delay, and SMALL wire length, respectively. β is the constant in the range [0, 1]. The solution that
results in maximum value of μ(x) is reported as the best solution found by the search heuristic. The member-
ship functions for fuzzy sets LOW power consumption, SHORT delay, and SMALL wire length are shown in
Fig. 2.
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Fig. 2 Membership functions

3.2 Experimental Setup

The experimental setup consists of a dedicated, homogenous cluster of 8 × 2 GHz Pentium-4 machines, and
256 MB of memory. These machines are connected by 1Gbit/s ethernet switch. Operating system used is
Redhat Linux 7.3 (kernel 2.4.7-10). The algorithms were implemented in C/C++, using MPICH ver. 1.2.4. In
terms of GFlops, the maximum performance of the cluster was found to be 1.6 GFlops using NAS Parallel
Benchmarks (NAS’s LU, Class A, for 8 processors). Using this same benchmark for a single processor, one
finds the performance of a single machine to be 0.3 GFlops. The maximum bandwidth that was achieved using
PMB was 91.12 Mbits/s, with an average latency of 68.69 µs per message.

In the following section, we present a discussion of each attempted strategy along with its associated results
and speedup characteristics. A comparison and discussion of the different strategies is provided in the Sects. 4
and 5. ISCAS-89 circuits are used as performance benchmarks for evaluating the parallel strategies. In the
results tables below, the target solution quality listed for each benchmark is the lowest common value achieved
by all the experimental runs for that benchmark. When generating the results for each of the parallel strategies,
at least five runs were made for each circuit and number of processors. The median value of time from each set
of five runs is reported. All the runs for a given benchmark circuit had the same initial solution, but different
seed values to initialize the pseudo-random number generator.

4 Attempted Parallelization Strategies

Based on the literature studied, it can be concluded that the most promising scheme for parallelization of sim-
ulated annealing in our inexpensive distributed memory environment is the asynchronous MMC model [6,7].
We developed and experimented with several variations of this Type 3 parallel search approach. The primary
goals of these experiments were to explore the potential for improvements in both runtime and achievable
solution quality by making the most effective utilization of the parallel environment. Each successive parallel
strategy attempts to incrementally build upon the knowledge gathered from the previous schemes in order to
improve upon their characteristics in terms of runtime and solution quality.

The basic structure of our AMMC PSA implementation is given in Fig. 3 below. On each available pro-
cessing element, an SA operation is initiated with the same starting solution, but with different seeds for
pseudo-randomization. The specifications of our AMMC parallel search implementation of SA are given
below:

1. The information exchanged The entire recent best solution is communicated to slave processes.
2. Connection topology The parallel processes communicate via a central solution storage area, where the

best solution found so far is kept. The master process is reserved for this purpose.
3. Communication mode Communication is asynchronous. Thus communication time is minimized since

there are no synchronization barriers. Each process communicates with the master independently and
compares its own best solution with the solution residing at the master. If the master owns the better solu-
tion, the slave starts its next Metropolis loop with this solution, while the master’s copy remains unchanged.
Conversely, if the slave has the better solution, it continues its work after the master has received this latest
best solution, which is then available for comparison by the other slave processes.
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Algorithm Parallel Simulated Annealing(

Notation

(* is the initial solution. *)

(* is the best solution. *)

(* is the initial temperature. *)

(* is the cooling rate. *)

(* a constant.Gradually increases the time spent in Annealing as the temperature is lowered. *)

(* is the time until next parameter update. *)

(* is the total allowed time for the annealing process. *)

(* is rank of current process;0 for master,!0 for slaves. *)

(* is the total number of running processes. *)

Begin

T = T0; // Temperature initialized

CurS = S0; // only master has the initial Solution

BestS = CurS; // Initially Current Solution is the Best Solution

CurCost = Cost(CurS); // Calculate cost of Current Solution

BestCost = Cost(BestS); // Calculate cost of Best Solution

Time = 0;

If (my rank == 0) // i.e. Master process

Broadcast(CurS); // Broadcast Current solution to all slaves

Endif

(a)

If (my rank ! = 0) // i.e. Slave process

Repeat

Call Metropolis(CurS, CurCost, BestS, BestCost, T, M);

Time = Time + M;

T = T;

M = M;

Send to Master(BestCost); // All slaves send new best costs to master

Receive frm Master(verdict); // Master sends the verdict on if it has the better solution or slave has

If (verdict == 1)

Send to Master (BestS); // Send the better solution to Master

Else

Receive frm Master(BestS); // Receive the better solution from Master

EndIf

Until (Time Maxtime);

EndIf

If (my rank == 0) // i.e. Master process

Repeat

Receive frm Slave(BestCost); // Waiting for the slave to send best costs

Send to Slave(verdict); // Sending verdict on if Master has the better solution or slave has

If (verdict == 1)

Receive frm Slave(BestS); // Receive the better solution from Slave

Else

Send to Slave (BestS); // Send the better solution to Slave

EndIf

Until (All Slaves are done);

Return(BestS);

EndIf

End. (*Parallel Simulated Annealing*)

(b)

Fig. 3 a Procedure for parallel simulated annealing using asynchronous MMC. b Metropolis criterion
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Table 1 Results for Strategy 1

Circuit name # of cells μ(s) SA Serial SA time Time for parallel SA Strategy 1

p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

s1196 561 0.675340 190 145.98 130.95 110.31 96.98 98.24 94.89
s1238 540 0.699469 212 183.91 130.32 127.55 117.12 114.66 111.58
s1488 667 0.650381 275 151.46 118.44 112.59 98.94 94.04 92.65
s1494 661 0.647920 214 131.40 116.27 101.89 98.13 92.26 89.10

Strategy 1 Speedup vs Number of Processors
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Fig. 4 Speedup versus number of machines for parallel SA AMMC Strategy 1

4. Time to exchange information Each process works on a recent best solution retrieved from the central store
for the duration of its Metropolis loop.

The above specifications are essentially the same as the Asynchronous MMC scheme described in [7]. We
implement four distinct versions of the asynchronous multiple Markov-chain approach.

4.1 Asynchronous MMC Parallel SA Strategy 1

For Strategy 1, aside from the above points, there is no difference between the serial version and each of the
parallel search processes. This approach is not tuned to provide improved speedup characteristics. Instead, it
has been found to improve solution qualities in a fixed amount of time [6], and our results corroborate this fact.

Table 1 shows the results obtained from experiments with Strategy 1 for the benchmark circuits listed
in column 1. The third column lists the highest quality achieved by the serial version of the algorithm. The
remaining columns list the time taken to achieve the specified quality, with the given number of processors.
Using Strategy 1, we were always able to exceed the quality achieved by the serial version. Figure 4 shows the
speedups achieved by Strategy 1, for the same quality, with different number of processors and for different
circuits. Here we see that speedup achieved using Strategy 1 is sub-linear. Even with eight processors, we are
unable to even achieve a speedup of 3.

4.2 Asynchronous MMC Parallel SA Strategy 2

While Strategy 1 is able to meet and even surpass the qualities achieved by the serial algorithm, its runtime
characteristics leave something to be desired. Strategy 2 is an attempt to provide near linear speedup over the
serial version. This is accomplished by dividing the amount of work done at each of the individual processes
by the total number of processes. Specifically, the number of Metropolis iterations at each process is divided
by the total number of processes.

Table 2 shows the results obtained from experiments with Strategy 2. Unlike the previous table, the third
column here shows the highest common quality that could be achieved by multiple runs of Strategy 2 for every
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Table 2 Results for Strategy 2

Circuit name Number of cells μ(s) SA Serial SA time Time for parallel SA Strategy 2

p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

s1196 561 0.630367 103 44.67 31.32 22.81 18.47 16.46 14.42
s1238 540 0.630573 117 58.03 39.21 26.31 22.31 19.73 15.83
s1488 667 0.582884 101 42.67 25.59 18.77 16.61 15.85 13.88
s1494 661 0.591114 75 51.11 30.79 22.32 15.82 14.9 13.52

Strategy 2 Speedup vs Number of Processors
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Fig. 5 Speedup versus number of machines for parallel SA AMMC Strategy 2

number of processors where fourth column shows the serial SA time, i.e. time taken by serial SA to achieve
this common quality. Comparing with column 3 of Table 1, we can easily note that there is an average drop in
achievable solution quality of approximately 9% with this scheme. Figure 5 shows the speedups achieved by
Strategy 2 as the number of processors is varied. In this case we see that speedup is almost linear.

Similar trends are reported in [7] when their AMMC parallel SA is implemented on the distributed-mem-
ory Intel iPSC/860. Their results are somewhat different in that they only show a 4% average loss in solution
quality instead of 9% for eight processors. However, our speedup characteristics are slightly better: we achieve
an average speedup (over our four benchmark circuits) of 6.84 for eight processors as opposed to their 5.9.
These differences in characteristics may be attributed to the following factors: (a) the cost function used are
different (wire-lengths of nets as opposed to our multiobjective fuzzy cost function), (b) the benchmarks uti-
lized are different (Physical Design Workshop 91 vs. our use of ISCAS 89), and (c) differences in operating
environment (ISC Hypercube vs. our inexpensive cluster of workstations).

4.3 Asynchronous MMC Parallel SA Strategy 3

With Strategy 2, we were able to address the runtime limitations of Strategy 1 in a limited manner. However,
this was achieved only with a 9% reduction in solution quality. We see that although a division of the workload
has a positive impact on runtime, there is an adverse impact on achievable quality. The loss in achievable quality
in Strategy 2 can be understood by looking at how the intelligence of the algorithm is affected by division of
the factor ‘M’. All of the parameters of the cooling schedule were originally optimized for the serial simulated
annealing. Since SA convergence is highly sensitive to the cooling schedule, it is understandable that such a
drastic change to one of its parameters would result in lower quality solutions. The division of ‘M’ reduces
the amount of time each processor spends searching for a better solution in the vicinity of a previous good
solution, resulting in a less thorough parallel search of the neighboring solution space.

In Strategy 3, we attempted to offset the negative impact on algorithmic intelligence by introducing other
enhancements to the parallel algorithm. This was done by implementing different cooling schedules on each
processor in such a way that some of the processors are searching for new solutions in a greedy manner, while
others are still in the high temperature region. We essentially aim to counterbalance the impact of shortened
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Table 3 Results for Strategy 3

Circuit name Number of cells μ(s) SA Serial SA time Time for parallel SA Strategy 3

p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

s1196 561 0.606818 64 38.85 29.03 20.40 18.68 15.41 13.55
s1238 540 0.630573 117 65.36 45.97 26.65 22.65 19.39 18.04
s1488 667 0.582884 101 43.71 21.68 18.46 15.96 14.49 13.29
s1494 661 0.591114 75 42.89 27.95 20.05 17.92 13.86 13.67

Strategy 3 Speedup vs  Number  of  Processors  
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Fig. 6 Speedup versus number of machines for parallel SA AMMC Strategy 3

Markov-chains on achievable quality by making intelligent use of the interaction between chains that occurs
after every Metropolis loop.

This is different from the temperature parallel simulated annealing (TPSA) approach described in [20],
which maintains all the parallel processes at constant but different temperatures. Whereas in Strategy 3, the
values of alpha is different on different processors; thus the rate of temperature change is varied across pro-
cessors. This is because our intended goals are different from those of TPSA. Whereas our primary aim is
to achieve serial-equivalent qualities while achieving near-linear runtimes, the aim of TPSA was primarily to
enhance the robustness of parallel SA, and minimize the amount of effort required in parameter setting.

However, we find that even this proposed enhancement of varying alpha is insufficient to counteract the
impact of divided ‘M’. Our results for Strategy 3, shown in Table 3 and Fig. 6, show no improvement over the
results obtained for Strategy 2—for some circuits (e.g. s1196), there is even a drop in achievable speedup and
quality.

Thus a more insightful and intelligent parallel cooling schedule will be required to achieve the target
qualities.

4.4 Asynchronous MMC Parallel SA Strategy 4: Adaptive Cooling Schedule

From the results of the previous three strategies, it became evident that for parallel SA, if any progress is to
be made towards achieving our goals of near-linear run times with sustained quality, an in depth study of the
impact of parameter M on achievable solution quality is required. To this end, we ran several experiments on
both the serial and parallel (7 processor) versions, keeping all things constant except M , which was divided by
9, 17, 25, and 57, respectively, for each new run. Results of the serial version are given in Fig. 7a, with a close
up of the top-left region of this graph shown in Fig. 7b. The quality versus runtime results for similar runs of
the Type 3 parallel SA on seven processors are given in Fig. 8, with a closeup of the active region given in
Fig. 8b.

From these results, we can see that division of M by a larger number increases the rate at which new
solutions are found initially, but the system stagnates at a lower final solution quality. Intuitively this would
suggest that the M factor should start at a small value, and then should increase as solution quality rises.
However, a balance is necessary: if M increases too fast, runtime is compromised; if M increases too slowly,
achievable solution quality is affected. The key to this dilemma of approximating the appropriate value of M
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Serial Run Characteristics for Different Division Factors
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Fig. 7 Quality versus runtime results for Serial SA, with different values for M

comes from an interesting observation made during these runs: during the steep improvement phase the rate
of improvements to solution quality is constant per Metropolis call—meaning that during the initial phase, the
high rate of climb is primarily due to the short time spent in each Metropolis call.

Based on what we have learned from these experiments, we proposed certain modifications to the cooling
schedule of our basic, serial simulated annealing algorithm. This adaptive cooling schedule, when implemented
for the parallel AMMC scheme, yielded our 4th parallel search SA strategy. A brief description of the adaptive
cooling schedule is given below:

1. For the first 100 or so annealing iterations, an average of the quality improvement per Metropolis function
call accumulates. This average rate of improvement will serve as a threshold that needs to be maintained
per Metropolis function call.

2. Initially, the value of ‘M’ is set to a very small value—the value used in the basic algorithm is divided by
25 to provide the initial M in the adaptive version.

3. After the initial average accumulation iterations, adaptivity is initiated. If rate of improvement drops below
a certain threshold, increase M incrementally, since not enough time is being spent at each temperature
level.

4. If the rate of improvement is constantly more than the threshold value, decrease M , since an unnecessary
amount of time is being spent at the given quality level.

5. The value of the M parameter is not allowed to exceed twice the value used in the original basic version,
until significant stagnation is detected (e.g., no improvement in solution quality for the past 25 Metropolis
calls).

The application of the last condition was found empirically to dramatically improve algorithm runtimes,
without sacrificing final quality achieved.

123

Author's personal copy



Arab J Sci Eng (2011) 36:259–278 273

Parallel Run Characteristics for Different Division Factors
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Fig. 8 Quality versus runtime results for AMMC parallel SA (7 processors), with different values for M

Table 4 Results for adaptive Strategy 4 (Strategy 1 qualities)

Circuit name Number of cells μ(s) SA Serial SA time Time for parallel SA Strategy 4

p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

s1196 561 0.675340 75.4 60.31 47.87 47.34 46.25 42.44 39.89
s1238 540 0.699469 115.9 96.45 84.21 67.59 63.05 53.79 47.68
s1488 667 0.650381 106.6 77.84 70.62 59.92 51.80 43.38 37.28
s1494 661 0.647920 139.7 101.1 77.38 76.68 59.68 50.12 48.44

The runtimes for serial and parallel versions of simulated annealing with the adaptive cooling schedule are
given in Table 4 for the solution qualities achieved by Strategy 1. Table 5 shows the runtimes of the adaptive
serial and parallel schemes for achieving the quality targets set by Strategy 2. As can be seen, both the serial
and parallel runtimes have improved dramatically over Strategy 1, while the parallel runtimes are largely
equivalent to those of Strategy 2.

Furthermore, for all runs and all circuits on any number of processors, Strategy 4 manages to achieve sig-
nificantly higher solution qualities than either Strategy 1 or Strategy 2 before reaching saturation. For instance,
Strategy 4 achieved solution qualities of 0.728082 for circuit s1196 on seven processors, 0.764924 for s1238 on
eight processors, 0.708843 for s1488 on six processors, and 0.704714 for s1494 on eight processors, exhibiting
an approximate solution quality improvement of 9% over the basic serial SA, although requiring much longer
runtimes than the latter.

Note, however, that the speedup characteristics of Strategy 4 are very similar to those of Strategy 1: for the
given quality values, speedup never exceeds 3 (Fig. 9a).
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Table 5 Results for adaptive Strategy 4 (Strategy 2 qualities)

Circuit name Number of cells μ(s) SA Serial SA time Time for parallel SA Strategy 4

p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

s1196 561 0.630367 37.35 23.71 23.24 21.74 20.57 17.95 17.13
s1238 540 0.630573 45.85 33.76 24.52 19.65 23.53 15.03 16.12
s1488 667 0.582884 29.59 21.35 18.26 13.36 13.46 12.84 11.38
s1494 661 0.591114 46.92 27.78 20.09 20.14 17.68 18.16 16.55
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Fig. 9 Speedup characteristics of parallel adaptive simulated annealing (Strategy 4) for solution qualities of a Strategy 1,
b Strategy 2

Even for the lower qualities achieved by Strategy 2, the speedup characteristics of Strategy 4 do not improve,
as seen in Fig. 9b. In fact it is evident from Tables 2 and 5 that for six processors and above, Strategy 2 is often
able to achieve its target solution qualities sooner than Strategy 4, particularly with eight processors.

Overall, our results for this strategy have been quite promising for our environment and problem instance.
It is possible that it could prove equally useful for other problem types and environments, particularly since
this approach is independent of the characteristics of the cost-function, nor does it modify the nature of the
parallel algorithm (i.e. does not affect communication schedule, and all modifications are equally applicable
to the serial version of SA). Exploration of this aspect, however, falls outside the scope of this paper.

5 Discussion and Analysis

For effective parallelization of an iterative heuristic, such that the goals of parallelization are achieved, it is
essential to take into account the interaction of the parallelization scheme with: (1) parallelizability of the
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solution perturbation operation (2) parallelizability of the solution quality/cost computation function (3) char-
acteristics of the parallel environment, and most importantly 4) the intelligence of the heuristic. In this section,
we present an analysis of all the results generated from our parallel SA implementations with respect to the
above factors.

5.1 Cost Computation Function

For the multiobjective VLSI standard-cell placement problem, computation of solution quality involves indi-
vidual computation of overall wire-length, delay, and power metrics, followed by their combination using a
fuzzy operation. Computing this multiobjective cost function requires the most recent state of the solution
to be accurate. As such, partitioning of a single solution over different processes would be infeasible due to
interdependencies between cells in the netlist. This is specially true for delay computation which takes place
on long paths that can span across row boundaries.

The Type 3 parallel search strategies described so far are immune to this issue, since aside from the sparse
solution exchanges, each processing element is undertaking an independent but complete search operation.
This means that the cost computation functions remain undivided and operate on largely distinct solutions on
different processors, and thus give equivalent performance to the serial algorithm. This assessment is verified
from experimental results for all Type 3 versions of parallel SA.

5.2 Parallelization Environment

In our cluster-of-workstations operating environment, it is essential to minimize the amount of communication
in relation to the computation. The periodic, asynchronous communication model used for the Type 3 parallel
strategies ensures that communication delays are minimized (from an algorithmic point of view) and occur
only when necessary, as opposed to the synchronous MMC model that involves barrier synchronization. Thus
the impact of communication delays on the runtime performance of these approaches is minimal. This can
be verified from Fig. 10, which shows the ratio of communication time to computation time for our parallel
SA Strategy 2, when run on seven processors for circuit s1196. The seven rows in Fig. 10 show the process
timeline for seven processors where process ‘0’ is the process indicator for processor ‘0’, i.e. master processor,
and likewise. The red color shows the time spent in MPI communication that is sending, waiting and receiving
the solutions. The green color indicates the application progress on the processor while the black colored lines
connecting all non-zero processes with Process ‘0’ indicate the communication being carried out between
processors. The figure also illustrates the asynchronous nature of inter-processor communication since the
different processors are communicating with master processor at different times.

5.3 Solution Perturbation and Algorithmic Intelligence

The solution perturbation and next-state selection operators are where the intelligence of virtually all sto-
chastic heuristics lies. The solution perturbation operation in SA is inherently sequential and in the chosen
parallelization schemes it is left undivided.

The intelligence of SA lies in its cooling schedule. In Type 3 parallel SA, each independent parallel search
chain periodically starts its search from the best available solution at the time. This, coupled with the ability
of SA to escape local minima, allows the parallel search to be focused around a recent best solution, which
would be the logical place to look for an even better solution. Thus not only does the algorithmic intelligence
remain undivided, it is further enhanced using the asynchronous MMC approach, allowing the achievement
of better solutions in the same or lesser amount of time, as is the case for Strategies 1 and 4.

As for Strategies 2 and 3, we see that although a division of the workload has a positive impact on runtime,
there is an adverse impact on achievable quality. This can be understood by looking at how the intelligence
of the algorithm is affected by such a division (achieved simply by dividing the cooling-schedule parameter
‘M’ by the number of processors). Since SA convergence is highly sensitive to the cooling schedule, it is
understandable that such a drastic change to one of its parameters would result in lower quality solutions.
Division of ‘M’ reduces the amount of time each processor spends searching for a better solution in the vicin-
ity of a previous good solution, resulting in a less thorough parallel search of the neighboring solution space.
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Fig. 10 a Communication versus computation traces for all processors for Type-3 parallel SA. b Ratio of communication to
computation for each processor for Type-3 parallel SA

Even the proposed enhancement of varying other parameters across other processors, as done in Strategy 3, is
insufficient to counteract the impact of dividing the parameter ‘M’.

6 Conclusion

In this paper, we have presented four distinct implementations of AMMC PSA. Strategy 1 provides signifi-
cantly better solution qualities than the serial algorithm, but only modest speedup. Strategies 2 and 3 suffer a
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quality loss of at least 9%, but provide near linear speedups for the achieved qualities. Our best parallel imple-
mentation in terms of both solution quality achievable and runtime was Strategy 4—a new implementation of
simulated annealing utilizing an adaptive cooling schedule.

This cooling schedule was devised after a careful study of the impact of varying M on achievable solution
quality. The adaptive nature of the cooling schedule allows this technique to achieve high quality results in
significantly reduced runtimes, when compared with earlier parallel strategies. However, compared to the
serial version of SA with an adaptive cooling schedule, the speedup benefits of parallelization appear less
significant. They are in fact similar to the runtime characteristics seen between Strategy 1 and the original
Serial SA—achieving the same quality solution in slightly lesser time. The speedup with even eight processors
remains <3.

Our results for the above strategies show that we have been partially successful in achieving our goals.
We succeeded in developing viable parallel simulated annealing implementations for solving a multiobjective
VLSI standard-cell placement on an inexpensive cluster of workstations. We were also able to improve the
solution qualities achieved over the serial algorithm in the same amount of time (Strategies 1 and 4). We were,
however, unable to achieve near-linear speedups without sacrificing final solution quality (Strategies 2 and 3).

Despite this, it should be noted that the speedup-oriented strategies, particularly Strategy 2 may prove use-
ful in scenarios where speedup is a more urgent requirement than solution quality. It is evident from Tables 2
and 5 that if solution quality may be compromised, the runtime characteristics of Strategy 2 can can compete
even with those of Strategy 4 as the number of processors is increased. In fact, for eight processors (at the
lower solution qualities), the former has better runtime results than the latter.

In the future, we aim to explore in greater detail the characteristics of our adaptive cooling schedule. We
believe that this adaptive approach merits further exploration of its applicability to other problem instances
and parallel environments. In addition, we shall also consider other modifications to the cooling schedule of
simulated annealing, such as very-fast simulated re-annealing, simulated quenching, and mean-field annealing,
etc. [21]. In particular, we aim to focus on the suitability of these approaches for parallelization. It is hoped
that a thorough study of these methods will allow us to develop a parallel SA scheme that can provide an
improvement on our speedup characteristics without sacrificing final solution quality.
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