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Abstract. In this paper, we present a parallel tabu search (TS) al-
gorithm for efficient optimization of a constrained multiobjective VLSI
standard cell placement problem. The primary purpose is to acceler-
ate TS algorithm to reach near optimal placement solutions for large
circuits. The proposed technique employs a candidate list partitioning
strategy based on distribution of mutually disjoint set of moves among
the slave processes. The implementation is carried out on a dedicated
cluster of workstations. Experimental results using ISCAS-85/89 bench-
mark circuits illustrating quality and speedup trends are presented. A
comparison of the obtained results is made with the results of a parallel
genetic algorithm (GA) implementation.

1 Introduction and Related Work

General iterative heuristics such as tabu search and genetic algorithms (GAs)
have been widely used to solve numerous hard problems [1]. This interest is
attributed to their generality, ease of implementation, and ability to reach near
optimal solutions by escaping from local minima. However, depending on size of
a problem, such heuristics may have huge runtime requirements. This is also true
for VLSI placement problem of modern industry-size circuits for which, iterative
heuristics require huge run times to reachnear optimal solutions [2, 3].With rapidly
increasing density of VLSI circuits, the run time dilemma of iterative techniques
is aggravating and hence there is a need of accelerating their search process.

One way to adapt iterative techniques to large problems and to efficient
traversing of large search space is their parallelization [4, 5]. An effective paral-
lelization strategy must consider issues such as proper partitioning of the prob-
lem to facilitate uniform distribution of computationally intensive tasks. At the
same time, it should be capable of thorough traversal of the complex search
space. In the subsequent paragraphs, we present a brief review of some earlier
efforts towards parallelization of TS.

A number of parallelization techniques have been reported in literature [6].
A taxonomy of parallel tabu search strategies was given by Crainic et. al [7].
In the most straightforward and widely adopted approach, k tabu search pro-
cesses are spawned and run concurrently on k processors where each processor

O. Gervasi et al. (Eds.): ICCSA 2005, LNCS 3483, pp. 587–595, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



588 M.R. Minhas and S.M. Sait

carries out independent search [6, 8]. Malek et al. suggested linking independent
searches where each slave runs a copy of a serial TS but with different parameter
settings [9]. After specified time intervals, all the slave processes are halted and
the master process selects the overall best solution found so far and broadcasts
it to all the slave processes. Each slave process then restarts its search process
from the best solution it receives from the master.

Another proposed approach is to parallelize search process within an iteration
of TS. In this approach, each process is given the task of exploring a subset of
the neighborhood of the current solution. Here two approaches are followed:
synchronous and asynchronous. In the synchronous approach, various processes
are always working with the same solution but exploring different partitions
of the neighborhood. The master process orchestrates the activities of the slave
processes [8]. In the asynchronous approach, all processes are peer and are usually
not working with the same current solution [6]. Both of these approaches require
that the set of possible moves be partitioned among the available processors so
that each processor can explore a distinct sub-region of the neighborhood.

Some other suggestions for efficient parallelization of TS include partitioning
the search space, or partitioning the problem into smaller sub-problems with
determining the best moves for each sub-problem, and then performing a com-
pound move [6].

Attempts to solve some hard optimization problems have also been reported
in literature. Parallel tabu search algorithms for the vehicle routing problem are
presented in [8, 10]. A massively parallel implementation of tabu search for the
Quadratic Assignment Problem (QAP) is reported in [11]. The parallel algorithm
was implemented on a Connection Machine CM-2 (a massively parallel SIMD
machine). A reduction in runtime per iteration was reported when compared to
some other sequential and parallel implementations [11, 12].

In this paper, we present a parallel TS algorithm for efficient optimization
of a hard optimization problem namely, constrained multiobjective VLSI stan-
dard cell placement. The rest of the paper is organized as follows: The next
section briefly discusses the placement problem and the related cost functions.
In Section 3, some implementation details of the proposed parallel tabu search
algorithm are presented, followed by experimental results and comparisons in
Section 4. Section 5 presents some concluding remarks.

2 The Placement Problem and Cost Functions

We address a multiobjective VLSI standard cell placement problem where the
objectives are optimization of and total wirelength, power consumption, and
timing performance (delay), whereas layout width is considered as a constraint.
Cell placement is one of the intermediate steps in VLSI physical design and is a
generalization of QAP.

The VLSI cell placement problem can be stated as follows [13]: Given a collec-
tion of cells or modules with ports (inputs, outputs, power and ground pins) on
the boundaries, the dimensions of these cells (height, width, etc), and a collection
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Fig. 1. A Typical Standard Cell Layout

of nets (which are sets of ports that are to be wired together), placement prob-
lem consists of finding suitable physical locations for each cell on the layout. By
suitable we mean those locations that minimize given objective functions, sub-
ject to some constraints imposed by the designer, the implementation process,
or layout strategy and the design style.

In this work, we deal with standard cell placement, where all the circuit cells
are constrained to have the same height, while the width of the cell is variable
and depends upon its complexity. A typical standard cell layout is shown in
Figure 1. As can be seen in the figure, cells are arranged in rows with routing
channels between the rows. Due to varying width of cells, row widths may be
unequal depending on the type and number of cells placed in a row. An approx-
imation would be to treat cells as points, but in order to have a more accurate
estimate of wirelength, widths of cells are taken into account. Heights of routing
channels are estimated using the vertical constraint graphs constructed during
the channel routing phase. With this information, a fairly accurate estimate of
power dissipation, delay and total wirelength can be obtained [13]. Next, we
formulate the cost function used in our optimization process.

2.1 Cost Functions

Now we formulate cost functions for our three objectives and for the width con-
straint.

Wirelength Cost: Interconnect wirelength of each net in the circuit is esti-
mated using steiner tree approximation. Total wirelength is computed by adding
all these individual estimates:

Costwire =
∑

i∈M

li (1)

where li is the wirelength estimation for net i and M denotes total number of
nets in circuit.

Power Cost: Power consumption pi of a net i in a circuit can be given as:

pi � Ci · Si (2)
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where Ci is total capacitance of net i, and Si is the switching probability of net
i. Here, Ci depends on wirelength of net i, hence Equation 2 can be written as:

pi � li · Si (3)

The cost function for total power consumption in the circuit can be given as:

Costpower =
∑

i∈M

pi =
∑

i∈M

(li · Si) (4)

Delay Cost: The delay cost is determined by computing delay along the longest
path in a circuit. The delay of any given path is computed as summation of the
delays of all the nets belonging to the path and the switching delays of the cells
driving these nets. Hence, the delay Tπ of a path π consisting of nets {1, 2, ..., k}
is expressed as:

Tπ =
k−1∑

i=1

(CDi + IDi) (5)

where CDi is the switching delay of the cell driving net i and IDi is the inter-
connect delay of net i. The placement phase affects IDi only because CDi is
technology dependent and is hence independent of the placement process. The
cost function for delay of the circuit can be given as:

Costdelay = max{Tπ} (6)

Width Cost: Width cost is given by the maximum of all the row widths in the
layout. We have constrained layout width not to exceed a certain positive ratio
α to the average row width wavg, where wavg is the minimum possible layout
width obtained by dividing the total width of all the cells in the layout by the
number of rows in the layout. We can express width constraint as below:

Width − wavg ≤ α × wavg (7)

2.2 Fuzzification of Multiobjectives

Since we are targeting to optimize three (possibly conflicting) objectives simulta-
neously, we need to formulate an aggregating cost function which can expresses
the costs of the objectives in form of a single quantity. We resorted to using fuzzy
in designing our aggregating cost function. Fuzzy logic allows to describe the ob-
jectives in terms of linguistic variables following which, the membership functions
can be defined. The membership functions for SMALL wirelength, LOW power
consumption, and SHORT delay are same as described in [3]. Finally, fuzzy rules
are used to design the aggregate cost function. In this work, we have used the
following fuzzy rule:

Rule 1: IF a solution has SMALL wirelength AND LOW power consumption
AND SHORT delay THEN it is an GOOD solution.
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The above rule is translated to and-like OWA fuzzy operator [14] and the mem-
bership µ(x) of a solution x in fuzzy set GOOD solution is obtained by:

µ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β · min
j=l,p,d

{µj(x)} + (1 − β) · 1
3

∑
j=l,p,d

µj(x);

if Width − wavg ≤ α · wavg,

0; otherwise.

(8)

Here µj(x) for j = {l, p, d} are the membership values in the fuzzy sets
SMALL wirelength, LOW power consumption, and SHORT delay respectively,
whereas β is a constant in range [0, 1]. A placement solution that results in a
higher value of µ(x) is considered a better solution.

3 Parallel Tabu Search Algorithm for Optimizing VLSI
Placement

The parallel tabu search strategy adopted in this work was engineered after
a careful performance analysis of our sequential TS implementation [3]. The
analysis was performed using some profiling tools (like GNU profiler) to obtain
insight into determining the time consuming operations of the code and the
usage of resources. For the circuits experimented on, it was found that almost
60% to 80% of the total run time was spent on cost computation of the three
objectives and their fuzzification. Furthermore, experiments with parameters
revealed that for our hard optimization problem with conflicting multiobjectives,
large sizes of candidate list (upto 120) were required to obtain high quality
solutions. Since cost computation for all moves in the candidate list was the most
time consuming operation, the proposed algorithm was designed with a view
of partitioning this compute-intensive task. The proposed algorithm employs a
candidate list partitioning strategy based on distribution of mutually disjoint set
of moves among the slave processes. The pseudo code of the master and the slave
processes in the proposed parallel TS are shown in Figures 2 and 3 respectively.

According to taxonomy given by Crainic et. al [7], our approach can be
classified as a synchronous master-slave (one master and remaining slaves), 1-
control (each process is responsible for its search), Rigid Synchronous (RS) (all
processes are forced to establish communication and exchange information at
specific points) and Single Point Single Strategy (SPSS) (all the processes start
with the same initial solution and follow the same strategy).

In this implementation, there is an initialization step during which, the master
process generates and sends an initial solution and a disjoint (non-overlapping)
partial candidate list (PCL) to each slave process. A move in a PCL assigned
to a slave in a particular iteration does not appear in PCLs assigned to other
slaves. Each slave process searches its local neighborhood by trying each move
in the partial candidate list on the initial solution and computes gains due to
them. Then it sends the best move and its corresponding cost (or gain) to the
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Algorithm. MasterProcess;
Begin

(* S0 is the initial solution. *)
(* BestS is the best solution. *)
(* PCL is the Partial Candidate List. *)
(* p is the number of slave processors. *)
(* OBM is the Overall Best Move. *)
Generate S0 and p number of PCLs;

Send S0 and a PCL to each slave process;
While iteration-count < max-iterations

Receive best move and cost from each slave;
Find OBM subject to tabu restrictions;
Generate P number of PCLs;

Send OBM and a PCL to each slave process;
Update BestS; /*by applying OBM on BestS*/;

EndWhile
Return (BestS)

End. /*MasterProcess*/

Fig. 2. The master process in parallel TS

Algorithm. SlaveProcess;
Begin

Receive S0 and a PCL from the master process;
CurS = S0; (* Current Solution *)
While iteration-count < max-iterations

Try each move in PCL and compute cost;
Send the best move and its cost to the master process;
Receive OBM and a PCL from the master process;
Update CurS /* by applying OBM on CurS */;

EndWhile
End. /*SlaveProcess*/

Fig. 3. The slave process in parallel TS

master process. The master process selects the overall best move (OBM) among
the moves it received from slave processes subject to tabu restrictions. Then
in each subsequent iteration, the master process sends the overall best move
and a new partial candidate list to each slave process. Each slave process now
starts by performing the received overall best move so that all the slave processes
start their iteration from the same solution. Each slave process searches its local
neighborhood and sends the best move and its cost to the master process.

4 Experimental Results and Discussions

The experimental setup consists of the a homogeneous cluster of 8 machines
(where 1 machine is always working as a master processor), x86 architecture,
Pentium-4 of 2 GHz clock speed, and 256 MB of memory. These machines are
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connected by 100Mbit/s Ethernet switch. Operating system used in RedHat
Linux 7.3 (kernel 2.4.7-10). The paradigm used for parallelization is MPI (Mes-
sage Passing Interface). Specifically, MPICH (a portable implementation of MPI
standard 1.1) is used in our implementation. In terms of GFlops measure, the
maximum performance of the cluster, with NAS Parallel Benchmarks was found
to be 1.6 GFlops, (using NAS’s LU, Class A, for 8 processors). Using this same
benchmark for a single processor, the individual performance of one machine was
found out to be 0.3 GFlops. The maximum bandwidth that was achieved using
PMB was 91.12 Mbits/sec, with an average latency of 68.69 µsec per message.
ISCAS-85/89 circuits are used as performance benchmarks for evaluating the
proposed parallel TS placement technique. These circuits are of various sizes in
terms of number of cells and paths, and thus offer a variety of test cases.

For comparison purposes, we also implemented a parallel genetic algorithm
(GA) which is a derivative of a standard distributed GA and follows the is-
land model, with independently evolving sub-populations and periodic exchanges
of solutions through migration [15, 16]. A pseudo-diversity approach is taken,
wherein similar solutions are not permitted in the population at any time. This
diversity serves to widen the search, while limiting the possibility of premature
convergence in local minima solution space. The initial population is constructed
at the master process and distributed among N slave processes which start run-
ning serial GA on their allocated population for a predefined number of iterations
called the Migration Frequency (MF ). Then each slave process sends MR (Mi-
gration Rate) number of its best solutions to the master process, which selects
MR overall best solutions and broadcasts them to all slave processes. Each slave
process absorbs the incoming best solutions into its population (if they are not
already found) by replacing the weakest solutions. Each slave process then con-
tinues with the serial GA for another MF iterations. Standard PMX crossover
is used to generate offsprings [1].

The quality of solution obtained and run time required using different number
of processors for both TS and GA are tabulated in Table 1. For each circuit, the
number of cells are given in the table. The ‘µ(s) TS’ and ‘µ(s) GA’ columns
show the aggregate fuzzy membership of solution obtained by TS and by GA
respectively, whereas ‘p’ denotes the number of processors used. It should be
noted that run times shown are for achieving a certain fixed quality.

In case of large circuits, parallel GA was unable to find a reasonable quality
solution even after running for a large amount of time. Even for smaller circuits,
the solution quality obtained using TS is significantly superior to that obtained
using GA, and also the speedup trend is very consistent for TS. On the other
hand, parallel GA did not show such performance or trend.

The proposed parallel TS has shown a consistent trend in terms of speedup
with increasing number of processors. Figure 4 shows a run-time as well as a
speedup plot of parallel TS for some selected large circuits, and demonstrates
an almost linear speedup. As can be seen, there is a consistent decreasing trend
in run time. This trend is more pronounced for medium to large circuits than
for smaller ones and reveals the good scalability of the proposed approach.
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Table 1. Run times and solution quality µ(s) for achieving a target membership for serial

and parallel TS/GA approaches. X indicates unreasonably high run time requirement

Circuit Number µ(s) Time for Time for Parallel TS µ(s) Time for Time for Parallel GA
Name of Cells TS Serial TS p=2 p=3 p=4 p=5 p=6 p=7 GA Serial GA p=3 p=5 p=7
s386 172 0.688 52 28 20 17 16 15 14 0.504 15 9.9 5.7 6.7
s641 433 0.785 934 472 332 239 205 171 151 0.616 793 307 390 289
s832 310 0.644 74 40 33 23 22 20 19 0.479 128 43 37 39
s953 440 0.661 195 98 71 53 46 41 36 0.511 309 136 91 108
s1196 561 0.653 374 187 132 97 88 78 67 0.484 988 327 262 205
s1488 667 0.603 259 131 93 69 63 55 49 0.482 1883 677 435 418
s1494 661 0.601 268 137 96 72 65 57 51 0.496 1405 847 638 479
c3540 1753 0.665 2142 1146 703 547 440 370 344 - X X X X
s3330 1961 0.699 1186 590 451 313 245 210 184 - X X X X
c5378 2993 0.669 1850 914 601 467 371 312 264 - X X X X
s9234 5844 0.631 5571 2855 2006 1525 1272 1062 849 - X X X X
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Fig. 4. (a) Decrease in run times for selected large circuits with increasing number of

processors for parallel TS. (b) Speedup obtained for selected large circuits for parallel TS

5 Conclusions

In this work, we presented a parallel tabu search strategy for accelerating the
solution to a constrained multiobjective VLSI cell placement problem. The pro-
posed strategy belongs to p-control, RS, MPSS class and was implemented on
a dedicated cluster of workstations. A distributed parallel GA was also im-
plemented for the comparison purposes. Experimental results on ISCAS-85/89
benchmarks exhibit that the proposed parallel TS shows an excellent trend in
terms of speedup and requires far lesser run times as compared to serial TS for
obtaining the same quality of placement solutions. When compared with results
obtained by parallel GA, the proposed parallel TS clearly outperforms both in
terms of solution quality as well as run time.
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