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Abstract

This paper applies a simulated evolution (SE) approach to the problem of matching and scheduling dependent tasks in a

heterogeneous suite of computers interconnected via a high-speed network. The various steps of the SE approach are discussed in

details. Goodness functions required by SE are designed and explained. Experimental results applied on various types of workloads

are analyzed. Workloads are characterized according to the connectivity, heterogeneity, and communication-to-cost ratio of the task

graphs representing the application tasks. The performance of SE is compared with a genetic algorithm approach for the same

problem with respect to the quality of solutions generated, and timing requirements of the algorithms.
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1. Introduction

Many scientific applications today can be decom-
posed into tasks that require different types of
computations. These computations maybe classified as
single instruction-multiple data (SIMD) computations,
multiple instruction-multiple data (MIMD) computa-
tions, or special-purpose computations such as fast
fourier transform (FFT), searching, sorting, to name a
few. Single computer architecture cannot usually match
equally well with all of these types of computations. This
fact has led many researchers to look for alternative
computer architectures such as heterogeneous comput-
ing systems (HCS). An HCS consists of a number of
machines that have different architectures, organiza-
tions and sizes, interconnected via a high-speed network.
heterogeneous computing (HC) is then defined as the
well-orchestrated use of an HCS. HC is emerging as a
major paradigm for scientific and high performance
applications to exploit the heterogeneity in computa-
tions (Khokar et al., 1993).

However, in order to run an application efficiently in
an HCS, it is first decomposed into coarse-grained
(large-size) tasks; each task is computationally homo-
geneous and well suited to a single machine in HCS. The
characteristics of tasks and machines are determined
using code-profiling and analytical benchmarking which
are both analytical steps that evaluate the matching of
tasks to individual machines (Chen and Tsai, 1985).
Each task is then matched to the most suitable machine
and scheduled on it. Matching is defined as the assign-
ment of tasks to machines in the HCS whereas
scheduling comprises the ordering of execution of tasks
on each machine. The goal of efficient HC is then to
achieve the minimal execution time of the application
when it is running using the available HCS (Khokar
et al., 1993).
Task matching and scheduling in HC environments is

known to be NP-complete (Braun and Siegel, 1999).
Therefore, various heuristics that attempt to reach near-
optimal solutions to this problem have been proposed in
the literature (Wang et al., 1997; Flan et al., 1997; Braun
and Siegel, 1999; Topcuoglu et al., 1999; Radulescu and
van Gemund, 2000). A good survey of these heuristics is
detailed in Braun and Siegel (1999). Different from the
approaches discussed in the literature, this paper
proposes a simulated evolution (SE) approach for solving
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this problem. SE is a powerful general iterative heuristic
that has been applied to few optimization problems
especially in VLSI design automation (Kling et al., 1987;
Youssef and Sait, 1999; Sait et al., 1999).
In Braun and Siegel (1999), the authors analyze 11

heuristics to the task matching and scheduling problem.
They concluded that a genetic algorithm (GA) approach
‘‘was the best heuristic for most cases’’ for this problem.
In addition to applying an SE approach to this problem,
this paper compares the performance of SE to a GA
approach (Wang et al., 1997), with respect to the quality
of solutions and run time requirement of the algorithms.
The rest of the paper is organized as follows. Section 2

defines the HC model assumed in this work. In Section
3, we introduce briefly SE. Section 4 describes the
implementation of SE to the task matching and
scheduling problem. In Section 5, we present and
analyze experimental results including a comparison
between SE and GA as implemented on this problem.
Section 6 is a conclusion.

2. Problem definition

Different HC models have been used in the literature.
The HC model used in this work is similar to the model
assumed in Wang et al. (1997) and Braun and Siegel
(1999) where the authors applied 11 heuristics to the
task matching and scheduling problem.
An application is decomposed into a set of coarse-

grained tasks Sb={si; 0piok}, each task is computa-
tionally homogeneous and well suited to a single
machine architecture. The application is usually de-
scribed by a directed acyclic graph (DAG) where each
vertex corresponds to a task and the directed edges
between vertices correspond to dependencies between
the tasks. The data items that need to be transferred
between the tasks form a set D ¼ fdi; 0piopg: An HCS
consists of a set of machines M ¼ fmi; 0piolg each of
which is characterized by a specific architecture such as

SIMD, MIMD, special-purpose FFT, etc. An HCS is
described by an undirected graph where vertices
correspond to machines and edges correspond to paths
between machines. For the purpose of this study, it is
assumed that machines are fully connected.
The estimated execution times of the tasks in Sb on

the machines in M are known a priori and are given by
an l � k execution-time matrix E; where Eði; jÞ is the
estimate execution time of task sj on machine mi: The
estimated transfer times of data items between tasks to
be communicated through the HCS network are
described by an lðl � 1Þ=2� p transfer-time matrix Tr;
p represents the number of data items while lðl � 1Þ=2
represents the number of machine pairs in HCS.
Approaches for finding these estimated times using
code-profiling and analytical benchmarking are sur-
veyed in Chen and Tsai (1985). As an example, Fig. 1a
shows a DAG of 7 tasks and 6 data items describing a
scientific application. Fig. 1b shows a graph represent-
ing a two-machine HCS on which the application is to
be executed. The estimation of execution times of the
tasks on both machines are given by the 2� 7 E matrix
shown in Fig. 1c. In Fig. 1d, the 1� 6 Tr matrix gives
the transfer times between m0 and m1 for the data items
d0 to d5:
The task matching and scheduling problem is then

defined as follows. Given is a set of k tasks Sb and a
DAG representing the application, a set of l machines in
HCS, an execution-time matrix E; and a transfer-time
matrix Tr. It is required to match and schedule the k

tasks in Sb on the l machines in M such that the total
execution time of the application task on the HCS is
minimized.

3. Simulated evolution

Kling and Banerjee (1987) proposed SE as a general
iterative heuristic for solving combinatorial optimiza-
tion problems. Since then, it has been used in the
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Fig. 1. A sample HC model.
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optimization of a number of problems in several areas of
engineering (Lin et al., 1989; Ly and Mowchenko, 1993;
Wang et al., 1993; Chen et al., 1995; Rao and
Ramasubrahmanyan, 1996; Sait et al., 1999). The book
by Youssef and Sait (1999) includes a good and
thorough discussion of SE and its relation to other
iterative heuristics such as Simulated Annealing (SA)
and GA.
Sait et al. (1999) fuzzified SE for multi-objective VLSI

cell placement problem. Ly and Mowchenko (1993)
applied SE to the scheduling problem in high-level
synthesis. Kuo et al. (1992) proposed a system for the
automatic synthesis of asynchronous pipelines and used
SE and some other techniques to realize the data path
synthesis. Rao and Ramasubrahmanyan (1996) applied
SE to optimize the coefficients of an FIR digital filter. In
Lin et al. (1989) and Wang et al. (1993), SE has been
used for solving VLSI routing problems. The global
convergence of the SE algorithm using ergodic Markov
chain is established by Mao et al. (1994).
SE starts from an initial solution to the given

problem. Then following an evolution-based approach,
it seeks to reach better solutions from one generation to
the next. The algorithm has three basic steps: Evalua-

tion, Selection and Allocation. These steps are carried
out repetitively until a stopping criterion is satisfied.
The Evaluation step consists of evaluating the good-

ness of each individual ei of the current solution.
Individuals are components of the solution; they are
the movable elements. The goodness measure must be
highly correlated with the overall objective of the
specific problem. It is a number expressible in the range
½0; 1	 and it is defined, for each individual ei; as gi ¼
Oi=Ci; where Oi is an estimate of the optimal cost of
individual ei and Ci is the actual cost of ei in its current
solution. Oi does not change from one generation to the
next, and therefore it is computed for every individual
only once during initialization.
One of the major difficulties in SE is the estimation of

the optimal cost Oi required for gi: Oi is problem specific
and cannot be easily estimated for most combinatorial
optimization problems. It is worth noting here that the
goodness measure is defined for an individual. It is not
the cost of the whole solution. In this paper, we propose
two goodness measures specifically related to the task
matching and scheduling problem in HCS.
During selection step, individuals of the current

solution are divided into two disjoint sets; a selection
set S and a set R of remaining individuals. The decision
whether to include ei in S or R is based solely on the
individual goodness gi: Selected individuals, i.e. indivi-
duals in set S; are passed to the next step for possible
relocation. Usually, it is more likely to improve the
current solution if individuals with lower goodness
measures are relocated from their current location.
Hence, individuals with lower goodness values are more

likely to get selected and assigned to set S: However,
individuals with higher goodness values should also
have a non-zero probability of being selected.

Allocation relocates all individuals in the selected set S

of the current generation to produce a new generation.
It involves making several trial alterations for each
individual before deciding on the final configuration of
the new generation. The goal of allocation is to favor
improvements of quality of the current generation over
the previous generation, without being too greedy. It
allows the search to progressively converge to an
optimal configuration where individuals are optimally
located. The choice of a suitable allocation function is
problem specific. A general outline of SE is given in
Fig. 2.

4. SE for matching and scheduling in HCS

To implement SE, it is necessary first to devise an
efficient goodness measure that computes goodness
values of each individual during the evaluation step of
the algorithm. It is also necessary to develop an
encoding technique that describes the state of the
solution. Then, problem-dependent methods for genera-
tion of an initial solution, evaluation, selection, and
allocation should be designed. Details of all components
needed for the implementation of an SE-based approach

ALGORITHM  Simulated_Evolution

/* Initialization */
For all ei calculate Oi;
Generate an initial solution sol;

Repeat

 /* Apply evaluation, selection and allocation on sol */

 /* Evaluation */
 For all ei Do gi = Oi / Ci;

 /* Selection */
 For all ei Do
  If Selected (ei, B) Then S = S  ∪  {ei}
      Else R = R  ∪  {ei}
 Sort the elements of S;

 /*Allocation */
 For all ei∈  S Do Reallocate (ei);
 Generate new sol;

Until Stopping_Criteria are met;

Return (sol);

End Simulated_Evolution;

Fig. 2. Outline of SE algorithm.
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for matching and scheduling in HCS (MSHC) are
discussed next.

4.1. Encoding technique

A solution to MSHC is encoded using a string of k

segments where k is the number of tasks in the DAG
representing the application to be executed in HCS.
Each segment consists of two parts: a task identifier and
a machine identifier. Pairing a task si with a machine mj

in the same segment means that si is assigned to machine
mj : Obviously, in this type of encoding, we have to
ensure that a string represents a valid solution that
satisfies precedence constraints in the DAG. In our
encoding scheme, if a task sx is placed on the left of a
task sy and both are assigned to the same machine mj

then sx is executed before sy in mj : Therefore, if in the
DAG a task sy depends on a task sx; sx is always placed
to the left of sy in a valid string.
Fig. 3 illustrates this encoding scheme. The string in

the figure represents a valid solution to the HC problem
described in Fig. 1. In Fig. 3, the order of execution of
tasks in each machine is given by m0: s0; s3; s4 and m1:
s1; s2; s5; s6: This ordering means that in machine m0; s0 is
executed first, s3 is executed next, then s4 last. In m1; s1 is
executed first, s2 second, s5 third, then s6 last.

4.2. Generating an initial solution

To generate a valid initial solution, each task in the
DAG is first assigned randomly to a machine in the set
of machines M : Then, the DAG is topologically sorted
[20]. Following the sorted order, which guarantees that
data dependencies are satisfied, the tasks are placed in
successive segments from left to right. This initial valid
string is then modified a random number of times as
follows. A task si is selected and moved randomly to
another segment in the string within its valid range of
positions. The valid range of a task is the set of positions
(segments) where the task can be placed without
violating any data dependencies.

4.3. Evaluation

As discussed in Section 3, the evaluation step
computes the goodness measure gi ¼ Oi=Ci of each
individual ei of the current solution. In the SE-
implementation of MSHC, an individual ei represents
a task si: The location of an individual refers to the

pairing of si with mj (the assignment of task si to
machine mj) and the position of this pair in the string
(the order in which si is executed in machine mj relative
to all tasks assigned to mj). Ci is defined as the finishing
time of task si given the assignment of tasks and the
order of their execution as described in the current
solution. Oi is defined as the finishing time of task si if it
is placed in its optimal location according to a defined
function F : In our research, we have developed two
goodness measures, details of which are described
below.

4.3.1. Goodness measure 1

In this proposed goodness measure, F assigns task si

and all its predecessors to their best-matching machine
with respect to the execution time of the tasks on all
machines. When Oi is calculated, we assume that si and
its predecessors are the only tasks in the DAG
representing the application. It is noted that Oi is only
calculated once at the initialization step of the algo-
rithm.
For example, for the DAG in Fig. 1, the optimal

finishing time of task s4; according to the above function
F ; is its finishing time if it is assigned to machine m1 and
tasks s0 and s1 are both assigned to machine m0: In this
case, O4 ¼ Eð0; 0Þ þ Eð0; 1Þ þ Trð0; 3Þ þ Eð1; 4Þ ¼ 770þ
120þ 35þ 910 ¼ 1835 units, where E is the execution-
time matrix shown in Fig. 1c and Tr is the transfer-time
matrix shown in Fig. 1d. O4 is computed before SE
starts. Assuming that after SE starts, the current
solution is the solution shown in Fig. 2, C4 ¼ Eð0; 0Þþ
Trð0; 0ÞþEð1; 1ÞþTrð0; 1ÞþEð1; 2ÞþTrð0; 4Þ þ Eð0; 3Þþ
Trð0; 3Þ þ Eð0; 4Þ ¼ 3123 units since s0; s3 and s4 are
assigned to m0; and s1 and s2 are assigned to m1:
Therefore g4 for the solution in Fig. 2 using the goodness

measure 1 is equal to 1835/3123=0.588.

4.3.2. Goodness measure 2

In using this goodness measure, F assigns task si and
all its predecessors to the best-matching machine of si

with respect to the execution time. In this case, all
communication costs associated with si and its pre-
decessors become negligible as all of them are allocated
to the same machine. As in goodness measure 1, when
Oi is calculated, we assume that si and its predecessors
are the only tasks in the DAG representing the
application.
For example, for the DAG in Fig. 1, the optimal

finishing time of task s4; according to the above function

s0     m0 s1     m1 s2     m1 s5     m1 s6     m1 s3     m0 s4     m0 

Fig. 3. A valid solution string.
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F ; is its finishing time if it is assigned to machine m1 and
tasks s0 and s1 are also assigned to machine m1: In this
case, O4 ¼ Eð1; 0Þ þ Eð1; 1Þ þ Eð1; 4Þ ¼ 2430 units.
Therefore g4 for the solution in Fig. 2 using goodness

measure 2 is equal to 2430/3123=0.778.

4.4. Selection

During the selection step, at every generation of the
algorithm and for each task si; a random number in the
range ½0; 1	 is generated and compared with (gi þ B),
where gi is the goodness measure of si as defined above
and B is the selection bias. If the generated number is
greater than (gi þ B), then si is selected and assigned to
the selection set S; otherwise it is assigned to R: The
selected tasks are ordered in ascending order according
to their level in the DAG, and are considered for
allocation in the next step in that particular order.
The value of the selection bias B is fixed and preset at

the beginning of the algorithm. It is used to have some
control over the selection process as a tradeoff between
implementing a fast algorithm and having a more
thorough search. In our work, we have used negative
values for B (between �0.1 and �0.3) for small problem
sizes (small number of tasks in DAG) and positive
values (between 0 and 0.1) for large problem sizes. For
smaller DAGs, a negative value of B will force the
selection of relatively large percentage of tasks, hence
allowing for a more thorough search. Since the number
of tasks is small, the time requirement of the algorithm is
not affected. In cases of large DAGs, the value of B is
kept positive to restrict the number of tasks selected in
the selection step. This will keep the time requirement of
the SE algorithm under control, especially during the
allocation step, which is the most time consuming step
of the algorithm.

4.5. Allocation

The allocation step relocates all individuals in the
selected set S: The strategy used in the SE algorithm for
MSHC is constructive. It always chooses the best

location for the task under consideration. The best
location in this case is the location (as defined in Section
4.3) of the task that gives the best valid solution.
First, the valid moving range of the selected task is

determined. Next, all various combinations are tried and
the schedule lengths of corresponding solutions are
computed. A combination consists of placing the task in
a valid segment without violating the data dependency
constraints and assigning it to a machine. Finally, the
task is placed in the segment and assigned to the
machine that results in the best overall schedule length.
This process is tried for every task in the set S and the
output of the allocation step is the next generation.

One important parameter, which has been analyzed
and studied in our SE-implementation, is a parameter
we call Y : Y defines the number of machines to which a
particular task can be assigned, according to its
execution time on all machines in HCS. For example,
if Y is set to 1, each task in the selected set S can be
assigned to only one machine; its best-matching (least
execution time) machine. If Y ¼ 2; then each task can be
assigned to two machines, its best-matching machine
and its next best. This parameter limits the number of
combinations tried in the allocation step and therefore
allows controlling the tradeoff between the time
requirement of the SE algorithm and the quality of the
solution generated.

4.6. Stopping criteria

In our experiments, we have used a fixed number of
iterations (generations) as the stopping criterion. We
have experimented with different values of iterations
and found out that for all workloads tried, SE for
MSHC converges with less than 1000 iterations.

5. Experimental results

To analyze the performance of the SE-based ap-
proach, randomly generated workloads are used. Each
workload corresponds to a DAG representing an
application task, the number of machines in HCS, the
execution-time matrix E; and the transfer-time matrix
Tr. Randomly generated workloads are used since a
generally accepted set of HC benchmarks does not exist
(Wang et al., 1997) and it is also desirable to obtain data
that demonstrates the effectiveness of the approach over
a broad range of conditions. We have conducted
experiments on small (10 tasks and 3 machines) and
large (up to 100 tasks and 20 machines) workloads.
Workloads are further classified according to their

connectivity, heterogeneity and communication-to-cost
ratio (CCR). The level of connectivity in a DAG defines
the number of data items to be transferred between the
tasks. The number of data items is set as
jSb1jpjDjpjSbjjSb1j=2: The lower bound is necessary
for the DAG to be connected while the upper bound is
necessary to generate acyclic DAG. This parameter
classifies workloads as low connectivity (bottom 1

3
of the

specified range), moderate connectivity (middle 1
3
), and

high connectivity (top 1
3
).

Heterogeneity classifies workloads according to the
degree of heterogeneity of tasks. The degree of hetero-
geneity defines the difference in execution times of tasks
on the different machines in the HC system. Three levels
of heterogeneity are used: low heterogeneity which
means that the execution times of a task on the various
machines vary within 710% of a base value, moderate

H. Barada et al. / Engineering Applications of Artificial Intelligence 15 (2002) 491–500 495



heterogeneity (within 730%), and high heterogeneity
(within 750%).
CCR is defined as the ratio of size of data item over

execution time of the task generating this item. CCR
values of 0.1, 0.5 and 1 are used. CCR=0.1 indicates
that the communication cost is low compared to the
computation cost in the DAG. This describes lightly
communicated tasks. CCR=1 indicates that the com-
munication cost is comparable to the computation cost.
This describes heavily communicated tasks.

5.1. Choosing goodness measure

This set of experiments is carried out to compare the
two proposed goodness measures with respect to the
quality of solutions and then to choose the best measure
in the subsequent experiments. Fig. 4 compares the
performance of the two goodness measures when they
are applied to a workload of 100 tasks and a network of
20 machines. In Fig. 4a, the characteristics of the
workload are: low connectivity, low heterogeneity and
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CCR=0.1. Here, goodness measure 1 outperforms
goodness measure 2 during later iterations. Fig. 4b plots
the two goodness measures when SE is applied to a
workload of high connectivity. Here again, goodness
measure 1 outperforms goodness measure 2. Fig. 4c
compares the two goodness measures when SE is
applied to a workload of high heterogeneity. Goodness
measure 1 again outperforms goodness measure 2. This
can be explained in that the latter allocates the
predecessor tasks to the same machine on which the
task, whose goodness is being computed, is allocated.
Hence, these tasks may be allocated to poorly matched
machines. On the other hand, goodness measure 1
allocates the predecessor tasks to their best machines
along with that of the task whose goodness is to be
computed. For cases of low and moderate heterogeneity,
the two measures return comparable results.
Fig. 4d depicts the performance of the goodness

measures when applied to a workload with CCR=1.
In this case, goodness measure 2 outperforms goodness
measure 1. This is because goodness measure 2 nullifies
the effect of the data transfers by placing all the
predecessor tasks on the same machine on which the
task whose goodness is being computed is allocated.
This makes the data transfer times negligible and hence
goodness measure 2 performs better than goodness
measure 1 for high CCR values. High CCR values mean
that the communication times are comparable with the
execution times.
From this set of experiments, it is concluded that in

general goodness measure 1 performs better than
goodness measure 2. However, goodness measure 2
outperforms goodness measure 1 when applied to
workloads with high CCR values. For the rest of the
experiments, we combined the two goodness measures
by selecting the lower bound of the optimal finish time
of individual tasks calculated by the two measures. By

doing this, we make the SE algorithm independent of
the workload used.

5.2. Effectiveness of SE for MSHC

To verify the effectiveness of the SE algorithm, one
can monitor the number of selected individuals in the
selection step of the algorithm as SE progresses.
Initially, a large number of individuals should be
selected for relocation since most individuals are not
optimally placed. However, in later iterations, the
number of selected individuals should decrease gradu-
ally since more individuals are placed optimally and
should not be relocated.
In this set of experiments, various sizes and types of

workload were generated randomly and the number of
selected tasks at every iteration of the SE algorithm was
logged. Fig. 5a shows the result of a sample of these
experiments. The figure sketches the number of selected
tasks versus the iteration number for a workload of
large size and high connectivity. The shape of the graph,
which is a typical shape of all the experiments we have
run, illustrates clearly that the SE algorithm for MSHC
is very effective in optimally placing the tasks in their
best locations. Initially, a large number of tasks are
selected, as they are not optimally placed. As SE
progresses, more and more tasks are allocated to their
optimal location, hence reducing the number of selected
tasks in later iterations. Fig. 5b shows the corresponding
current schedule length for the same experiment. This
figure demonstrates that the algorithm converges after
the first few hundreds iterations.
It should be noted that for most of the experiments we

run, SE converges quickly. The algorithm is run for 1000
iterations but major improvement is obtained within the
first couple of hundred iterations. However, SE incurs
high time requirement per iteration during the initial
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Fig. 5. Effectiveness of SE for MSHC: (a) number of selected tasks versus iteration and (b) schedule length of current solution versus iteration.
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iterations when the number of selected tasks for
allocation is relatively large. The high execution time
of SE is due to the constructive allocation phase of the
algorithm, which involves multiple trial moves within a
single iteration. The time requirement per iteration in
later iterations is reduced due to the low number of
selected tasks for relocation.

5.3. Effect of Y parameter

Y defines the number of machines to which a
particular task can be allocated according to the
ascending order of its execution times on all machines
in HCS. It represents a tradeoff between the timing
requirement of the algorithm and the quality of solution
to the problem. It should be expected that higher Y

generate better quality solutions. However, this para-
meter was studied because we anticipated that it could
be set according to the heterogeneity of workloads and
helps in reducing the timing requirement of the SE
algorithm without jeopardizing the quality of solutions.
It was predicted that if the workload is highly
heterogeneous, a smaller Y will still give high quality
solutions but with less time.
To analyze the effect of Y and heterogeneity of the

workload, SE for MSHC was run on workloads of
different sizes and varying levels of heterogeneity.
Different values of Y (from 2 to the number of machines
in HCS) were tried out and it was observed, as expected,
that the timing requirements for the SE algorithm
increase as Y increases. However, as far as the quality of
solution is concerned, it was not as clear. For low
heterogeneous (almost homogeneous) workloads, in-
creasing Y almost always improved the quality of
solution when running the algorithm for 1000 iterations.

For workloads of medium and high heterogeneity, it
was observed that increasing Y only improved the
solution as long as Y was relatively small compared to
the number of machines in the workload. Beyond a
certain threshold, the quality of solutions actually
started to get worse. Again, 1000 iterations were used
in the algorithm. This can be explained that in
heterogeneous workloads and for large Y ; many low
quality solutions have to be visited before reaching good
solutions. Therefore, more iterations (probably more
than 1000 iterations) are needed to reach a good
solution.
Figs. 6a and b show typical samples of these experi-

ments. In both experiments, the workload is of large size
(100 tasks and 20 machines). Fig. 6a sketches the quality
of solutions for the first 1000 iterations for Y equals 5, 9,
and 12 if the heterogeneity of the workload is low. This
figure clearly shows that as Y increases the quality of
solution improves and the rate to reach good solutions
also improves. However, in Fig. 6b where a highly
heterogeneous workload was used, the best result was
for Y ¼ 9: Increasing Y beyond 9 actually made the
quality of solutions worse after the first 1000 iterations.
Therefore, for highly heterogeneous workloads, Y

should be kept small relative to the number of machines.
This should result in reaching better solutions with less
time. The magic number that was satisfied in a larger
number of experiments that we have conducted is Y

being about 40% of the number of machines in the
workload.

5.4. Comparison of SE and GA for MSHC

We have used the same HC model adopted by Wang
et al. (1997) so that the performance of SE can be

(a) (b)

0 100 200 300 400 500 600 700 800 9000 100 200 300 400 500 600 700 800 900

S
C

H
E

D
U

L
E

S
C

H
E

D
U

L
E

9000

8500

8000

7500

7000

6500

6000

11500

11000

10500

10000

9500

9000

8500

8000

7500

7000

Y=12
Y=9
y=5

Y=12
Y=9
y=5

Iterations Iterations

Fig. 6. Effect of parameter Y on schedule length: (a) workload with low heterogeneity and (b) workload with high heterogeneity.
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compared to GA with respect to the quality of solutions
and the timing requirements of these algorithms. GA
was implemented using the algorithm in (Wang et al.,
1997). We have also used workloads with different
characteristics (connectivity, heterogeneity and CCR) as
compared to workloads used in (Wang et al., 1997) that
only considered the connectivity parameter.
It should be clear that the final solution generated by

either algorithm cannot be compared to the optimal
solution since exhaustive search cannot be applied to
even small workloads. For example, exhaustive search
was applied to a DAG of 10 tasks and an HCS of 3
machines and it took almost a day on a Sun Ultra Sparc
workstation for the algorithm to visit all solutions and
return the best schedule. Therefore, both algorithms are
only compared to each other.
The two algorithms are compared on the basis of the

quality of solutions and their convergence rate. Table 1

records the comparison of the results obtained by GA
and SE with respect to the quality of solutions. It can be
seen that for smaller workloads, both the algorithms
return the same result. For larger workloads, SE returns
significantly better results for workloads having low
connectivity and low CCR or for workloads having high
heterogeneity. For workloads having high connectivity
or high CCR, the results are not so clear with GA
outperforming SE in some cases. This is due to the fact
that the goodness measures used in SE are primarily
based on the matching characteristic of the tasks.
Fig. 7 represent sample results of the experiments that

we have run to compare both heuristics with respect to
their convergence rate. Fig. 7a shows the best schedules
found by both algorithms as real time increases for a
workload of 100 tasks and 20 machines with high
connectivity. Fig. 7b shows the best schedules found by
both algorithms as time increases for a workload of 100

Table 1

Comparison of GA and SE with respect to quality of solution

Size of workload Type of workload Schedule length GA Schedule length SE

10 tasks, 3 machines Low C, low H, CCR=0.1 2026 2026

High C, low H, CCR=0.1 4538 4538

Low C, high H, CCR=0.1 1786 1786

Low C, low H, CCR=1 1915 2180

50 tasks, 10 machines Low C, low H, CCR=0.1 3535 3313

High C, low H, CCR=0.1 22,761 22,838

Low C, high H, CCR=0.1 3108 2461

Low C, low H, CCR=1 9281 10,857

100 tasks, 20 machines Low C, low H, CCR=0.1 6868 6441

High C, low H, CCR=0.1 50,778 51,630

Low C, high H, CCR=0.1 8894 7565

Low C, low H, CCR=1 20,726 19,420
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Fig. 7. Schedule length versus real time for SE and GA: (a) workload with high connectivity and (b) workload with CCR=1.
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tasks and 20 machines with CCR=1. From these
samples and other experiments we have conducted, it
was clear that SE produced better solutions than GA
with less time, for different workloads. However, as time
increases SE and GA solutions were getting closer to
each other.

6. Conclusion

To the best of our knowledge, simulated evolution
was never applied before to the task matching and
scheduling problem in heterogeneous computing envir-
onments. In this paper, we have proposed an SE-based
task matching and scheduling scheme. Experiments were
conducted on various types and sizes of workloads to
demonstrate the effectiveness of the algorithm. Two
goodness measures are proposed and their performance
compared on various types of workloads. We have also
compared our approach to the genetic algorithm
approach proposed in (Wang et al., 1997). SE performed
better than GA for workloads of certain characteristics
as it generates better quality solutions with less time.
For some workloads characteristics, the difference
between the two algorithms was not clear.
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